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ABSTRACT 

This article presents our experimental results for classifying edges and faces as manifold or non-manifold elements in 4D Orthogo-

nal Pseudo-Polytopes (4D-OPP's). For faces in 4D-OPP's we propose a condition to classify them as manifold or non-manifold. For 

the edges' analysis in 4D-OPP's we have developed two approaches: 1) The analogy between incident (manifold and non-manifold) 

edges to a vertex in 3D Orthogonal Pseudo-Polyhedra (3D-OPP's) with  incident  (manifold  and non-manifold) faces to a edge in 

4D-OPP's; and 2) The extension of the concept of "cones of faces" (which is applied for classifying a vertex in 3D-OPP's as mani-

fold or non-manifold) to "hypercones of volumes" for classifying an edge as manifold or non-manifold in 4D-OPP's. Both approa-

ches have provided the same results, which present that there are eight types of edges in 4D-OPP's. Finally, the generalizations for 

classifying the n-3 and the n-2 dimensional boundary elements for n-dimensional Orthogonal Pseudo-Polytopes as manifold or non-

manifold elements is also presented. 
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1. INTRODUCTION 
Recent interest has been growing in studying multidimensional 

polytopes (4D and beyond) for representing phenomena in n-

dimensional spaces. Some examples include the works descri-

bed in [Fei90], [Weg97] and [Lee99]. These previous works 

show how some of these phenomena's features rely on the 

polytopes' geometric and topologic relations. However, due to 

the need of visualizing and analyzing these phenomena (i.e. 

multidimensional data), it is essential first to analyze these 

polytopes and their boundaries that compose them [Her98]. So, 

this article covers that first step, in our research, with the 

boundary's analysis for classifying edges and faces as manifold 

or non-manifold elements in 4D Orthogonal Pseudo-Polytopes. 

2. THE 4D ORTHOGONAL POLYTOPES 

[Cox63] defines an Euclidean polytope �n as a finite region  of  

n-dimensional space enclosed by a finite number of (n-1)- 

dimensional hyperplanes. The finiteness of the region implies  

that  the  number  Nn-1  of  bounding hyperplanes satisfies the 

inequality Nn-1>n. The part of the polytope that lies on one of 

these hyperplanes is called a cell. Each cell of a �n is an (n-1)-

dimensional polytope, �n-1. The cells of a �n-1 are �n-2's, and so 

on; we  thus  obtain  a descending sequence of elements �n-3, 

�n-4,..., �1 (an edge), �0 (a vertex).  

Orthogonal Polyhedra (3D-OP) are defined as polyhedra with all 

their edges (�1’s) and faces (�2’s) oriented in three orthogonal 

directions ([Jua88] & [Pre85]). Orthogonal Pseudo-Polyhedra 

(3D-OPP) will refer to regular and orthogonal polyhedra with 

non-manifold boundary [Agu98]. 

Similarly, 4D Orthogonal Polytopes (4D-OP) are defined as 

4D polytopes with all their edges (�1’s), faces (�2’s) and volu-

mes (�3’s) oriented in four orthogonal directions and 4D Ortho-

gonal Pseudo-Polytopes (4D-OPP) will refer to 4D regular and 

orthogonal polytopes with non-manifold boundary. Because the 

4D-OPP's definition is an extension from the 3D-OPP's, is easy 

to generalize the concept to define n-dimensional Orthogonal 

Polytopes (nD-OP) as n-dimensional  polytopes with all their 

�n-1’s, �n-2’s,..., �1’s oriented in n orthogonal directions. Fina-

lly, n-dimensional  Orthogonal  Pseudo-Polytopes  (nD-OPP) 
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are defined as n-dimensional regular and orthogonal polytopes 

with non-manifold boundary. 
 

3. THE �n-2 ANALYSIS FOR 2D, 3D AND 4D-OPP'S 
 

The � 0 Analysis for 2D-OPP's 
A set of quasi-disjoint rectangles determines a 2D-OPP whose 

vertices must coincide with some of the rectangles' vertices 

[Agu98]. Each of these rectangles' vertices can be considered as 

the origin of a 2D local coordinate system, and they may belong 

to up to four rectangles, one for each local quadrant. The two 

possible adjacency relations between the four possible rectan-

gles can be of edge or vertex. There are 2
4
 = 16 possible combi-

nations which, by applying symmetries and rotations, may be 

grouped into six equivalence classes, also called configurations 

[Sri81]. 
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Table 1. The 2D configurations with all their 

rectangles incident to the origin. 
 

Because we are interested in the vertex analysis, we will consi-

der only those configurations where all their rectangles are inci-

dent to the origin. According to the configurations’ nomen-

clature presented in [Agu98], the studied configurations are b, c, 

d, e and f (see Table 1). There are only two types of vertices in 

the 2D-OPP’s: the manifold vertex with two incident edges 

(configurations b and e), and the non-manifold vertex with 

four incident edges (configuration d) [Agu98]. The remaining 

configurations represent no vertex because configuration c has 

only two incident and collinear edges, and in configuration f 

there are no incident edges. 
 

The �1 Analysis for 3D-OPP's 
A set of quasi-disjoint boxes determines a 3D-OPP whose 

vertices must coincide with some of the boxes' vertices [Agu98]. 

Each of these boxes' vertices can be considered as the origin of a 

3D local coordinate system, and they may belong to up to eight 

boxes, one for each local octant. There are 2
8
 = 256 possible 

combinations which, by applying symmetries and rotations, may 

be grouped into 22 equivalence classes [Lor87], also called 

configurations [Sri81]. Each configuration has its complemen-

tary configuration which is the class that contains the comple-

mentary combinations of all the combinations in the given class 

[Agu98]. Grouping complementary configurations leads to the 

14 major cases
 
[Van94]. The configurations with 5, 6, 7 and 8 

surrounding boxes are complementary, and thus analogous, to 



combinations with 3, 2, 1 and 0 surrounding boxes, respectively 

[Agu98]. Finally, each configuration, with four surrounding 

boxes is self-complementary. 
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Table 2. The 3D configurations where all their boxes are 

incident to a same edge (the arrows show the analyzed edge). 
 

Because we are interested in the edge analysis, we will consider 

only those configurations where all their boxes are incident to a 

same edge. According to the configurations’ associated nomen-

clature presented in [Agu98], the studied configurations are b, c, 

d, f and i (see Table 2). [Agu98] concluded that there are only 

two types of edges in the 3D-OPP’s: 

��The manifold edge with two incident faces. This type of ed-

ges is found in configurations b and f. The edge’s two incident 

faces in configuration b belong to one cube’s boundary and 

they are perpendicular to each other. The edge’s two incident 

faces in configuration f belong to two different cubes with 

edge adjacency and they result perpendicular to each other.  

��The non-manifold edge with four incident faces. This type 

of edges is found in configuration d, where two of its faces 

belongs to a cube and the remaining belong to a second cube 

with edge adjacency. 

��The remaining configurations represent no edge because in 

configuration c there are only two incident and coplanar faces, 

and in configuration i there are no incident faces.  
 

The �2 Analysis For 4D-OPP's 
A set of quasi-disjoint hyper-boxes (i.e., hypercubes, which in 

this paper will be represented using Claude Bragdon’s 

projection [Ruc84]) determines a 4D-OPP whose vertices must 

coincide with some of the hyper-boxes’ vertices. We will 

consider the hyper-boxes’ vertices as the origin of a 4D local 

coordinate system, and they may belong to up to 16 hyper-

boxes, one for each local hyper-octant. The 4D-OPP’s vertices 

are determined according to the presence of absence of each of 

these 16 surrounding hyper-boxes. The four possible adjacency 

relations between the 16 possible hyper-boxes can be of volume, 

face, edge or vertex. There are 2
16

=65,536 possible combi-

nations of vertices in 4D-OPP’s which can be grouped, applying 

symmetries and rotations, into 253 equivalence classes, also ca-

lled configurations [Pér01]. Each configuration has its comple-

mentary configuration which is the class that contains the com-

plementary combinations of all the combinations in the given 

class. Grouping complementary configurations leads to the 145 

major cases [Pér01]. The combinations with 9, 10, 11, 12, 13, 14, 

15 and 16 surrounding hyper-boxes are complementary, and thus 

analogous, to combinations with 7, 6, 5, 4, 3, 2, 1 and 0 surroun-

ding hyper-boxes, respectively. Finally, each configuration, with 

eight surrounding hyper-boxes is self-complementary [Pér01]. 

We will consider only those configurations whose hyper-boxes 

are incident to a same face. According to the configurations’ 

associated nomenclature presented in [Pér01], the studied 

configurations are 2, 3, 4, 7 and 13 (Table 3). In [Pér01] is con-

cluded that there are only two types of faces in the 4D-OPP’s:  

��The manifold faces with two incident volumes. The face’s 

two incident volumes in configuration 2 belong to the 

boundary of only one hypercube and they are perpendicular to 

each other. While in configuration 7, The face’s two incident 

volumes belong to two different hypercubes with face 

adjacency and they result perpendicular to each other.  

��The non-manifold faces with four incident volumes. This 

type of faces is found in configuration 4, where two of its 

incident volumes belongs to a hypercube and the remaining 

two belong to a second hypercube with face adjacency. 

��The remaining configurations represent no face because in 

configuration 3 there are only two incident and co-

hyperplanar volumes, and in configuration 13 there are no 

incident volumes (analogous to 3D configurations c and i in 

Table 2). 
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Table 3. Configurations 2, 3, 4, 7 and 13 for 4D-OPP's 
 

Classifying the �n-2’s in nD-OPP’s 

Finally, the generalized conditions to classify a �n-2 as manifold 

or non-manifold in a nD-OPP are: 

�� If two perpendicular �n-1‘s are incident to a �n-2 then it must 

be classified as manifold. 

�� If four �n-1‘s are incident to a �n-2 then it must be classified as 

non-manifold. 
 

4. THE �n-3 ANALYSIS FOR 3D AND 4D-OPP’S 

The �0 Analysis for 3D-OPP’s 
There are eight types of vertices (also two non valid vertices are 

identified) for 3D-OPP's [Agu98]. These vertices can be classi-

fied depending on the number of two-manifold and non-

manifold edges incident to them and they are referred as V3, V4, 

V4N1, V4N2, V5N, V6, V6N1 and V6N2
 
[Agu98] (Table 4). In 

this nomenclature "V" means vertex, the first digit shows the 

number of incident edges, the "N" is present if at least one non-

manifold edge is incident to the vertex and the second digit is in-

cluded to distinguish between two different types that otherwise 

could receive the same name. 

Each vertex has the following properties
 
[Agu98]: 

�� V3: all three incident edges are two-manifold and perpen-

dicular to each other. 



�� V4: all four incident edges are two-manifold, they lie on a 

plane, and can be grouped in two couples of collinear edges. 

�� V4N1: three of its four incident edges are perpendicular to 

each other and also two-manifold ones, while the fourth is 

non-manifold and collinear to one of the other three. 

�� V4N2: two of its four incident edges are two-manifold and 

collinear, while each of its other two is non-manifold and 

perpendicular to the other three. 

�� V5N: four of its five incident edges are two-manifold and lie 

in a plane, while the fifth is non-manifold and perpendicular to 

the rest of them. 

�� V6: all six incident edges are two-manifold. 

�� V6N1: three of its six incident edges are perpendicular to each 

other and also two-manifold ones, while each of its remaining 

three edges is non-manifold and collinear to one of the first 

three. 

�� V6N2: all of its six incident edges are non-manifold. 

�� Non valid vertex 1: its two manifold edges are collinear. 

�� Non valid vertex 2: its two non-manifold edges are collinear. 
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Table 4. Vertices present in 3D-OPP's (dotted lines indicate non-

manifold edges and continuous lines indicate manifold edges). 
 

The �1 Analysis for 4D-OPP's 
Vertices can be defined in terms of the manifold or non-

manifold edges that are incident to these vertices in 3D-OPP's
 

[Agu98]. The same process will be extended to describe edges 

in terms of the manifold or non-manifold faces that are incident 

to those edges in 4D-OPP's. In this way, we have identified eight 

types of edges and two non valid edges. We will also extend the 

nomenclature used by [Agu98] to describe them. Such edges 

will be referred as E3, E4, E4N1, E4N2, E5N, E6, E6N1 and 

E6N2 (Table 5). The only difference with the nomenclature used 

to describe the vertices is that "E" means edge instead of "V" 

that means vertex. Each edge has the following properties: 

�� E3: all three incident faces are two-manifold and perpendi-

cular to each other.  

�� E4: all four incident faces are manifold and lie on a hyperpla-

ne, and they can be grouped in two couples of coplanar faces. 

�� E4N1: three of its four incident faces are perpendicular to 

each other and also two-manifold ones, while the fourth is 

non-manifold and coplanar to one of the other three. 

�� E4N2: two of its four incident faces are two-manifold and 

coplanar, while each of its other two is non-manifold and 

perpendicular to the other three. 

�� E5N: four of its five incident faces are two-manifold and lie in 

a hyperplane, while the fifth is non-manifold and perpendicu-

lar to the rest of them.  

�� E6: all six incident faces are two-manifold.  

�� E6N1: three of its six incident manifold faces are perpen-

dicular to each other, while each of its remaining three faces is 

non-manifold and coplanar to one of the first three.  

�� E6N2: all of its six incident faces are non-manifold. 

�� Non valid edge 1: its two manifold faces are coplanar.  

�� Non valid edge 2: its two non-manifold faces are coplanar. 

It results interesting that the number, classifications and posi-

tions of the incident faces to an edge in 4D-OPP's are analogous 

to the way that a set of edges are incident to a vertex in 3D-

OPP's. 
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Table 5. Edges present in 4D-OPP's (dotted lines indicate non-

manifold faces and continuous lines indicate manifold faces). 
 

Classifying the �0’s in Polyhedra Through its Cones of 

Faces 
A polyhedron is a bounded subset of the 3D Euclidean Space 

enclosed by a finite set of plane polygons such that every edge 

of a polygon is shared by exactly one other polygon (adjacent 

polygons) [Pre85]. A pseudo-polyhedron is a bounded subset 

of the 3D Euclidean Space enclosed by a finite collection of 

planar faces such that every edge has at least two adjacent faces, 

and if any two faces meet, they meet at a common edge [Tan91]. 

Edges and vertices, as boundary elements for polyhedra, may be 

either two-manifold (or just manifold) or non-manifold 

elements. In the case of edges, they are (non) manifold elements 

when every points of it is also a (non) manifold point, except 

that either or both of its ending vertices might be a point of the 

opposite type [Agu98]. A manifold edge is adjacent to exactly 

two faces, and a manifold vertex is the apex (i.e., the common 

vertex) of only one cone of faces. Conversely, a non-manifold 

edge is adjacent to more than two faces, and a non-manifold 

vertex is the apex (i.e., the common vertex) of more than one 

cone of faces
 
[Ros91]. 

 

3D vertex Classification 

V3 Manifold 

V4 Manifold 

V4N1 Non-manifold 

V4N2 Non-manifold 

V5N Non-manifold 

V6 Non-manifold or manifold 

according to its geometric 

context. 

V6N1 Non-manifold 

V6N2 Non-manifold 

Table 6. 3D-OPP's vertices classification. 
 

Using the concept of cones of faces it is easy to construct an 

algorithm to determine the classification of a vertex as manifold 

or non-manifold in any polyhedron or pseudo-polyhedron. 

Using this algorithm over the possible vertices in 3D-OPP's we 

have the results presented in Table 6 which coincide with those 

presented by [Agu98]. 
 

Classifying the �1’s in 4D Polytopes Through its Hyper-

Cones of Volumes 
Due to the analogy between 3D-OPP's vertices described in 

terms of their incident manifold or non-manifold edges, and 4D-

OPP's edges described in terms of their incident manifold or 

non-manifold faces, the next logical step is to extend the concept 

of cones of faces presented in the previous section to classify 4D 

polytopes' edges as manifold or non-manifold.  

Faces, edges and vertices, as boundary elements for 4D 

polytopes, may be either manifold or non-manifold elements. 

[Cox63] and [Han93] have stated that a manifold face is adja-

cent to exactly two volumes, and now we suggest that a mani-

fold edge is the common edge (apex) of only one hyper-cone of 

volumes. Conversely, we have suggested that a non-manifold 

face is adjacent to more than two volumes, and now we suggest 

that a non-manifold edge is the common edge (apex) of more 

than one hyper-cone of volumes. 



 

Using the concept of hyper-cones of volumes, it is easy to ex-

tend the algorithm for obtaining the vertex classification for 3D-

OPP’s used for previous section, to allow us classifying an edge, 

as manifold or non-manifold, in any 4D polytope or 4D pseudo-

polytope. The algorithm is defined with the following steps: 

1 Get the set of �3’s that are incident to edge A (a �1). 

2 From the set of �3’s select one of them. 

3 The selected �3 has two �2’s that are incident to A, get 

one of them and label it as START and ANOTHER. 

4 Repeat 

4.1 If the number of �3’s to ANOTHER is more than one, 

then A is a non-manifold �1. End. 

4.2 The ANOTHER �2 is common to another �3, find it. 

4.3 The �3 has another �2 that is common to A, find it 

and label it as ANOTHER. 

4.4 Until START = ANOTHER (it has been found a hyper-

cone of volumes). 

5 If there are more �3’s to analyze then A is non-manifold 

(there are more hyper-cones of volumes). End. 

6 Otherwise, A is manifold (A is the common edge of only 

one hyper-cone of volumes). End. 

5. RESULTS 
Using the algorithm presented in the previous section over the 

possible edges in 4D-OPP's we have that the edges' classi-

fications are analogous to the 3D-OPP's vertices' classifications. 

Table 7 shows the edges' classifications given by the extended 

algorithm and their analogous 3D results. 

4D 

edge 

Classification 

through hyper-cones 

of volumes 

3D 

vertex 

Classification through 

cones of faces 

E3 Manifold V3 Manifold 

E4 Manifold V4 Manifold 

E4N1 Non-manifold V4N1 Non-manifold 

E4N2 Non-manifold V4N2 Non-manifold 

E5N Non-manifold V5N Non-manifold 

E6 Non-manifold or 

manifold according to 

its geometric context. 

V6 Non-manifold or 

manifold according to 

its geometric context. 

E6N1 Non-manifold V6N1 Non-manifold 

E6N2 Non-manifold V6N2 Non-manifold 

Table 7. 4D-OPP's edges classifications and their analogy 

with 3D-OPP's vertices. 
 

Classifying the �n-3 in nD Polytopes Through its nD 

Hyper-Cones of �n-1’s 
Due to the analogy found between 3D vertices and 4D edges 

with the extension of the concept of cones of faces, is feasible to 

generalize the last presented algorithm to classify the �n-3 as 

manifold or non-manifold in nD polytopes through their nD 

hyper-cones of �n-1’s. The proposed general algorithm is the 

following: 

1 Get the set of �n-1's that are incident to �n-3 A. 

2 From the set of �n-1's select one of them. 

3 The selected �n-1 has two �n-2's that are incident to �n-3 A, 

get one of them and label it as START and ANOTHER. 

4 Repeat 

4.1 If the number of incident �n-1's to ANOTHER is more 

than one, then A is a non-manifold �n-3. 

4.2 The ANOTHER �n-2 is common to another �n-1, find it. 

4.3 The �n-1 has another �n-2 that is common to A, find it 

and label it as ANOTHER. 

4.4 Until START = ANOTHER (it has been found a nD hyper-

cone of �n-1's). 

5 If there are more �n-1's to analyze then �n-3 A is non-

manifold (there are more nD hyper-cones of �n-1's). 

6 Otherwise, �n-3 A is manifold (A is the common �n-3 of 

only one nD hyper-cone of �n-1's). 
 

The Eight Types of �n-3’s in nD Orthogonal Pseudo-

Polytopes 
Due to the analogy between vertices in 3D-OPP's and edges in 

4D-OPP's (Table 7), we can extend their properties to propose 

the eight types of �n-3's in nD-OPP’s. Such �n-3's will be refe-

rred as �n-33, �n-34, �n-34N1, �n-34N2, �n-35N, �n-36, �n-36N1 

and �n-36N2. In this nomenclature ‘�n-3’ indicates the (n-3)-

dimensional element (i.e. vertices in 3D-OPP's and edges in 4D-

OPP's), the first  digit  shows  the  number of incident �n-2 (i.e. 

edges in 3D-OPP's and faces in 4D-OPP's), the ‘N’ is present if 

at least one non-manifold �n-2 is incident to the �n-3 and the 

second digit is included to distinguish between two different 

types that otherwise could receive the same name. 
 

6. FUTURE WORK 
The results of this article are being used in studying the 

extension for the Extreme Vertices Model (EVM) [Agu98] to 

the four dimensional space (EVM-4D). The EVM-4D will be a 

representation model for 4D-OPP’s that will allow queries and 

operations over them. However, the fact related to a model 

purely geometric (four geometric dimensions) is not restrictive 

for our research, because it will be used under geometries as the 

4D spacetime. The first main application for the EVM-4D will 

cover the visualization and analysis for multidimensional data 

under the context of a Geographical Information System (GIS).  
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