

Ročník 2012 Číslo VI

Serial IIR Filter Structure Generator for ASICs
M. Pristach, L. Fujcik

Department of Microelectronics, FEEC, BUT Brno, Technická 10, 616 00 Czech Republic

E-mail: xprist00@stud.feec.vutbr.cz, fujcik@feec.vutbr.cz

Abstract:

The paper presents generator of an infinite impulse response (IIR) digital filter structure for implementation

in application specific integration circuits (ASICs). The paper describes the filter architecture with serial

calculation. The serial architecture utilizes one shared multiply and accumulate (MAC) unit in order to achieve

minimal area on chip. Software in C++ language was written for automatic filter generation. The software

generates fully synthesizable VHDL description of filter, batch file for simulator and test-bench file

for automatic filter verification from the filter specification file.

INTRODUCTION

Infinite impulse response (IIR) filters are different

from finite impulse response (FIR) that are often

using in digital signal processing. The IIR filters used

feedback in contrast to FIR – the output sample

depends on previous input and output samples.

The IIR filters are very efficient. Nevertheless, it is

compensated by the complicated structure and theirs

design is harder. The IIR filters require noticeably

fewer multiplications per output sample to achieve

same frequency response. It means that IIR filters can

be very fast and can operate over much higher sample

rates then FIR filters. [1]

The aim of this project was to create a universal

architecture of IIR filter with serial processing of the

input data. Currently, one filter structure is supported

– Direct-Form II, Second-Order Sections [2]. This

structure uses a cascade of second order filters (often

called as biquad) [3] as is shown in figure 1.

Fig. 1: Structure of Direct-Form II, Second-Order Sections filter

and detail of one section

The main advantage of this structure is small number

of registers. The second-order section filters are

easier to design, have better frequency stability than

higher-order filters and have lower sensitivity

on coefficient quantization due to usage of the

cascade structure. The second-order section filters

also support data word scaling to reduce the

possibility of the overflow effects.

STATE OF THE ART

Hardware representation of various filters can be

directly generated by the Matlab, but for IIR filters

only parallel architecture which contains a large

number of adders and multipliers is supported.

This architecture can process input data and calculate

output sample in one clock period but it is not

suitable for usage on a chip because it takes a lot of

area. On the other hand, serial architecture uses only

one adder and one multiplier. This architecture has

longer calculation time then parallel architecture.

This is not critical for use filters on chip because

the chip usually works on higher frequency then

the processed frequency band.

ARCHITECTURE OF THE FILTER

The filter architecture is based on a finite state

machine with data path (FSMD) [4]. The filter

consists of three parts – three blocks of memory, one

multiply and accumulate unit and a controller.

The memory blocks consist of two banks

of read-write memory for data and one bank

of read-only memory (ROM) with coefficients.

The controller provides generation of control signals,

e.g. write enable signals, memory addresses and

multiplexer select signals.

The calculation is executed sequentially; every clock

cycle the multiplication is executed and the result is

stored in the accumulator. Calculation of one second-

order section response takes six clock periods.

Calculation of the whole filter response is given by

the number of sections. In some cases when certain

coefficients are zero, the calculation can be optimized

and the response time is shorter. The block diagram

of designed filter architecture is shown in figure 2.

SOFTWARE

Software for automatic generation of filter hardware

representation was written. The software uses a file

with filter description generated by Matlab FDATool.

By this tool, users can design a filter complying with

their requirements, e.g. filter type (low pass, high pas,

band stop, ...), bandwidth, attenuation, ripple or

internal parameters of the filter. Then Matlab designs

this filter, calculates its coefficients and the user can

save this information in text format into a FCF file.

Developed software reads this file and generates

optimized and fully synthesizable VHDL description

of filter.

The software was written in C++ language and

provides two interfaces – command line and

graphical (GUI). Graphical interface was created by

the QT framework. Screen of the main window is

shown in figure 3. Current version of the software

supports filters with up to 128 sections, unlimited

word length, with round modes nearest, floor and ceil

and with both overflow modes wrap and saturate.

Fig. 3: Main window of the developed software

IMPLEMENTATION AND RESULTS

The hardware description of various filters was

synthesized by the Cadence Encounter RTL Compiler

RC9.1.203. The results of synthesis for technology

AMIS 0.35µm (I3T25 at 3.3V; 25°C) are shown

in table 1 and table 2 where the utilization of area,

maximum clock frequency and power consumption

are compared. Table 1 displays results of parallel IIR

filter architecture available from Matlab HDL Coder;

table 2 displays results of serial IIR filter architecture

from developed software. All filters have width

of input, output and coefficient of 16 bits, width

of accumulator of 34 bits, round mode nearest and

overflow mode wrap. Number of gates is computed

with respect to area of 2-input gate which performs

the logical NAND function (38.88µm
2
) [5].

A frequency constraint of 1MHz was used for timing

and power consumption analyses. Synthesis was

optimized to area minimization with medium

optimization effort. It can be observed on timing

analysis results that the synthesizer did not optimize

the design for timing constraint because of sufficient

timing slack.

The results of power consumption analysis are only

approximate, real value are based on the processing

input data rate (on the input samples frequency).

When no data are processing, the power consumption

is almost zero because CMOS technology is used.

Presented values of power consumption are for total

power (dynamic + leakage power). These values are

almost same as dynamic power consumption; leakage

power is almost zero for this technology.

Fig. 2: Block diagram of filter architecture with shared multiply and accumulate unit

Tab. 1: Synthesis results of parallel IIR filter architecture (from Matlab)

Filter order Total area Logic area Sequential area Frequency Power

[-] [µm
2
] [gates] [µm

2
] [gates] [µm

2
] [registers] [MHz] [mW]

2 146098.08 3758 132697.44 3413 13400.64 47 25.030 37.707

4 234174.24 6023 211649.76 5444 22524.48 79 16.460 68.995

6 364720.32 9381 333046.08 8566 31674.24 111 11.804 96.555

8 504221.76 12969 463449.60 11920 40772.16 143 9.161 139.267

10 605348.64 15570 555452.64 14286 49896.00 175 7.260 152.487

12 639563.04 16450 580335.84 14926 59227.20 207 6.615 150.083

14 885375.36 22772 817231.68 21019 68143.68 239 5.531 212.015

16 958197.60 24645 880904.16 22657 77293.44 271 5.011 187.242

Tab. 2: Synthesis results of serial IIR filter architecture (from developed software)

Filter order Total area Logic area Sequential area Frequency Power

[-] [µm
2
] [gates] [µm

2
] [gates] [µm

2
] [registers] [MHz] [mW]

2 109758.24 2823 85795.20 2207 23963.04 86 31.525 7.517

4 126178.56 3246 92910.24 2390 33268.32 119 31.093 6.631

6 140097.60 3604 96526.08 2483 43571.52 152 31.095 10.14

8 150634.08 3875 97925.76 2519 52708.32 184 31.353 9.123

10 162933.12 4191 100764.00 2592 62169.12 217 30.018 11.66

12 176502.24 4540 105196.32 2706 71305.92 249 28.544 7.450

14 185159.52 4763 104729.76 2694 80429.76 281 30.069 9.195

16 197769.60 5087 108216.00 2783 89553.60 313 29.707 12.07

Fig. 4: Comparison of area for serial and parallel filter architecture

Fig. 5: Comparison maximum clock frequency for serial and parallel filter architecture

Fig. 6: Comparison power consumption for serial and parallel filter architecture for frequency 1MHz

Comparison of both architectures with respect to area

is shown in figure 4. The graph shows a significant

increase of the area in the parallel architecture with

increasing order of the filter. Serial architecture has

by the assumption significantly smaller area. Area

of combination logic in the serial architecture varies

with filter order only minimally. The number

of registers in the serial architecture increases linear

with filter order and registers represents the main

amount of chip area in filters with higher order.

Comparison of both architectures with respect to

maximum operating frequency is shown in figure 5.

Serial architecture has approximately constant

operating frequency that varies with filter order only

minimally. This is the result of that the architecture

of filters does not change – order of the filter affects

only the memory size and width of the address bus.

The maximum operating frequency of the parallel

architecture decreases exponentially with order of the

filter. This decrease is determined by the architecture

where all second-order sections are connected

in series – critical path passes through all stages

of the filter. The frequency of the parallel architecture

can be increased by using pipelining techniques,

which will have an impact on the increase of chip

area.

Comparison of both architectures with respect to

power consumption is shown in figure 6. Serial

architecture has approximately constant power

consumption; these values slightly fluctuate around

10mW. The power consumption of parallel

architecture increases with order of filter. This

increase of power is given by the larger chip area

where most of the area is occupied by combinational

logic (approximately 90% of total area). The power

comparison does not take into account that

the parallel architecture within a specified period

process much more input samples than serial

architecture. The suitable test case based on really

processing data rate must be used for better

comparison. The VCD file from simulation should be

generated and used in power consumption analysis.

CONCLUSION

The paper presents developed architecture of serial

IIR filter and software for automatic generation

of filter description in VHDL. Developed architecture

is optimized for area and is mainly suitable for use

in ASIC design that does not require high speed

of input samples processing. Developed software

is suitable for fast design of filters while

time-consuming hand-writing of HDL code is

omitted. User can focus on better design of the filter

in Matlab and gets hardware parameters (speed, area)

of the designed filter very quickly.

ACKNOWLEDGMENTS

The research has been supported by project

Prospective applications of new sensor technologies

and circuits for processing of sensor signals No.

FEKT-S-11-16 and by the Czech Science Foundation

as the project No. GA102/11/1379.

REFERENCES

[1] Lyons, R. G., Understanding Digital Signal

Processing, 2nd Edition, Prentice Hall, 2004,

ISBN 978-0-13-108989-1.

[2] Stearns, S. D., Hush, D. R., Digital Signal

Processing with Examples in MATLAB,

2nd Edition. CRC Press, 2011, p. 516, ISBN

978-1-439-83782-5.

[3] Matlab Documentation, DSP System Toolbox,

Fixed-Point Filter Properties [online].

2011 [cit. 2011-12-10]. Available from WWW:

<http://www.mathworks.com/help/toolbox/dsp/

ref/f8-109180.html>.

[4] Chu, Pong P., FPGA prototyping by VHDL

examples. Wiley-Interscience, 2008, p. 468,

ISBN 978-0-470-18531-5.

[5] Standard cell libraries:

amis350ucascc_Rev7.9_Mar_18_2010.

ON Semiconductor (formerly AMIS), 2010,

p. 994.

