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ABSTRACT 

This paper presents a procedural model for breaking ocean waves that is intended to be used for interactive 

visualization. The movement as well as the appearance of the waves is modelled by a set of functions in 

dependence of time and space. This continuous surface description allowes it to calculate all properties of every 

point (including foam) on the ocean surface at every time without any information from previous time steps. By 

using an adaptive sampling sheme for rendering, the frame rate of the animation only depends on the screen 

resolution rather than on the model size. The model is quite simple, easy to implement, fast to compute and 

provides a visual appealing interactive animation of infinite large ocean coast scenes. On the other hand it 

provides only limited flexibility due to its procedural character. For achieving more realistic scene appearance, it 

may also easily be combined with models for deep-water waves presented in the past. 
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1. INTRODUCTION 
The modelling and visualization of ocean scenes has 

been a  challenge in computer graphics for a long 

time. This paper focusses on the special case of 

interactive (this means at least 5 frames per second) 

visualization of plunged breaking waves in infinite 

large ocean coast scenes. The goal is a simple to 

implement and fast to compute model for producing 

high output frame rates and reasonable image quality. 

Figure 1 shows an output image generated by using 

this model (in combination with wave ripples 

modelled with sinusoids). 

The basic principle implemented here for achieving 

these goals is a procedural model. This means, every 

point in the ocean scene is described by some simple 

formulas in dependence of time and space. The ocean 

animation is then restricted to a continuously 

 

Figure 1: Output image generated with the 

presented method and wave ripples (sinusoids). 

changing parametrization for the formulas. 

The advantages of a procedural approach are a 

continuous surface description in time and space so 

that the location and appearance of every point in the 

scene can always be calculated without using 

information from previous time steps. Note 

especially, that even foam generated by the breaking 

waves will also be computed without recomputation 

of values obtained in previous time steps (in contrast 

to particle systems). Furthermore, the model can 

easily be used in combination with wave models for 

deep-water waves and fine rippling waves to enhance 

the realism. 
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On the other hand, a procedural model has the 

limitation that the oceans appearance and behaviour 

is completely defined by the author (such as wave 

refraction on the cost). This implies a 

reparametrization of the model for changing 

environment conditions (for instance a different 

coastline). Because a reparametrization done always 

by hand is not desireable, future work should focus 

on this to provide a more flexible use of the model. 

For displaying the ocean surface, a polygon mesh is 

generated by using the image space sensitive 

sampling method presented by Hinsinger [Hin02]. By 

using this rendering method, the output frame rate 

only depends on the screen area covered by the ocean 

field (i.e. the number of sampling points). Efficient 

use of current graphics hardware is provided due to 

the use of polygon strips. 

Since the model is easy to implement and provides 

fast output image computation, its main applications 

are virtual environments and computer games (also 

because simple collision detection is possible) as well 

as multimedia applications (think about a fly over an 

infinite large ocean surf scene). 

2. RELATED WORK 
Early approaches in the field of ocean modelling and 

visualizing by Max [Max81], Fournier [Fou86], 

Peachey [Pea86] and Tso [Tso87] were able to 

produce fairly realistic results for relatively quiet 

ocean surfaces (also called "deep-water waves") but 

plunged breaking waves could not be modelled 

correctly due to the sinusoidal assumption in the 

parametric surface and/or the use of a high field wave 

representation. A good introduction and overview of 

that work is given in the SIGGRAPH 2001 course 

notes [Tes01]. 

More recent work by Jensen [Jen01] uses different 

wave modelling approaches for different levels of 

detail for interactive deep-water animation. There 

was also presented a texture-based method for 

rendering foam (that is also used in this paper) and 

show clever use of current graphics hardware to 

achive more realism.  

Extensive use of programmable graphics hardware 

was also done by Schneider [Sch01]. Here it was 

used for displacement, transformation and lighting 

calculations of a height field water surface for 

realizing effects such as refraction, reflection and the 

Fresnel term. 

Smith [Smi02] used in his diploma thesis surface 

markers to track a wave surface for interactive 

animating curling and breaking (including plunged) 

waves arriving at a coast. 

The most closely related work to this paper was made 

by Hinsinger [Hin02]. Here, procedural waves are 

used to model an infinite large deep-water surface. 

The surface is rendered by using an adaptive 

sampling method that completely decouples the 

output frame rate from the size of the ocean scene. 

This paper can be seen as an extension of that work 

for handling breaking waves and the resulting foam. 

3. A PROCEDURAL WAVE FIELD 

For further descriptions the basic coordinate setup 

illustrated in figure 2 is used (z is pointing up). The 

intial assumption for the procedural model is that all 

waves are straightly running towards the beach. 

For realistic wave behaviour, the phenomenon of 

wave refraction is modelled. This includes a slowing 

down of the wave when arriving the beach as well as 

a beach alignment. 

 
Figure 2: Setup for the procedural wave field 

At first, a parameter s running from 0 to 1 over the 

wave’s life time is defined by using the time of birth 

(tstart) and dead (tend) of the wave and the current time 

(tcurrent): 
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Here r defines the amount of deceleration and 

alignment to the coastline over time. The desired y 

position (ycurrent) for the current time (tcurrent) is then 

obtained by using: 

ycurrent = (1-s)ystart (x) + s yend(x) 

ystart is here a constant function so that the waves start 

as straight lines, whereas other functions are of couse 

also possible. yend defines the coastline. It can be 

defined by using a function in dependence of x (for 

instance a superimposition of sinus functions) or by 

using cubic interpolation of sampling points. Slightly 

varying values for r and/or yend let every wave run a 

bit on its own which gives a more natural look. 

The second phenomenon modelled here is the wave 

breaking. Normally, a wave begins to break at 

several points and then successively breaks over its 

whole width. This is modelled here by using a simple 

function tbreak(x) that defines the time the wave 

breakes for every point in x direction (for instance 

also a superimposition of sinus functions). Again, 

using slighly varying values for the function 

parameters lets every wave look unique. 

3.1 Modelling Foam 
The foam modelled here is produced by breaking 

waves when the water from the top crashes into the 



water at the bottom. Afterwards, foam slowly 

disappears when the milliards of small bubbles 

disappear. 

Because the breaking time for every wave is always 

known from its function tbreak(x), it is possible to 

compute the amount of foam for every point at the 

ocean surface at every time. For estimating the foam 

amount at a given point (x,y) at the current time 

tcurrent, all waves recently passed y are considered. For 

every wave, the exact time twave when it passed y is 

estimated by reorganizing the two functions above to 

tcurrent: 

twave = tstart + (tend-tstart) 
r y-ystart

yend-ystart
  

If the wave produced foam at that moment (this can 

simply be tested by using the function for breaking) 

the foam amount is faded over time by using a 

function that uses as input the time difference 

between twave and tcurrent (for the simplest case, this is 

a linear function). Finally, the highest foam value 

from all considered waves is taken as the actual foam 

value for that point. 

4. PROCEDURAL WAVE SHAPES 
For procedural modelling the following basic "life 

cycle" of a breaking wave is considered (refer to 

figure 3). When a wave is born, it comes up from 

ocean level and has a round shape (a). When it 

breaks, the front part dents inside and the top part 

falls down thus forming a tube (b). Afterwards, the 

wave collapses until it is completely flat again (c). 

(a) (b) (c)  

Figure 3: Phases of the life cycle of a breaking 

wave. 

The basic idea for procedural modelling the wave  

shapes is to use a combination of four functions: 

cosines function, exponential function, rotation and 

scaling. Figure 4 illustrates this basic principle. 

(a) (b) (c)  
Figure 4: Example for a procedural wave shape. 

(a): combination of cosine, exponential and scaling 

function; (b): rotation; (c): scaling.  

For wave animation, the function parametrization is 

blended over time. The formulas and parametrization 

presented here are obtained by experiment using only 

visual control, whereas physically-based wave shape 

modelling would of course also be possible here. The 

functions map an input space parameter s (0≤s<1, 

running from the back to the front part of the wave) 

onto the respective (y,z) position at the ocean surface 

in dependence of the current time. 

Because the front and the back part of the wave have 

a different behavior, s is splitted for the front and 

back part (the wave lip is always defined by s=0.5). 

For every part the functions are parameterized 

separately. Therefore s1 and s2 are used where s1 runs 

from 0 to 0.5 (or respectively 0.5 to 1) and s2 always 

runs from 0 to 1. For the first case the two values are: 

s1 = 
(2s)

k1

2
  ;     s2 = (2s)

k1
 

For the second case (s is between 0.5 and 1) the 

values are: 

s1 = 
1+(2s-1)

k1

2
  ;     s2 = 1-(2s-1)

k1
  

The constant k1 is introduced for a possibly uniform 

parametrization of the wave, which is desireable for 

the rendering process. The values for k1 can be 

extracted from tabular 1 for the different wave 

phases. With the values s1 and s2, the following 

calculation is used to obtain the coordinates (y,z) for 

the wave shape: 

z1 = 
k2(1+cos((s2-1)π))

2
+k3s2

k4
  

φ = 
πk5s2

k6

2
  

y = (
1

2
-s1) cos(φ)-z1sin(φ)+

1

2
  

z = [(
1

2
-s1)sin(φ)+z1cos(φ)]k7  

For a smooth animation the constants ki are linearly 

blended over the three different phases of the life 

cycle in dependence of a time parameter t that runs 

from 0 to 1 during every phase. Table 1 shows all 

constants ki for the front and back sides for every 

phase. 
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k1 
1 1 2 
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1

2
  

k2 1

4
  

1

4
  

1-t
0.85

4
  

1

4
  0 

1

4
  

k3 
0 0 

t
0.85

4
  0 

1-t

4
  

t
0.7

2
  

k4 0 0 4 0 4 40 

k5 
0 0 2

3

t  2

3

t  
1 1 

k6 0 0 16 4 16 4 

k7 4t

5
   

4t

5
  

4+t

5
  

4+t

5
  1-t 1-t 

Table 1:Constants for procedural wave shape 

description  



5. RENDERING ISSUES 
The use of todays graphics hardware is an obvious 

choice for achieving interactive frame rates. For 

doing so the ocean scene is sampled and triangulated 

as was presented by Hinsinger [Hin02]: sampling 

points are uniformly distributed on the screen (i.e. 

every n-th pixel is a sampling point) and a ray from 

the center of projection is shot through every 

sampling point on the image plane. The intersection 

point from the ray with the ocean level plane is 

computed and for the resulting point the ocean 

surface position is estimated. By using this technique, 

perfect uniform sampling is obviously not guaranteed 

and aliasing also happens but both effects are 

normally not visible due to the moving nature of the 

scene. The resulting polygon mesh is a full polygonal 

description of the ocean surface, including closed 

wave tubes. It is stripped to further accelerate the 

rendering process.  

As was presented by Hinsinger [Hin02], the normal 

vectors per vertex needed for polygon shading can be 

computed analytically by spatial derives of the 

formulas describing the wave. Because this is quite 

complex for breaking waves, the normal vectors are 

calculated here by accumulating the normals from all 

adjacent faces (obtained by vectorproduct) and 

normalizing the result.  

Finally, the actual foam density value is calculated 

per vertex as was described in section 3.1. Foam is 

visualized as a tiled transparent texture applied to the 

polygons forming the ocean surface as was also 

presented by Jensen [Jen01]. The texture opacity is 

set for every vertex with respect to its current foam 

amount value. The use of an animated texture for 

foam may further enhance realism.  

6. CONCLUSIONS 
The callenge of this work is a procedural method for 

breaking wave modelling to be used for simple 

interactive ocean animating. The appearance of the 

ocean scene can be computed everytime without the 

need for transfering information over time. 

Furthermore, in combination with a rendering 

method that uses adaptive sampling, the output frame 

rates are decoupled from the size of the ocean scene. 

The proposed method was implemented by using 

C++ and OpenGL on a Pentium4 running at 1800 

MHz and NVIDIA Geforce III graphics hardware. 10 

breaking waves were animated. A screen resolution 

of 1024x768 pixels and a sampling point distance of 

4 pixels (being a good tradeoff between high output 

frame rates and good image quality) results to 

approximately 50000 sampling points and a frame 

rate of 35 frames per second. 

On the other hand, in a procedural model everything 

has to be modelled by hand so that much work has to 

be done to obtain a more realistic model. This 

includes the support of different wave forms (for 

instance spilled breaking waves) and allowing 

different wave sizes and a more complex wave 

behaviour. Furthermore, assuming a given ocean 

coast scene, a mapping operation that automatically 

adapts the parametrization for the breaking waves 

(for instance for wave refraction) would be highly 

desirable. 

Many more components have to be included  to 

enhance the realism. The presented model can easily 

be combined with models for deep-water waves 

(including sinusoids as in figure 1, trochoids or FFT-

based approaches ([Tes01])) and small wave ripples 

modelled as animated bump maps ([Jen01]). Aside 

from the waves, environment reflection maps can be 

used to model sky reflections on the ocean surface by 

using graphics hardware ([Sch01]). Finally, spray 

produced by the breaking waves should be modelled. 

Because a particle simulation would be to costly for 

large scenes, time dependend functions that define 

the particle movements should be used for that. 
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