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Anotace:  
Článek prezentuje možnost využití difereciálního evolučního algoritmu ke kalibraci modelu ESD prvku na 
naměřená data bez nutnosti manuálního ladění parametrů tohoto modelu. Standardní přístup manuálního ladění 
modelu je ve srovnání s představenou metodou časově náročnější a vyžaduje dedikovaného specialistu. Zde 
představený přístup nebyl dle znalosti autorů dosud použit. Na úvod je vysvětlen princip funkce ESD NMOST 
ochrany a jejich vlastností, na což navazuje krátký popis diferenčního evolučního optimalizačního algoritmu. Na 
závěr jsou uvedeny výsledky kalibrace technologicky optimalizovaného makro-modelu  NMOS tranzistoru na 
empirické, po částech lineární V-A characteristiky 
 
The aim of this paper is to present the utilization of modern optimization algorithm called Differential Evolution 
to automatically fit the measured data from test chip to the appropriate electrostatic discharge (ESD) model 
without the need of manual model-parameters tuning. In contrast with proposed method the traditional approach 
can be very time and resource consuming. To the best knowledge of the authors, this novel approach has never 
been previously used. Short introduction to ESD NMOST function and properties are presented along with basic 
overview of differential evolutionary optimization algorithm. Results of fitting the technology-optimized macro-
model of NMOST to the simple piece-wise linear model of MOSFET snapback I-V characteristic will be 
presented. 
 

INTRODUCTION 

The electrostatic charge has presented major danger 
for integrated circuits liability and lifetime since the 
beginning of history of a high integration. The rapid 
development of technologies pushes the dimensions 
of complementary metal-oxide-semiconductor 
(CMOS) devices into deep-submicron area, where 
especially gate oxides of input buffers are extremely 
prone to damage by resulted high electric field. The 
goal of ESD protection designers is to develop 
countermeasures, able to divert the charge away from 
the sensitive internal circuits and to clamp the 
resulting over-voltage below oxide-breakdown 
level [1]. Additionally, implemented protective 
measures shall not influence operational performance 
of protected device. Ideal protection device exhibits 
zero impedance in signal path and zero leakage to the 
ground or power supply line in off-state and zero 
impedance against the ground or power supply line 
during on-state.  
 
This task can be very complicated because standard 
model libraries of metal-oxide-semiconductor 
transistors (MOSTs) based on Berkeley short-channel 
IGFET Model (BSIM) or EKV (initials of its 
developers C. C. Enz, F. Krummenacher, and 
E. A. Vittoz) models are unable to simulate 
appropriate behavior of ESD protection devices 

during ESD event (so called snapback action), thus 
custom modifications of present process design kits 
(PDKs) − macro-models − or new compact models 
are being presented by researchers all over the world. 
The fitting process of ESD models can be very time- 
and resource-consuming [2]. Thus the automation of 
the fitting process can speed-up the integration of the 
ESD models into design library. 
 
The very effective optimization method is called 
differential evolutionary optimization algorithm 
(DEOA) and was proven to be very efficient in 
solving many different optimization tasks (e.g., 
analog active filter design [3], antenna synthesis in 
electromagnetic field theory [4], etc.). This paper 
presents the novel method developed by the authors 
and results of implementation of the DEOA in ESD 
model fitting. 
 

SNAPBACK ACTION IN NMOST 

The robust, fast, reliable yet relatively simple ESD 
protection device is NMOST. It can be used directly 
in pad or as a power clamp in pad-ring. After closer 
look on a structure of NMOST (Fig. 1), another 
structure than drain—gate—source in substrate bulk 
can be identified. There is also parasitic bipolar-
junction NPN transistor (drain—substrate—source). 
 



 

   

 
 

 
Fig. 1: Simplified structure of NMOST 
 
This is an essential part of ESD NMOST in silicon 
substrate. It is responsible for a special kind of I-V 
characteristic that NMOST exhibits – after triggering, 
the protection device, it rapidly decreases voltage 
drop across itself, therefore decreasing power 
dissipation. This is called “snapback action” and it is 
very important property of NMOST protection. 
Simplified I-V characteristic of NMOST with 
grounded gate (i.e., GGNMOST – gate grounded 
NMOST) is shown in Fig. 2.  
 

 
Fig. 2: Simplified snapback action I-V char. of GGNOST 
 
Several important regions and points can be identified 
on the characteristic: first region is off-state regime, 
where the device exhibits relatively low leakage 
(approx. tens to hundreds of nanoamperes). 
Increasing voltage on a drain of the NMOST results 
in increase of leakage because more minority holes 
can travel through reverse-polarized drain—substrate 
junction. This increase is rather low because the 
resistance is very high in this region of I-V 
characteristic. After reaching breakdown point 

( bd bd,V I  ), there is enough energy that travelling 

holes or electrons can generate more free carriers 
after colliding with them. This phenomenon is called 
“impact ionization” and it rapidly increases so far low 
current leakage. This hole current flowing from drain 
side to the substrate region increases local potential 
under the gate. When the value of the potential 
reaches turn-on voltage of substrate—source junction 
(approximately 0.65 V), self-biasing parasitic NPN 
bipolar-junction structure is triggered. This 
corresponds to the trigger point on the I-V 

characteristic ( 1 1,t tV I  ). The NMOST device then 

decreases voltage drop between drain and source pins 
with increase of current flowing through drain, 
therefore exhibiting negative resistance. After 

reaching 1tV , the NMOST is in on-state and majority 

of the ESD current is conducted through the parasitic 
BJT transistor. After the self-biasing of the BJT 
reaches equilibrium, another important point on I-V 

characteristic is reached: holding point ( h h,V I  ). 

Since then, the NMOST exhibits relatively low 
resistance. Last and also important point on the I-V 
characteristic regarding ESD design limits voltage 
and current the NMOST can experience before 
destructive second breakdown. These values are 

designated as 2 2,t tV I . 

 
The shape of the I-V characteristic (i.e., off-state 

leakage, breakdown voltage brV , trigger voltage 1tV , 

holding voltage hV , on-state resistance onR  and 

second breakdown current 2tI ) can be influenced by 

layout style, technology properties or by circuit 
manners. More details about design and modeling of 
NMOST ESD protection device can be found in [5], 
[1], and [6]. 

NMOST MODEL  

Model of ESD NMOST device was presented in [7] 
and further improved in [8]. The schematic 
representation of the model is shown in Fig. 3. 
 

 
Fig. 3: Representation of NMOST model 
 

The hole-current source genI , responsible for turning 

on the parasitic bipolar transistor, can be described as  
 

( ) ( )gen MD BC1 ,I M I I= − ⋅ −  (1) 

 

where the MDI  is a drain current of the internal 

NMOST model, BCI  is a collector current of the 

bipolar transistor model, and multiplication factor 
M  can be defined as 
 

( )
( )

1 dsat 1

2 dsat 2

limexp

limexp ,

DS

DS

M k V V d

k V V d

 = − − 

 + − − 
 (2) 

 

where dsatV  is drain saturation voltage, limexp( )x  

is a special type of exponential function used in 
Verilog-A hardware description language (HDL) 



 

   

 
 

implementing internal limiting to aid better 

convergence, and 1k , 1d , 2k , and 2d  are fitting 

parameters. The definition of multiplication factor in 
Eq. 2, presented in [8], has better convergence 
properties and was used instead of the original 
definition presented in [7]. The implementation in 
model is done via Verilog-A hardware description 
language (HDL). 
 
The model part designated as “MOSFET” is standard 
EKV model implemented in the PDK and the “BJT” 
was described via VBIC model. 
 
Model of the ESD NMOST substrate resistance 
described with the use of Verilog-A HDL was 
defined as 
 

( ) ( ) ( )
( ) ( )

sub 0 1

2

limexp

limexp ,

GS GS DS

GS GS DS

R R V R V V

R V V V

= + ⋅ −

+ ⋅ ⋅ −
 (3) 

 

where the ( )0 GSR V , ( )1 GSR V , and ( )2 GSR V  are 

polynomial functions defined as 
 

( ) 3
a b c ,i GS i i GS i GSR V R R V R V= + ⋅ + ⋅  (4) 

 

where aiR , biR , and ciR  are fitting parameters and 

0,1,2i = . 

 
In addition, authors enhanced the model by addition 
of a drain resistance to simulate a non-salicidation 
effect on the drain side of the NMOST. The resistor is 
technological, diffusion non-salicided n -type with 
dimensions corresponding to the width of the ESD 
NMOST and overlap of the non-salicided drain 
extension. This shall correctly model the additional 
drain resistance of the non-salicided region on the 
drain side of the ESD NMOST. 
 
More information about various approaches in ESD 
protection device modeling can be found in [5]. 
 

DIFFERENTIAL EVOLUTIONARY 
OPTIMIZATION ALGORITHM 

Evolutionary optimization algorithms are in general 
very robust and fast-to-converge algorithms. The 
Evolutionary algorithms are less susceptible to 
misconvergence problem. Thanks to the natural 
selection of the most fitted member of the population 
of parameter vectors, the possibility of the premature 
convergence in a local minimum is minimized [9]. 
Moreover, the DEOA is in contrast with gradient-
based optimization methods able to optimize in non-
continuous fitting-function-space and enables the 

designer to introduce for example penalty coefficients 
to detect optimization violations. 
 
The functionality of DEOA algorithm can be 
described in the following way: let the vector of 
system parameters for specific member of the specific 
generation be designated as 
 

,i Gx , 0,1,2, 1i NP= −  , (5) 

 
where NP  is the number of D-dimensional 
parameters in the parameter vector ( D  doesn't 
change during optimization process) and G  
determines the sequence of the generation. All the 

parameter vectors ,i Gx  of the same generation are 

called population. If the initial values of parameters 
within the parameter vector are unknown, their values 
can be generated randomly by uniform probability 
distribution. After each generation, a new vector is 
generated and is used in next iterative step. The 
innovation of the differential evolution is the 
algorithm of generation of members of the new 
generation. The new member is derived as the sum of 
weighted difference of the first and the second 
member and of the third member. If the newly created 
parameter vector yields lower value of the objective 

function objf (qualitative evaluation of fitness of the 

specific member) than a predetermined one, the new 
member replaces the original one. In addition, the 
best fitted member of the population (i.e., the 
parameter vector with lowest objective function) is 
stored to keep track of the progress of the 
optimization process. 
 
The detailed principle of generation and selection of 
the best fitted member of the population is as follows: 

for each parameter vector ,i Gx , a trial vector iu  is 

calculated as 
 

( )
1 2 3, , ,  ·  i r G r G r GF= + −u x x x

,
 (5) 

 

where integers 1 2 3r r r i≠ ≠ ≠ and 

1 2 3, , {0,1,..., 1}r r r NP∈ −  are randomly chosen 

with uniform probability distribution, F  is a real 
weighting constant determining the influence of the 

differential variation vector 
2 3, ,( )r G r G−x x . The role 

of the trial vector can be seen in Fig. 4. 
 



 

   

 
 

 
Fig. 4: Representation of the differential evolutionary 

algorithm in two-dimensional space [9] 
 
To implement the principle of a mutation and 

crossover, the new D-dimensional vector it   needs to 

be created. The elements of the it  vector are random 

numbers with uniform probability distribution, where 

, 0,1i jt ∈ 〈 〉 , 0,1,..., 1j D= − . Now, each element 

,i jt  of the it  vector is compared against the value of 

CR  crossover coefficient and in case the value of 

CR  is higher than ,i jt , the ,i ju  is placed in the 

crossover vector iv  as j-th element, else the original 

value , ,i j Gx  is used. In addition, the dimension index 

j  is compared against randomly generated integer 

0,1,..., 1R D= −  with uniform probability 

distribution and in case of match, the , ,i j i jv u= . 

This can be mathematically described as 
 

, i, j
,

, ,

,

, otherwise
i j

i j
i j G

u t CR j R
v

x

≥ ∨ =
= 


, (6) 

 
where 0,1,..., 1i D= − . The graphical 

representation of (6) is shown in Fig. 5. 
 

 
Fig. 5: Example of crossover process 
 
The final step is to solve objective function for the 

crossover vector iu  and compare its value against 

the value of objective function of the original vector 

,i Gx . The vector with lower objective function 

becomes the new member of (G+1)-th generation, 
mathematically written as 
 

obj obj ,
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( )
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i G
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
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uu x
x

x
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where obj( )f y   represents the value of the objective 

function for arbitrary y   vector in its argument and 

0,1,..., 1i NP= − . After each generation, the best 

member (the one with the lowest value of the 
objective function) is selected and stored for the next 
generation. This ensures the progress of 
determination of the best set of parameters.  The 
algorithm can be repeated indefinitely, until the ideal 
solution is found, or the maximum number of 
generations can be specified to limit the number of 
iterations of the optimization. 
 
More details about Evolutionary algorithm can be 
found in [9]. 

FITTING PROCEDURE 

Instead of set of different manual measurements for 
many different conditions that needs to be performed 
during standard model fitting method [2], proposed 
approach needs only the I-V characteristic of the 
“template” protection device (this can be obtained for 
example by TLP measurement). The main part of this 
method is the DEOA fitting algorithm developed for 
ESD model calibrations. It was completely written in 
Matlab-like programing language in Octave 
mathematical software (with all necessary interfaces 
to Cadence Spectre MDL batch extension). It uses 
DEOA core designated as “DE/rand/1/bin” [5]. This 
robust optimization algorithm minimizes possibility 
of missing the global minimum and can be used for 
optimizations in non-continuous space. To prevent 
algorithm to optimize model indefinitely, additional 
checks were implemented: user definable maximal 
acceptable value of the fitting function that whenever 
is reached, the optimization is ended, user can specify 
maximum total number of simulation runs, algorithm 
also checks for how long the algorithm didn’t find 
better parameter set (i.e., with lower value of the 
fitting function)  and ends optimization if the 
specified number of runs has been reached to prevent 
further unnecessary optimization effort and limit total 
optimization time. 
 
In principle the function of the proposed fitting 
method can be described in the following way: I-V 
characteristic constructed from for example TLP 
measurement is used as the template for the DEOA 



 

   

 
 

algorithm which then tries to fit the model to this 
template. The calculations of the DEOA as well as 
control of the fitting procedure are conducted by an 
Octave script created especially for this purpose. The 
model to be fitted has to be instantiated in the simple 
testbench shown in Fig. 6 and netlisted to the Spectre-
formated netlist file. The netlist file includes the fixed 
parameters (constants) of the testbench (i.e., value of 
the initial current of the biasing DC current source, 
dimensions of the NMOST) and the variable 
parameters which need to be optimized to 
successfully fit the measured I-V characteristic of the 
NMOST to the developed model. The simulation 
defined in the netlist is then executed by MDL script 
and performed by Cadence Spectre. Each time before 
the Octave executes the script, the newly calculated 
set of parameters is written into the testbench netlist 
file by developed subroutines of the Octave script that 
create needed interface between optimization core in 
Octave and simulation core in Spectre. It would be 
even possible to very simply modify the interface 
scripts to cooperate with another type of simulator, 
therefore this property and the fact that the Octave is 
GNU licensed makes this tool very easily portable 
and suitable for industrial use. After the end of the 
simulation, the objective function is calculated and 
compared to the best achieved in earlier runs. This 
cycle continues until the objective function has better 
(lower) value than specified by its terminal-value or 
until the specific number of runs was performed 
(protection against the numerical errors while 
processing very small values of the objective function 
or against unrealistically low terminal-value of 
objective function). Schematic description of the 
fitting process is depicted on Fig. 7. 
 

 
Fig. 6: Schematic of the DC simulation circuit for model 

parameter optimization 
 

 
Fig. 7: Diagram of optimization process flow 
 

The objective function objf  is calculated as 

 

[ ] [ ]( )2
measured simulated

obj
1

,
n

i i
i

f V V
=

= −∑  (8) 

 
where i  couples specific voltages as 
measured/simulated by DC drain current sweep. The 
optimization method can be further improved by 
addition of other design variables (e.g., gate voltage 

GSV  of the NMOST) which can be automatically 

swept during one optimization step and thus can 
make the optimization task to take into account other 
dependencies (gate-voltage dependence of the I-V 
characteristic of the NMOST) and eventually ensure 
better fitting. Then the optimization task can be 
mathematically described as 
 

[ ] [ ]( )2
measured simulated'

obj , ,
1 1

,
m n

j i j i
j i

f V V
= =

= −∑∑  (9) 

 
where 0,1,2,..., ( 1)j m= −  runs through all 

combinations of swept variables. This of course 
prolongs the total time and increase the amount of 
resources needed to successfully finish the 
optimization task. 
 

RESULTS 

The automated optimization method presented in 
earlier section was tested by fitting standard GPDK90 
GGNMOST model to the empirical piece-wise linear 
I-V characteristic created by different type of model 
(piece-wise linear I-V characteristic simulation model 
for ESD) developed by authors and based on a 
measured data of 3.3 V transistors in 180 nm 
technology. Cadence Spectre 7.0 was used as 
technology simulator along with Octave 3.4.0 as 
DEOA core handler. The DEOA parameters were set 
as follows: 60NP = ,  0.9CR = , 0.68F = . The 
optimization procedure ended after 4 626 iterations. 
The overall optimization time was less than 5 hours 
(2,3 GHz dual-core desktop computer with 6 GB 
RAM used). Even though neither the model nor the 
technology used for data extraction fits the PDK used 
for model implementation (only data for 180nm 
technology were available and only 90nm general 
purpose PDK was available at the time), the behavior 
of the fitted model closely resembles the one seen in 
the piece-wise-linear model − average difference 
between I-V characteristics of the template and fitted 
model is 0.2 V. Better fitting results shall be received 
in future, fitting the model to the corresponding TLP-
measured data which are not available at the moment. 
The I-V characteristics of models are shown in Fig. 8 



 

   

 
 

showing piece-wise-linear model I-V characteristic 
and fitted I-V characteristic of the earlier presented 
macromodel. The simulated response of the fitted 
model to the Human Body Model (HBM) testing 
pulse is shown in Fig. 9. It is apparent that behavior 
of the macromodel during high-speed high-current 
transient is very close to results presented in [2] after 
extensive fitting measurements (differs only in 
absolute values, curve shape is comparable and the 
snapback is modeled correctly). This proves that the 

balance between genI  and BJT parameters which has 

to be achieved in the standard fitting procedure by 
many measurements of several device characteristics 
was achieved in less than 5 hours by fully automatic 
process. 
 

 
Fig. 8: Comparison of piece-wise linear (solid line) and fitted 

ESD GGNMOST model (dashed line) I-V 
characteristics 

 

 
Fig. 9: Response of fitted ESD GGNMOST model to the HBM 

transient pulse 

CONCLUSIONS 

The possibility of utilization of the DEOA for ESD 
model fitting was presented along with enhanced 
ESD-NMOST macro-model and developed portable 
simulator-independent Octave-Spectre interface. The 
usage of DEOA to fit ESD NMOST model to 
measured data were previously to the best knowledge 
of the authors never presented.  
 
Proposed method was able to fit generic model to the 
piece-wise linear I-V characteristic to be able to 
simulate HBM pulse response and resulting snapback 
of the model connected as gate-grounded NMOST, 
all this in less than 5 hours lasting fully automatic 
optimization process. This shows that this approach is 
viable and can be used as alternative for time- and 
resource-consuming manual model calibration. 

Future development will be focused on optimizing 
the DEOA parameters and using additional 
optimization methods along DEOA to increase 
optimization efficiency. NMOST model will be 
modified to comply with technology used for fitting 
and amended by additional effects that were omitted 
during optimization method development. 
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