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ABSTRACT

Inverse caustic problem, that is computing the geometry of a reflector and/or refractor based on a given caustic

pattern, is currently not widely studied. In this paper, we propose a technique to solve the inverse caustic problem

in which we compute the geometry of a semi-transparent homogeneous refractive object (caustic object) given a

directional light source and a set of caustic patterns (each pattern is considered to be formed at a specified distance

from the caustic object). We validate the results by using mental ray (software rendering). The novelty of our

research is that we consider a set of caustic patterns whereas existing techniques only consider one caustic pattern.

We employ a stochastic approach to simulate the refracted light beam paths that can approximately reconstruct the

input caustic patterns. Working backward, from the computed refracted light beam paths we compute the geometry

of the caustic object that can produce such light beam paths. Due to having multiple caustic patterns as the inputs,

it is a challenge to reconstruct the input caustic patterns because of the differences in their shapes and intensities.

We solve this problem by using a two-step optimization algorithm in which we adjust the position and size of

the caustic regions in the first step and we adjust the caustic shapes in the second step. Our technique is able to

construct a caustic object for a various types of input caustic patterns.

Keywords: caustics, photon, reconstruction, inverse problem, stochastics

1. INTRODUCTION

Recently, there is a growing interest in inverse problem

research in Computer Graphics due to the possibility of

controlling the creation of visual effects. By using the

inverse techniques, the design process becomes easier

as the artists can just specify the intended effects di-

rectly instead of performing the iterative trial-and-error

process. However, inverse problem is generally difficult

as in most cases there is no unique bijective relationship

between the output and the input (i.e., given an output,

there are many input possibilities that can generate such

output).

In the inverse caustic problem, given an input caustic

pattern (shape, intensity, and location from the caus-

tic object) and a light source, we have to compute the

geometry of the caustic object that can produce a caus-

tic pattern similar to the input caustic pattern. Inverse

caustic problem is hard to solve because the input caus-

tic pattern only contains the irradiance magnitude and it

does not have incident light direction information (and
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also the reflected and/or refracted light paths). Up to

now, the inverse caustic problem is not widely studied

and the existing work only consider a single input caus-

tic pattern.

In this paper, we propose a new inverse caustic problem,

that is computing the caustic object given multiple input

caustic patterns formed on a caustic receiver (diffuse

and non-transparent surface) at various distances from

the caustic object. We show an example in Figure 1.

Our basic idea for solving this problem is as follows.

We subdivide one side of the caustic object and also

the caustic patterns into regular cells. The light beam

refracted by each caustic object cell will pass through

one caustic cell of each caustic pattern. We try to com-

pute the orientation of each caustic object cell such that

the combination of the refracted light beams of all caus-

tic object cells can approximately reconstruct the input

caustic patterns.

We use a stochastic approach in our technique and we

represent each input caustic pattern as a 2D probability

mass function (pmf) by considering the brightness of a

caustic cell as the probability of a light beam might pass

through it (i.e., the brighter the caustic cell is, the higher

probability or the more likely a light beam is considered

to pass through it). Hence, for each cell of the caustic

object, we use the pmfs of the caustic patterns to deter-

mine to which direction the caustic object cell refracts

a light beam. From the determined refracted light beam
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(a) Scene setup. (b) Computed caustic object and approximately reconstructed caustic patterns.

Figure 1: (a) Scene setup. We compute a caustic object (the leftmost box), specifically the surface geometry of the

side (shown in red color) facing the caustic patterns, given three caustic patterns (WSCG, 2012, and Europe) to be

formed on a caustic receiver at three distances from the caustic object, with a directional light source orthogonal

to the caustic object illuminates from the left. (b) mental ray renderings of caustics produced by our computed

caustic object (final output). Input caustic patterns are shown in the insets at each image. The computational time

is 9.0 hours.

direction, we can compute the orientation of the caustic

object cell.

Due to differences of the input caustic patterns (in

terms of shapes and intensities), it is hard to compute

the caustic object that can satisfy all the input caus-

tic patterns. Thus, we relax the input requirements by

slightly adjusting the sizes, positions, and shapes of the

non-zero intensity regions of the input caustic patterns.

Moreover, we also allow a small amount of light beam

which has passed through several caustic patterns to

miss or overshoot the rest of the caustic patterns. We

compute these adjustments by using optimization tech-

niques. We validate our results by performing rendering

simulation using mental ray [men12a], a robust indus-

try standard rendering engine.

2. RELATED WORK

Unknown Input Given only the output, the input

that can produce such output is computed. This is a

hard problem since the a priori knowledge of the input

is not available. One example is the work presented

by Bottino et al. [Bot01a] and Mitra et al. [Mit09a].

They compute a 3D geometry that can satisfy the inputs

which consist of a set of silhouettes or shadow patterns.

Inverse Caustics One of the earliest work in inverse

caustic is presented by Patow and Pueyo [Pat04a]. They

compute the reflector shape in an optical set (consists of

a reflector, light source, and diffusor) given the radiance

distribution as an input. They represent the reflector as

grids and they iteratively adjust the grid vertices such as

positions and number of vertices based on the similar-

ity with the intended radiance distributions. The whole

process took many days even though they can obtain ra-

diance distribution similar to the input. They improve

the work by allowing the user to set the range of the

solution space [Pat07a] (the lower bound and the upper

bound of the reflector shape). Hence, a user has more

control in determining the reflector shape. They later

increase the performance by using GPU [Mas09a] and

they can reduce the processing time into magnitude of

hours.

In parallel with the aforementioned work, Anson et

al. [Ans08a] represent the reflector as a NURBS sur-

face and Finckh et al. represent the reflector as a B-

Spline surface [Fin10a]. As a result, during the opti-

mization they optimize the control points instead of grid

vertices which in the end can produce smooth reflectors

in a relatively fast speed (due to the small number of

parameters to be optimized). However, as Papas et al.

also mention [Pap11a], the parameterized technique has

a difficulty with highly complex caustic images, thus

Finckh et. al [Fin10a] cannot reproduce all frequencies

of the caustic pattern and Anson et. al [Ans08a] assume

the shape of the caustic pattern to be circular.

Weyrich et al. generate a microgeometry reflector given

a single reflected caustic pattern input [Wey09a]. The

caustic object is subdivided into uniform cells (facets),

and they compute the optimized orientation of each cell

that can produce a caustic pattern similar to the input

pattern. Papas et al. [Pap11a] improve the work of

Weyrich et al. [Wey09a] by generating a refractor caus-

tic object on a larger scale. Moreover, they are able

to prevent noise on the reconstructed caustic pattern by

computing the surface of each facet based on the Gaus-

sian distribution. Similar to Weyrich et al. [Wey09a],

they employ several optimization costs in order to gen-

erate the caustic objects. In the most recent develop-

ment, Yue et al. [Yue12a] emphasize on modularity by

reconstructing an input caustic pattern from a caustic

object which consists of many smaller pieces of caustic

object cells. Their caustic object cells are divided into

ten types with each type refracts light to a predefined

direction.

Comparison In all these work, the input is only a sin-

gle caustic pattern. On the other hand, in this paper we

propose a new challenge in which we compute the ge-

ometry of a caustic object based on a set of input caustic

patterns.
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Figure 2: Scene setup. Our algorithm computes the

normal/orientation of each caustic object cell. Caus-

tic pattern ’1’ is formed when the caustic receiver is at

distance d0 from the caustic object and similarly caustic

pattern ’2’ at d1.

3. BASIC IDEA OF OUR METHOD

Scene Setup The scene setup is shown in Figure 2. The

scene consists of three components, a caustic object (of

a box shape), a caustic receiver (a planar surface where

the caustic patterns are formed), and a directional light

source (whose direction is orthogonal to the caustic ob-

ject). Both the caustic receiver and the caustic object

are positioned coplanar, with the caustic receiver is on

one side of the caustic object (assumed to be the back

face of the caustic object, facing (0, 0, -1) direction)

and incoming light direction is on the other face of the

caustic object (assumed to be the front face of the caus-

tic object, facing (0, 0, 1) direction). We assume the

caustic receiver and the caustic object to have the same

spatial dimension (i.e. same width and height) and ori-

entation. Therefore, the extent of the region of interest

of each caustic pattern is bounded by the shape of the

caustic receiver

The caustic patterns and the back face of the caustic

object are subdivided into a regular grid of cells. Each

cell of a caustic pattern stores the total caustic intensity

on that particular cell. We call cells of caustic patterns

which have non-zero caustic intensity as caustic cells

and cells with zero caustic intensity as empty cells. The

collection of caustic cells of a caustic pattern is collec-

tively called as a caustic region. For each cell of the

caustic object (caustic object cell), we compute its ori-

entation such that it can produce a refracted light beam

to a specific direction. In the rest of this paper, we refer

to each refracted light beam as light and we represent

each light beam in the following Figures 3 and 4 as an

arrow.

Problem Formulation We compute the back face of a

caustic object C given a set of p grayscale caustic pat-

terns such that each caustic pattern j will be formed on

the caustic receiver when the receiver is located at the

user-input distance d j from the caustic object. Specif-

ically, we compute the orientation of each caustic ob-

(a) (b)

Figure 3: Problem formulation. (a) Given two caus-

tic patterns at two different locations (with the intensity

of each caustic cell is denoted by the size of the cell),

compute light refraction direction (red arrow) of each

caustic object cell such that the refracted light collec-

tively can generate caustic patterns similar to the input

caustic patterns. (b) Light refraction combination that

can satisfy the input caustic patterns.

ject cell at the back face of the caustic object such that

the cell refracts the incoming light into a direction that

passes through parts of the caustic regions. Collec-

tively, the light refracted from all caustic object cells is

expected to pass through all the input caustic cells thus

reconstructing the input caustic patterns. As mentioned

in Section 1, the input caustic patterns only provide

the estimate of the amount of refracted light arriving

at caustic receiver cells, not the light directions. Hence,

the main challenge is to compute refracted light paths

that can approximately reconstruct all the given caustic

patterns. This problem is illustrated in Figure 3. The

orientation of each cell can then be determined based

on the path of its refracted light.

Solution As explained above, the task is to compute re-

fracted light direction combinations such that they can

approximately reconstruct the input caustic patterns. In

this case, more light is expected to pass through brighter

caustic cells compared to darker caustic cells. Hence,

to solve this, we simulate the direction of the refracted

light of each caustic object cell by using a stochastic

approach. The idea is to use the caustic intensity in

each caustic cell as the probability that we will refract a

light to that caustic cell (i.e. the brighter the input caus-

tic pattern is, the more likely it is chosen as a refracted

light target).

We represent the set of caustic patterns as a set

of normalized 2D probability mass functions

P = { fP0
, fP1

, fP2
, . . . fPp−1

} (each in P is the pmf

of the user-input caustic pattern on the caustic receiver

when the receiver is located at the user-input distance

from the caustic object). The pmf of each caustic pat-

tern is defined by using the grayscale value (intensity)

of the caustic pattern in which the probability at each

caustic cell is the grayscale value of that particular cell

in the caustic pattern. Each pmf fPj
is normalized by
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Figure 4: Each numbered arrow denotes the refracted

light from the cells of the caustic object C and the gray

blocks denote the probability of caustic cells. Light #1

and #2 have joint pmf of zero since their paths pass

through at least one empty cell. Each light in #3 has

the probability greater than zero since the light pass

through non-zero cells. Light #4 is allowed even though

it misses some of the caustic patterns. We will explain

this further in Section 4.2. Light #5 is not valid because

it does not intersect any caustic patterns

dividing the probability of each of its cell with the total

probability of all cells of fPj
.

We assign a random variable Xi for each i-th cell of

the caustic object. For each Xi, the probability value of

each possible refracted light direction x is computed by

multiplying the probability of each caustic cell passed

by the light refracted to direction x (see Figure 4), as

shown in Equation 1.

fXi
(x) =

p−1

∏
j=0

fPj
(gi

j(x)), (1)

with gi
j(x) is a mapping function. The mapping func-

tion is basically a ray casting function in which the light

is shot from the i-th caustic object cell to the caustic pat-

tern j with the direction of x and return the intersected

cell (of caustic pattern j). Then, for each caustic object

cell or each Xi we assign a refracted light direction by

using the Acceptance-Rejection method [vN51a] with

the distribution based on the sampled joint probability

mass function of all caustic patterns (Equation 1).

Once we obtain the refracted light direction for each

caustic object cell, we compute its normal or orienta-

tion based on the user-input index of refraction of the

caustic object, incoming light direction (orthogonal to

the caustic object), and the obtained refracted light di-

rection by solving the Snell’s Equation (see Appendix

A). Afterward, we perform rendering simulation using

the mental ray to asses the approximate reconstructed

caustic patterns (as shown in Figure 6a).

Note that our technique can also be applied to

point light sources and directional light sources non-

orthogonal to the caustic object. In the rest of the paper,

the terms caustic patterns and pmfs are interchangeable

as we use the term pmfs when we emphasize on the

mathematical representation of the caustic patterns.

4. IMPROVING THE RECON-

STRUCTED CAUSTICS

The solution in Section 3 may not be able to reconstruct

the caustic patterns very well if the input consists of

multiple patterns. If we only have a single caustic pat-

tern (shown in Figure 5a), then we can reconstruct it

very well. However, if we add two additional caustic

patterns, then some parts of the input caustic patterns

are missing (Figure 5b).

Reconstruction problem As explained in Section 3

(and shown in Figure 4), some refraction directions

have zero joint pmf when they pass through at least

one empty caustic cell. As a result, if all possible re-

fraction directions from every caustic object cell pass

through a caustic cell of a caustic pattern but they also

pass through the empty cells of other caustic patterns,

then the aforementioned caustic cell cannot be recon-

structed (we call such cell as a missing caustic cell).

As seen in Figure 4, the top and bottom caustic cells

in fP1
are missing caustic cells since the refracted light

that pass through these caustic cells also pass through

empty cells in the other caustic patterns.

Proposed solution Based on the given input caustic

patterns and their configurations (positions and sizes),

it might not be possible to compute the caustic object

that can well reconstruct the original input caustic pat-

terns. Thus, we propose a method to relax the input re-

quirement by allowing slight changes to the positions,

sizes, and shapes of the caustic regions. Our proposed

method consists of two steps. In the first step, we op-

timize the size and position of the caustic regions by

slightly adjusting the size and position given by the user

(Section 4.1). In the second step, the boundaries of each

caustic region are adaptively extended such that they

enable the reconstruction of the missing caustic cells on

the other caustic patterns (Section 4.2). We also com-

pute the amount of light that is allowed to overshoot or

to miss some caustic patterns.

In both optimization steps, we use Simulated Anneal-

ing [Kir83a]. The main reason we use Simulated An-

nealing is because the problem cannot be solved analyt-

ically. However, there are also some possible optimiza-

tion techniques such as Particle Swarm, Ant Colony,

and Genetic Algorithm. However, those techniques re-

quire keeping the record of multiple possible solutions

at once, hence it is not efficient for our case (as seen in

Equation 3, the cost computation requires reconstruc-

tion of the caustic patterns multiple times using the ad-

justed input caustic patterns). Moreover, in some of

the related work [Wey09a, Fin10a, Pap11a], Simulated

Annealing is also used. After applying our proposed
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(a) (b)

Figure 5: (a) Only a single caustic pattern and it can be reconstructed very well. (b) Two additional caustic patterns

cause some parts of the input caustic patterns to be missing.

solution, the reconstructed caustic patterns from the test

case in Figure 5b are improved as seen in Figure 1b.

Cost computation In every iteration of both optimiza-

tions, we use the root mean square to compute the cost

or degree of possibility that the adjusted input caustic

pattern can be approximately reconstructed (in order to

guide the simulated annealing). The root mean square

is computed as the difference between the normalized

reconstructed caustic patterns Z = { fZ0
, fZ1

, . . . fZp−1
}

and the normalized adjusted input caustic patterns D =
{ fD0

, fD1
, fD2

, . . . fDp−1
}. Only in the cost computation

here, the normalization of caustic patterns in Z and D

are computed by dividing the value of each caustic cell

t with the maximum caustic cell value of the caustic

pattern t belongs to. We compute the cost in this way

such that the maximum cost (which is in the worst case

scenario, for example the input caustic patterns are not

reconstructed at all) is 1.0. The cost computation is

shown in Equation 3.

Cost =
1

p

p−1

∑
j=0









1

n(W( j))

β

∑
i=0

( fD j
(ti)− fZ j

(ti))2, (2)

with

W( j) = {t| fD j
(t)+ fZ j

(t)> 0}, (3)

and t is the caustic cell, p is the number of caustic pat-

terns, n(W( j)) is the number of elements of a set of

caustic cells contributing to the cost computation, and

β is the total number of cells of each caustic pattern (in

our experiments, β = 64× 64 = 4096). For more ac-

curate computation of Z, we approximately reconstruct

the caustic patterns 32 times and accumulate their caus-

tic cell values, and finally we divide the value of each

caustic cell by 32 in order to get Z.

We reconstruct the caustic patterns by computing the re-

fracted direction as explained in Section 3 and then for

each caustic cell we accumulate the amount of refracted

light that intersects it. We use the modified pmfs (which

are adjusted in each optimization step) to compute the

joint pmfs (Equation 1).

4.1. Adjusting the Size and Position

In this first optimization step, we relax the input caustic

pattern configurations by iteratively adjusting the size

and position of the input caustic region. Adjusting the

position is basically translating the caustic regions in

3D space (translation in x, y, z). This means we also

adjust the input distance (translation in z) between the

caustic object and the caustic pattern (caustic receiver).

In every iteration, we adjust the size and positions of

the input caustic regions and compute the cost by using

Equation 2 in order to guide the optimization iterations.

The adjusted input caustic patterns are used as the input

to the next optimization step (Section 4.2) and they are

also the target caustic patterns for every iteration of the

second step.

4.2. Extending Caustic Regions and Over-

shooting Refracted Light

After performing the first optimization step, there

might be some missing caustic cells left. Missing

caustic cells are the caustic cells that cannot be recon-

structed. To reconstruct some of these missing caustic

cells, we slightly extend the shape of all input caustic

regions. For example, in Figure 4, the middle-top

and middle-bottom caustic cells of fP1
cannot be

reconstructed since all possible refracted light that

passes through these cells in fP1
have to pass through

empty cells in either fP0
or fP2

. Hence, to solve this,

we can extend the middle caustic regions in fP0
and fP2

up and down by one cell.

Some caustic cells especially around caustic patterns

borders are hard to reconstruct as most light passing

through these cells can miss other caustic patterns in

behind. Thus, we relax this requirement by enabling

some of the refracted light that passes through caustic

cells of one or several caustic patterns to miss the rest

of the caustic patterns (or region of interests of the rest

of the caustic patterns). This is beneficial especially

for the caustic cells on the border of the caustic pat-

terns. For example, in Figure 4, if we enable light #4

to pass the bottommost caustic cell of fP0
and miss the

rest of caustic patterns (we call this overshoot), then

Journal of WSCG, Vol.20 41 http://www.wscg.eu 



(a) Results without optimization. Cost : 4.45×10−1

(b) Results after 1st optimization (Section 4.1). Cost : 4.08×
10−1

(c) Results after 1st and 2nd optimization (Section 4.2). Cost

: 2.64×10−1

Figure 6: Mental ray rendering results of the optimiza-

tion steps. Input caustic patterns are shown at the bot-

tom right of each screenshot in (a). We also show the

missing caustic cell maps at the below right of each im-

age (green cells show the missing caustic cells, gray

cells show the caustic cells that can be reconstructed,

and cyan cells show the extended caustic cells). For

the visualization of the differences between the target

and the reconstructed caustic patterns, we also show the

caustic irradiance difference maps (assuming the total

irradiance of each target caustic pattern is 1.0 and the

total light emitted to the scene is 1.0, i.e. each caus-

tic object cell refracts the light with the amount of 1.0

divided by the number of caustic object cells) at the be-

low left of each image (from the darkest pixels with the

least errors to the brightest pixels with the most errors).

For the sake of visual clarity, we scale up the difference

values by 5000. The computational time is 5.7 hours.

the bottommost caustic cell of fP0
can be reconstructed.

However, we still do not allow the refracted light of one

caustic object cell to miss all of the caustic patterns (as

in light #5).

Fully extending the caustic regions can deform the orig-

inal caustics too much, and likewise if we allow too

much light to overshoot the caustic patterns then the ap-

proximate reconstructed caustic patterns will have very

low intensity. Hence, in this step, we apply an optimiza-

tion to determine the appropriate caustic regions exten-

sions amount k = {k0,k1, . . .kp−1} and light overshoot

amount o= {o0,o1, . . . ,op−1} with k and o ∈ [0,1] (i.e.,

a k and an o value for each caustic pattern).

(a) (b)

Figure 7: (a) A simple example of missing caustic cell

projection (is explained in Section 4.2). Gray cells are

the caustic cells and the green cell is the missing caustic

cell. (b) We extend the second caustic pattern (two cells

away) with gradually decreasing intensity.

Extending Caustic Regions To enable the missing

caustic cells of a caustic pattern j to be reconstructed,

we have to firstly compute at most how many sb unit

cells away the caustic region boundaries of the other

caustic patterns b (0 ≤ b ≤ p−1,b ̸= j) have to be ex-

tended. Afterward, for every caustic pattern b, we ex-

tend its caustic region with the amount of sb · kb. In or-

der to enable smooth extension, we extend the caustic

regions with linearly decreasing intensity (or probabil-

ity value).

To do this, for every missing caustic cell of the caustic

pattern j, we project it from every caustic object cell

to the empty cells of other caustic patterns b (0 ≤ b ≤
p− 1,b ̸= j). We perform this projection for the miss-

ing caustic cells of all caustic patterns. This projection

example is shown in Figure 7a in which we project the

missing caustic cell (shown in green color). Afterward,

for each caustic pattern b, we obtain the maximum dis-

tance (sb) between its caustic region boundaries and its

empty cells that receive the projections of the missing

caustic cells (of other caustic patterns). In Figure 7a ex-

ample, it is five cells (sb = 5) away for the second caus-

tic pattern and in Figure 7b the caustic region boundary

is extended two cells away (if kb = 0.4).

Some of the missing caustic cell projections might miss

the other caustic patterns b. For example, if the missing

caustic cell in Figure 7a is one or two cells to the right,

then some of the projections will overshoot or will not

hit the second caustic pattern. We use this information

to control the possibility of the refracted light to over-

shoot each caustic pattern.

Overshooting Refracted Light To improve the re-

sults, we also enable the refracted light to overshoot

some of the caustic patterns. Thus, during the missing

caustic cells projections, we also compute the ratio (eb)

between the amount of these projections that do not hit

caustic pattern b and the total amount of these projec-
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tions toward caustic pattern b (i.e. sum of the missing

caustic cell projections that hit and do not hit caustic

pattern b). eb is essential since it provides the informa-

tion on the amount of probability that the refracted light

miss plane b. Hence, the probability hb that we will re-

fract the light to miss the caustic pattern b is shown in

Equation 4.

hb = eb ·ob · fPb
(tmax), (4)

with ob is the coefficient to control the probability of

overshooting b-th caustic pattern and tmax is a cell of

fPb
with the highest probability value.

We show the optimization progression in Figure 6.

5. GEOMETRY CONSTRUCTION

As explained in Section 3 we use the joint pmf (Equa-

tion 1) of the caustic patterns to compute the refraction

direction of each caustic object cell. From the refrac-

tion direction, we can obtain the normal of the partic-

ular caustic object cell. However, if we perform the

optimizations in Section 4, then we use the modified

pmfs (output from both optimization steps) to compute

the joint pmf (and ultimately the normal of each caustic

object cell).

Based on the computed orientation of each caustic ob-

ject cell, we can obtain the caustic object geometry by

computing the x,y,z coordinates of the four corners of

each caustic object cell. The x,y coordinates of each

caustic object cell corner can be easily found as the

caustic object is uniformly subdivided. To compute

the z coordinates of the caustic object cell corners, we

firstly assume that the z coordinate of all caustic object

cell middle points to be the same (z = 0.0). Next, we use

the dot product operation, i.e. dot product between the

normal of the caustic object cell and the vector from

the caustic object cell middle point (we know its x,y
coordinates from the uniform subdivision and also its z

coordinate which is 0.0) to each caustic object cell cor-

ner (we know its x,y coordinates) must be equal to zero.

In this case, the only unknown value is z of the caustic

object cell corner.

Since the edges of the neighbouring caustic object cells

do not have the same slope or the same z coordinate on

both endpoints, there are vertical open spaces between

caustic object cells (shaded with lighter gray in Fig-

ure 8), we generate additional polygons to close those

gaps.

6. RESULTS

We present some results computed using our technique

in Figures 1, 6, 10. In all of the test cases, the index of

refraction of the caustic objects are 1.5, the resolution

of the caustic objects are 128× 128 and the resolution

of the caustic receiver is 64× 64. Resolution refers to

Figure 8: Caustic object geometry (inset) of Figure 6c

with a zoom-in view. In the zoom-in view, each caustic

object cell consists of two co-planar triangles shaded

with darker gray. We also generate additional vertical

polygons (shaded with lighter gray) to close the gaps

between caustic object cells.

the number of cells. If we assume the spatial size to

be 1.0×1.0, then the size of each caustic object cell is

1.0/128× 1.0/128 and the size of each caustic cell is

1.0/64×1.0/64.

We use higher resolution for caustic object cells since

we want to have more variations on the refracted light

paths so that we can better reconstruct the contrast (or

intensity variations) of the given caustic patterns. We

show a difference example with a single caustic pattern

case in Figure 9, a simple caustic pattern (resolution

64×64) reconstructed with a resolution 64 x 64 caustic

object and a resolution 128 x 128 caustic object.

(a) (b)

Figure 9: A simple test case (one caustic pattern, with

resolution 64×64) reconstructed with different caustic

object resolutions. (a) Resolution 64 x 64 caustic ob-

ject. (b) Resolution 128 x 128 caustic object.

We use the same parameters for the simulation anneal-

ing for both optimization steps in all experiments, i.e.

10 cycles of 10 iterations, Boltzmann’s constant of 1.0,

and temperature reduction factor of 0.5.

The experiments were performed on two comparable

PCs. The specification of the first PC is Intel i7 920

2.67 GHz (CPU) with NVIDIA GeForce GTX 285
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(GPU) and the specification of the second PC is Intel i7

880 3.07 GHz (CPU) with NVIDIA GeForce GT 330

(GPU). In the implementations, we calculate the joint

pmf by rendering each caustic pattern and then we mul-

tiply them by using alpha blending (hence the use of

GPU). For the rest of the computations such as Simu-

lated Annealing and Acceptance-Rejection method, we

perform them on CPU.

From the results, we can observe that the caustic ob-

jects generated using our technique can approximately

reconstruct various types of input caustic patterns, es-

pecially for the WSCG (Figure 1b), fruits (Figure 10a),

and rotating star (Figure 10c) test cases. The degree of

difficulty in reconstructing the caustic patterns mostly

depends on the number of caustic patterns, similarity

between shapes, and the number of caustic cells in the

input caustic patterns. As shown in Equation 4, due to

the multiplication in computing the joint pmf, the prob-

ability of a particular refraction direction can become

zero if the refracted light passes through empty cells.

With the increasing number of caustic patterns espe-

cially the ones with different shapes, the chances that

we have many refraction directions with zero probabil-

ity also increase. We can see this from the results in

Figures 1 and 6 (three input caustic patterns) where we

can reconstruct better compared to the results in Fig-

ures 10 (four or more caustic patterns).

The shapes and orientations of caustic patterns can also

affect the reconstruction difficulty. The test cases with

similar caustic patterns, can be approximately recon-

structed pretty well since similar refracted light paths

are sufficient to reconstruct the caustic patterns. This is

evident by comparing Figure 10a and Figure 10b. The

caustic patterns in Figure 10a have near round shapes

and approximately the same orientations. In contrast,

the test case in Figure 10b have pretty different shapes

(and orientations). Hence, there are few light that can

pass through the endpoints of the bars compared to the

middle regions of the bars.

Note the difficult test case shown in Figure 10b, four

bar caustic patterns with alternating orientations. As

we can see, the hardest parts to reconstruct are the ones

near the two endpoints of the bars and on the other hand

the parts around the centers are the easiest. This is due

to the alternating shapes which cause the light paths to

always pass through the center of the caustic regions.

As we allow the refracted light to miss some of the

caustic patterns, we are able to approximately recon-

struct the top and bottom parts of the first caustic pat-

tern. However, the consequence is that the last caustic

pattern appears much dimmer.

In many cases, light tends to converge to the middle

caustic patterns and as a result the center regions of

these caustic patterns become relatively brighter com-

pared to the other caustic patterns (for example, the Ar-

madillo caustic pattern in Figure 6 exhibits this effect).

This is due to two reasons. First, the caustic regions

are positioned approximately at the center of the caus-

tic patterns. Second, because the size of the caustic re-

gions are mostly smaller than the caustic object. There-

fore, some caustic object cells have to refract the light

in the diagonal directions. This is illustrated in Figure 4

in which some of the light grouped to #3 have to be

refracted in the diagonal directions.

Note that the relative depth of caustic patterns also af-

fects the quality, as it is very difficult to reconstruct if

the caustic patterns are located very near to each other.

This is because the refracted light paths will intersect

the patterns at similar locations and thus it is difficult to

reconstruct caustic patterns with different shapes.

Please refer to the submitted video to see the progres-

sive changes of the caustic patterns as the caustic re-

ceiver is moved.

7. APPLICATIONS

The inverse caustics has several potential applications.

Arts As shown in Figure 10, our technique can gener-

ate caustic objects that can produce several interesting

caustic effects (similar to the intention in the inverse

shadow [Mit09a]). Therefore, we hope that our work

can encourage more exploration in caustic arts.

Information Encoding Information (such as serial

numbers, passwords) can be encoded as caustic patterns

of encrypted 2D images. Only when the requirements

(such as light direction and caustic receiver distance)

are known, we can recover the original information.

We show an example in Figure 11 in which we encrypt

WSCG and 2012 into two QR barcode patterns.

Validation Tests By using the computed caustic ob-

ject, we can validate some processes such as rendering

process (validating the correctness of caustics render-

ing algorithm) or manufacturing (validating the quality

of produced glasses or light sources).

8. CONCLUSIONS AND FUTURE

WORK

We have presented an inverse caustic problem and a

novel technique which computes a caustic object given

a set of caustic patterns with each pattern is positioned

at a user-input distance from the caustic object. Our

proposed technique is based on a stochastic approach,

and it is augmented with two optimization steps that

can alleviate the missing caustic problems. We have

validated our results by performing physically render-

ing simulation using mental ray, and the caustic ob-

ject generated using our technique can approximately

reconstruct various types of input caustic patterns.

In the future, we would like to improve the quality of

the reconstructed caustics in terms of smoothness. It
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(a) Fruits (four caustic patterns). Computational time : 7.7 hours.

(b) Four bars (four caustic patterns). Computational time : 15.7 hours.

(c) Rotating Star (nine caustic patterns). Computational time : 27.6 hours.

Figure 10: More results. Note that the caustic pattern set in (c) contain similar patterns, as they are frames of a

simple animation.

Figure 11: An application of information encoding. We

encode WSCG and 2012 into two QR barcode patterns.

is also interesting to consider more complex light sit-

uations such as area light sources and dynamic light

sources. It is challenging to use area light sources since

they emit light to many directions from every point in

the area light sources. As for the dynamic light sources,

it is interesting to generate unique caustic pattern for

each given light source direction (in this case, caustic

object and caustic receiver are static). Last but not least,

we would like to fabricate a real caustic object based on

the computed geometry.
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A. NORMAL COMPUTATION

Given the Snell’s Equation

η1 sinθ1 = η2 sinθ2,

η


1− cos2 θ1 =


1− cos2 θ2,

η



1− (−N ·M)2 =


1− (N ·R)2,

A1NxNx +A2NxNy +A3NyNy = 1, (5)

with η1 is the index of refraction of the caustic object,

η2 is the index of the refraction of air, N is the normal,

M is the inverse incoming light direction, R is the re-

fracted light direction, θ1 is the angle between M and

the inverse normal, θ2 is the angle between M and the

normal, and

η = η1
η2

A1 =
η2MxMx−RxRx

η2−1

A2 = 2
η2MxMy−RxRy

η2−1
A3 =

η2MyMy−RyRy

η2−1

Since the normal vector N is normalized, the solution

lies on a unit circle and as a result Nx = cosφ and Ny =
sinφ . Hence, Equation 5 can be simplified to

(2A3 −2) tan2 φ +2A2 tanφ +(2A1 −2) = 0. (6)

Equation 6 is basically a quadratic equation and the an-

gle φ can be obtained by solving the quadratic equation.
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