
A Procedural Model for Interactive Animation of

Breaking Ocean Waves

Stefan Jeschke
University of Rostock, CS Dept.,
Institute for Computer Graphics,

Albert-Einstein-Str. 21,
18051, Rostock, Germany

Stefan.Jeschke@informatik.
uni-rostock.de

Hermann Birkholz
University of Rostock, CS Dept.,
Institute for Computer Graphics,

Albert-Einstein-Str. 21,
18051, Rostock, Germany

HB01@informatik.uni-
rostock.de

Heidrun Schmann
University of Rostock, CS Dept.,
Institute for Computer Graphics,

Albert-Einstein-Str. 21,
18051, Rostock, Germany

Schumann@informatik.uni-
rostock.de

ABSTRACT

This paper presents a procedural model for breaking ocean waves that is intended to be used for interactive

visualization. The movement as well as the appearance of the waves is modelled by a set of functions in

dependence of time and space. This continuous surface description allowes it to calculate all properties of every

point (including foam) on the ocean surface at every time without any information from previous time steps. By

using an adaptive sampling sheme for rendering, the frame rate of the animation only depends on the screen

resolution rather than on the model size. The model is quite simple, easy to implement, fast to compute and

provides a visual appealing interactive animation of infinite large ocean coast scenes. On the other hand it

provides only limited flexibility due to its procedural character. For achieving more realistic scene appearance, it

may also easily be combined with models for deep-water waves presented in the past.

Keywords
interactive, rendering, procedural modelling, ocean modelling, animation, water waves

1. INTRODUCTION
The modelling and visualization of ocean scenes has

been a challenge in computer graphics for a long

time. This paper focusses on the special case of

interactive (this means at least 5 frames per second)

visualization of plunged breaking waves in infinite

large ocean coast scenes. The goal is a simple to

implement and fast to compute model for producing

high output frame rates and reasonable image quality.

Figure 1 shows an output image generated by using

this model (in combination with wave ripples

modelled with sinusoids).

The basic principle implemented here for achieving

these goals is a procedural model. This means, every

point in the ocean scene is described by some simple

formulas in dependence of time and space. The ocean

animation is then restricted to a continuously

Figure 1: Output image generated with the

presented method and wave ripples (sinusoids).

changing parametrization for the formulas.

The advantages of a procedural approach are a

continuous surface description in time and space so

that the location and appearance of every point in the

scene can always be calculated without using

information from previous time steps. Note

especially, that even foam generated by the breaking

waves will also be computed without recomputation

of values obtained in previous time steps (in contrast

to particle systems). Furthermore, the model can

easily be used in combination with wave models for

deep-water waves and fine rippling waves to enhance

the realism.

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

WSCG POSTERS Proceedings

WSCG’2003, February 3-7, 2003, Plzen, Czech Republic.

Copyright UNION Agency – Science Press

On the other hand, a procedural model has the

limitation that the oceans appearance and behaviour

is completely defined by the author (such as wave

refraction on the cost). This implies a

reparametrization of the model for changing

environment conditions (for instance a different

coastline). Because a reparametrization done always

by hand is not desireable, future work should focus

on this to provide a more flexible use of the model.

For displaying the ocean surface, a polygon mesh is

generated by using the image space sensitive

sampling method presented by Hinsinger [Hin02]. By

using this rendering method, the output frame rate

only depends on the screen area covered by the ocean

field (i.e. the number of sampling points). Efficient

use of current graphics hardware is provided due to

the use of polygon strips.

Since the model is easy to implement and provides

fast output image computation, its main applications

are virtual environments and computer games (also

because simple collision detection is possible) as well

as multimedia applications (think about a fly over an

infinite large ocean surf scene).

2. RELATED WORK
Early approaches in the field of ocean modelling and

visualizing by Max [Max81], Fournier [Fou86],

Peachey [Pea86] and Tso [Tso87] were able to

produce fairly realistic results for relatively quiet

ocean surfaces (also called "deep-water waves") but

plunged breaking waves could not be modelled

correctly due to the sinusoidal assumption in the

parametric surface and/or the use of a high field wave

representation. A good introduction and overview of

that work is given in the SIGGRAPH 2001 course

notes [Tes01].

More recent work by Jensen [Jen01] uses different

wave modelling approaches for different levels of

detail for interactive deep-water animation. There

was also presented a texture-based method for

rendering foam (that is also used in this paper) and

show clever use of current graphics hardware to

achive more realism.

Extensive use of programmable graphics hardware

was also done by Schneider [Sch01]. Here it was

used for displacement, transformation and lighting

calculations of a height field water surface for

realizing effects such as refraction, reflection and the

Fresnel term.

Smith [Smi02] used in his diploma thesis surface

markers to track a wave surface for interactive

animating curling and breaking (including plunged)

waves arriving at a coast.

The most closely related work to this paper was made

by Hinsinger [Hin02]. Here, procedural waves are

used to model an infinite large deep-water surface.

The surface is rendered by using an adaptive

sampling method that completely decouples the

output frame rate from the size of the ocean scene.

This paper can be seen as an extension of that work

for handling breaking waves and the resulting foam.

3. A PROCEDURAL WAVE FIELD

For further descriptions the basic coordinate setup

illustrated in figure 2 is used (z is pointing up). The

intial assumption for the procedural model is that all

waves are straightly running towards the beach.

For realistic wave behaviour, the phenomenon of

wave refraction is modelled. This includes a slowing

down of the wave when arriving the beach as well as

a beach alignment.

Figure 2: Setup for the procedural wave field

At first, a parameter s running from 0 to 1 over the

wave’s life time is defined by using the time of birth

(tstart) and dead (tend) of the wave and the current time

(tcurrent):
r

startend

startcurrent

tt

tt
s 




−

−
=

Here r defines the amount of deceleration and

alignment to the coastline over time. The desired y

position (ycurrent) for the current time (tcurrent) is then

obtained by using:

ycurrent = (1-s)ystart (x) + s yend(x)

ystart is here a constant function so that the waves start

as straight lines, whereas other functions are of couse

also possible. yend defines the coastline. It can be

defined by using a function in dependence of x (for

instance a superimposition of sinus functions) or by

using cubic interpolation of sampling points. Slightly

varying values for r and/or yend let every wave run a

bit on its own which gives a more natural look.

The second phenomenon modelled here is the wave

breaking. Normally, a wave begins to break at

several points and then successively breaks over its

whole width. This is modelled here by using a simple

function tbreak(x) that defines the time the wave

breakes for every point in x direction (for instance

also a superimposition of sinus functions). Again,

using slighly varying values for the function

parameters lets every wave look unique.

3.1 Modelling Foam
The foam modelled here is produced by breaking

waves when the water from the top crashes into the

water at the bottom. Afterwards, foam slowly

disappears when the milliards of small bubbles

disappear.

Because the breaking time for every wave is always

known from its function tbreak(x), it is possible to

compute the amount of foam for every point at the

ocean surface at every time. For estimating the foam

amount at a given point (x,y) at the current time

tcurrent, all waves recently passed y are considered. For

every wave, the exact time twave when it passed y is

estimated by reorganizing the two functions above to

tcurrent:

twave = tstart + (tend-tstart)
r y-ystart

yend-ystart

If the wave produced foam at that moment (this can

simply be tested by using the function for breaking)

the foam amount is faded over time by using a

function that uses as input the time difference

between twave and tcurrent (for the simplest case, this is

a linear function). Finally, the highest foam value

from all considered waves is taken as the actual foam

value for that point.

4. PROCEDURAL WAVE SHAPES
For procedural modelling the following basic "life

cycle" of a breaking wave is considered (refer to

figure 3). When a wave is born, it comes up from

ocean level and has a round shape (a). When it

breaks, the front part dents inside and the top part

falls down thus forming a tube (b). Afterwards, the

wave collapses until it is completely flat again (c).

(a) (b) (c)

Figure 3: Phases of the life cycle of a breaking

wave.

The basic idea for procedural modelling the wave

shapes is to use a combination of four functions:

cosines function, exponential function, rotation and

scaling. Figure 4 illustrates this basic principle.

(a) (b) (c)
Figure 4: Example for a procedural wave shape.

(a): combination of cosine, exponential and scaling

function; (b): rotation; (c): scaling.

For wave animation, the function parametrization is

blended over time. The formulas and parametrization

presented here are obtained by experiment using only

visual control, whereas physically-based wave shape

modelling would of course also be possible here. The

functions map an input space parameter s (0≤s<1,

running from the back to the front part of the wave)

onto the respective (y,z) position at the ocean surface

in dependence of the current time.

Because the front and the back part of the wave have

a different behavior, s is splitted for the front and

back part (the wave lip is always defined by s=0.5).

For every part the functions are parameterized

separately. Therefore s1 and s2 are used where s1 runs

from 0 to 0.5 (or respectively 0.5 to 1) and s2 always

runs from 0 to 1. For the first case the two values are:

s1 =
(2s)

k1

2
 ; s2 = (2s)

k1

For the second case (s is between 0.5 and 1) the

values are:

s1 =
1+(2s-1)

k1

2
 ; s2 = 1-(2s-1)

k1

The constant k1 is introduced for a possibly uniform

parametrization of the wave, which is desireable for

the rendering process. The values for k1 can be

extracted from tabular 1 for the different wave

phases. With the values s1 and s2, the following

calculation is used to obtain the coordinates (y,z) for

the wave shape:

z1 =
k2(1+cos((s2-1)π))

2
+k3s2

k4

φ =
πk5s2

k6

2

y = (
1

2
-s1) cos(φ)-z1sin(φ)+

1

2

z = [(
1

2
-s1)sin(φ)+z1cos(φ)]k7

For a smooth animation the constants ki are linearly

blended over the three different phases of the life

cycle in dependence of a time parameter t that runs

from 0 to 1 during every phase. Table 1 shows all

constants ki for the front and back sides for every

phase.

 round breaking collapsing

 front back front back front back

k1
1 1 2

7

10
 2

1

2

k2 1

4

1

4

1-t
0.85

4

1

4
 0

1

4

k3
0 0

t
0.85

4
 0

1-t

4

t
0.7

2

k4 0 0 4 0 4 40

k5
0 0 2

3

t 2

3

t
1 1

k6 0 0 16 4 16 4

k7 4t

5

4t

5

4+t

5

4+t

5
 1-t 1-t

Table 1:Constants for procedural wave shape

description

5. RENDERING ISSUES
The use of todays graphics hardware is an obvious

choice for achieving interactive frame rates. For

doing so the ocean scene is sampled and triangulated

as was presented by Hinsinger [Hin02]: sampling

points are uniformly distributed on the screen (i.e.

every n-th pixel is a sampling point) and a ray from

the center of projection is shot through every

sampling point on the image plane. The intersection

point from the ray with the ocean level plane is

computed and for the resulting point the ocean

surface position is estimated. By using this technique,

perfect uniform sampling is obviously not guaranteed

and aliasing also happens but both effects are

normally not visible due to the moving nature of the

scene. The resulting polygon mesh is a full polygonal

description of the ocean surface, including closed

wave tubes. It is stripped to further accelerate the

rendering process.

As was presented by Hinsinger [Hin02], the normal

vectors per vertex needed for polygon shading can be

computed analytically by spatial derives of the

formulas describing the wave. Because this is quite

complex for breaking waves, the normal vectors are

calculated here by accumulating the normals from all

adjacent faces (obtained by vectorproduct) and

normalizing the result.

Finally, the actual foam density value is calculated

per vertex as was described in section 3.1. Foam is

visualized as a tiled transparent texture applied to the

polygons forming the ocean surface as was also

presented by Jensen [Jen01]. The texture opacity is

set for every vertex with respect to its current foam

amount value. The use of an animated texture for

foam may further enhance realism.

6. CONCLUSIONS
The callenge of this work is a procedural method for

breaking wave modelling to be used for simple

interactive ocean animating. The appearance of the

ocean scene can be computed everytime without the

need for transfering information over time.

Furthermore, in combination with a rendering

method that uses adaptive sampling, the output frame

rates are decoupled from the size of the ocean scene.

The proposed method was implemented by using

C++ and OpenGL on a Pentium4 running at 1800

MHz and NVIDIA Geforce III graphics hardware. 10

breaking waves were animated. A screen resolution

of 1024x768 pixels and a sampling point distance of

4 pixels (being a good tradeoff between high output

frame rates and good image quality) results to

approximately 50000 sampling points and a frame

rate of 35 frames per second.

On the other hand, in a procedural model everything

has to be modelled by hand so that much work has to

be done to obtain a more realistic model. This

includes the support of different wave forms (for

instance spilled breaking waves) and allowing

different wave sizes and a more complex wave

behaviour. Furthermore, assuming a given ocean

coast scene, a mapping operation that automatically

adapts the parametrization for the breaking waves

(for instance for wave refraction) would be highly

desirable.

Many more components have to be included to

enhance the realism. The presented model can easily

be combined with models for deep-water waves

(including sinusoids as in figure 1, trochoids or FFT-

based approaches ([Tes01])) and small wave ripples

modelled as animated bump maps ([Jen01]). Aside

from the waves, environment reflection maps can be

used to model sky reflections on the ocean surface by

using graphics hardware ([Sch01]). Finally, spray

produced by the breaking waves should be modelled.

Because a particle simulation would be to costly for

large scenes, time dependend functions that define

the particle movements should be used for that.

7. REFERENCES
[Fou86] Fournier, A., and Reeves, W.T. A Simple

Model of Ocean Waves. In ACM SIGGRAPH

Proceedings, Vol.20, No.4, pp.75-84, 1986.

[Hin02] Hinsinger, D., Neyret, F., and Cani, M.P.

Interactive Animation of Ocean Waves. In

Symposium on Computer Animation, 2002.

[Jen01] Jensen, L. S., and Golias, R. Deep-Water

Animation and Rendering. In Gamasutra

September 2001.

[Max81] Max, N. L. Vectorized Procedural Models

for natural terrain: Waves and Islands in the

Sunset. In Computer Graphics, Vol.15, pp.317-

324, 1981.

[Pea86] Peachey, D.R. Modelling Waves and Surf. In

ACM SIGGRAPH Proceedings, Vol.20, No.4,

pp.65-74, 1986.

[Sch01] Schneider, J., and Westermann, R. Towards

Real-Time Visual Simulation of Water Surfaces.

In Proceedings of the Vision Modelling and

Visualization Conference 2001, pp.211-218,

2001.

[Smi02] Smith, B.W. Realistic Simulation of Curling

and Breaking waves. Masters Thesis,

www.csee.umbc.edu/~bsmith15/799/thesis.pdf,

2002.

 [Tes01] Tessendorf, J. SIGGRAPH 2001 Course

Notes, Course 47: Simulating Nature: Realistic

and Interactive Techniques, ACM SIGGRAPH,

2001.

[Tso87] Tso, P. Y., and Barsky, B.A. Modelling and

Rendering Waves: Wave-Tracing Using Beta-

Splines and Reflective and Refractive Texture

Mapping, In ACM Transactions on Graphics,

Vol.6, No.3, 1987, pp.191-214, 1987

