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ABSTRACT
Image-based modeling is becoming increasingly popular as a means to create realistic 3D digital models of real-
world objects. Applications range from games and e-commerce to virtual worlds and 3D printing. Most research
in computer vision has concentrated on the precise reconstruction of geometry. However, in order to improve
realism and enable use in professional production pipelines digital models need a high-resolution texture map. In
this paper we present a novel system for creating detailed texture maps from a set of input images and estimated
3D geometry. The solution uses a mesh segmentation and charting approach in order to create a low-distortion
mesh parameterization suitable for objects of arbitrary genus. Texture maps for each mesh segment are created
by back-projecting the best-fitting input images onto each surface segment, and smoothly fusing them together
using graph-cut techniques. We investigate the effect of different input parameters, and present results obtained for
reconstructing a variety of different 3D objects from input images acquired using an unconstrained and uncalibrated
camera.
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1 INTRODUCTION

Digital 3D models are used in a large number of appli-
cations ranging from entertainment (games, movies) to
engineering and architecture (design), e-commerce (ad-
vertisement) and education (simulation and training).
3D model creation can be made more effective, more
affordable, and more accessible to inexperienced users,
by using image-based reconstruction methods, which
aim to create a high-quality digital model from a set of
input photographs [HVC08, REH06].

Most published research has concentrated on the prob-
lem of reconstructing 3D geometry from a set of input
images, and estimating camera parameters for methods
assuming uncalibrated and unconstrained image acqui-
sition. The problem of texture reconstruction for multi-
view stereo has also been investigated, however, many
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authors make assumptions, such as known camera pa-
rameters, which can not be guaranteed in practice.

In this paper we present a complete system for tex-
ture reconstruction for image-based modeling. The sys-
tem is fully automatic and input images can be ac-
quired with an unconstrained and uncalibrated camera.
The resulting models contain a high-definition texture
map and can be integrated into professional produc-
tion pipelines. Our algorithm automatically estimates
the intrinsic and extrinsic parameters of the input cam-
eras using Structure-from-Motion and Bundle Adjust-
ment techniques. The 3D model is then automatically
parameterized using a segmentation and charting tech-
nique, which is suitable for surfaces of arbitrary genus
[ZMT05]. A texture map is then created by back-
projecting the best fitting input images onto each sur-
face segment, and smoothly fusing them together over
the corresponding chart by using graph-cut techniques.

The remainder of this paper is organized as follows.
Section 2 reviews existing approaches for texture recon-
struction in multi-view stereo. Section 3 summarizes
our image-based modeling technology, which we use
to create 3D geometry and estimate camera parameters.
Section 4 describes our texture reconstruction process
in detail. Section 5 evaluates our solution and discusses
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the effect of various parameters and the algorithm’s ad-
vantages and shortcomings. We conclude this paper and
give an outlook on future research in section 6.

2 LITERATURE REVIEW
Image-based texture reconstruction for 3D models re-
quires in general two steps: a surface parameterization
of the reconstructed 3D object, and computation of the
object’s surface texture from a set of input images of
the object.

The surface parameterization creates a mapping of a 2D
domain (parameter space) to the surface mesh of the re-
constructed 3D object. Texture mapping can then be
accomplished by creating a 2D texture image over the
parameter space. An explicit surface parameterization
can be avoided by determining the input image regions
best representing the object’s surface, blending them to-
gether, and storing them in a texture atlas indexed by
the mesh vertices [XLL+10]. However, since there is
no global parameterization, postprocessing algorithms,
such as polygon reduction, can result in unwanted arti-
facts.

Surface parameterization methods can be classified ac-
cording to their complexity, whether the resulting map-
ping is bijective, whether they have a predetermined
boundary for the parameter space, and to what extend
distortion is minimized [SPR06]. For objects with a
non-zero genus or complex geometry the surface must
be cut into multiple parts and parameterized individ-
ually in order to minimize distortions. The resulting
charts can be combined into one single texture atlas us-
ing a packaging algorithm.

Most recent image-based texture reconstruction algo-
rithm seem to use a charting approach. Goldluecke and
Cremers [GC09] create a planar texture space via an
automatically created conformal atlas [LWC06]. The
planar texture space is then used to solve a partial dif-
ferential equation, originally defined over the object’s
surface, in order to find the surface texture representing
the input images best.

Computation of a surface texture from input images is
difficult since several images mapping to the same sur-
face region can result in conflicting color information
due to geometric errors (camera parameters), limited
image resolution, and varying environmental parame-
ters (lighting) during image acquisition. Four classes of
solutions are described in the literature:

1. Blend input image information per texel using suit-
able weights for different source images [BMR01,
LH01].

2. Compute texture patches and fuse them
seamlessly together by optimizing seam lo-
cations [LI07, XLL+10] or warping texture
patches [EdDM+08].

3. Compute texture patches and blend them seamlessly
together. Chen et al. use multi-band blending in or-
der to minimize seam discontinuities [CZCW12].

4. Use a local optimization step in order to fully
utilize the information given by multiple im-
ages of the same object region. Goldluecke and
Cremers present a technique for computing high-
resolution texture maps from lower-resolution
photographs [GC09]. The method requires accurate
geometry and camera calibration.

Additional optimization steps are possible to take into
account texture differences in input images, e.g., due
to illumination changes, shadows, and camera param-
eters such as dynamic range adjustment. Xu et al.
[XLL+10] use radiometric correction to adjust color
difference between patches. Valkenburg and Alwesh
reduce seams resulting from image illumination vari-
ations by applying a global optimization to all vertex
colors of a 3D mesh [VA12]. Chen et al. remove high-
light effects by determining all input images mapping
to a surface area [CZCW12]. Image regions which
vary too much from the median color of the surface
area are removed. Missing or deleted image regions
(e.g., highlights) can be filled using Poisson image edit-
ing [CZCW12, CAH+13].

3 3D GEOMETRY RECONSTRUC-
TION

In this section we summarize our image-based model-
ing algorithm for geometry reconstruction. We concen-
trate on the algorithm steps effecting texture reconstruc-
tion, i.e., camera parameter estimation and surface rep-
resentation. More details of the algorithm are described
in [NWDL13, NWDL12b].

Figure 1: Overview of our algorithm for reconstructing 3D
models from a set of unconstrained and uncalibrated images.

An overview of our image-based modeling technology
is given in Figure 1. The algorithm uses a coarse-to-fine
strategy where a rough model is first reconstructed and
then sequentially refined through a series of steps.
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The first step of the geometry reconstruction consists of
estimating the camera parameters for each view. This
is accomplished by detecting and extracting distinctive
features using a SIFT feature detector [Low99, Low04].
We then isolate all matching images, selecting those
that contain a common subset of 3D points [HQZH08].
Given a set of matching images, a scene geometry
(point cloud) and camera pose can be estimated simul-
taneously by using a Structure from Motion algorithm
and subsequently refining the solution using Bundle Ad-
justment. The last step is critical for the accuracy of the
reconstruction, as concentration of pairwise homogra-
phies would accumulate errors and disregard constrains
between images. The method minimizes the reprojec-
tion error, which is defined by the distance between the
projections of each point and its observations.
Due to the sparseness of the point cloud representing
the scene geometry, artifacts can arise during the
surface and texture reconstruction processes. We
overcome this problem by integrating a shape-from-
silhouette approach. Silhouette data is obtained by
using the rough depth estimation from the previous
step for a foreground segmentation and applying
the Marching Squares algorithm [Lor95]. The com-
plexity of each silhouette line is reduced using the
Douglas-Peucker algorithm [VW90]. The 3D positions
of silhouette points are estimated by forming cone
lines from silhouette contour points and the camera’s
estimated optical center, projecting the lines onto the
other silhouettes, computing the intersection points,
and lifting them to 3D [MBR+00].
Adding silhouette points and using them in the bundle
adjustment step results in a better camera parameter es-
timation and smoother surface reconstruction.
Finally the object’s surface is reconstructed. We tested
the α-shape algorithm, the power crust algorithm, and
the ball pivot algorithm. In the end we decided to use
the Poisson surface reconstruction algorithm [KBH06].
The technique gives a smoother reconstruction than
other tested techniques, is more stable towards noise,
and always creates a watertight surface.
A perceived weakness of the algorithm is that it re-
quires oriented normals at the input points. However,
we can obtain them from the image and silhouette in-
formation. Furthermore, it has been shown hat the ap-
proach is quite resilient to inaccuracies in the directions
of the normals [Kaz05].
A surface texture is created by projecting each vertex
of the mesh onto all input images containing the point
(i.e., the surface point is visible from the images’ esti-
mate camera location). The mesh vertex color is the
weighted average of the corresponding image pixels.
The resulting triangle mesh with vertex colors is ren-
dered using Gouraud shading. An example is shown in
Figure 2.

Color interpolation suffers from two major shortcom-
ings: (1) detailed input image textures appear blurred
(see bottom row of Figure 2), and (2) texture resolution
is lost if a mesh reduction method is applied.

Figure 2: Photograph of a rooster statue (left) and the re-
constructed model using vertex colors and Gouraud shading
(right). The images at the bottom show an enlargement of the
neck region of the object.

4 TEXTURE RECONSTRUCTION
We create a high quality texture map for our 3D model
in two steps: The 3D mesh model is first parameter-
ized yielding a one-to-one triangle mapping from the
3D model to a 2D planar surface. Input images are then
projected onto the surface and suitable texture regions
are identified, cut, and fused together to form a 2D tex-
ture atlas.

4.1 Surface Parameterization
The objective is to segment the resulting meshes
into patches and unwrap them onto a 2D planar
surface. We evaluated different surface parameteri-
zation techniques, but found that existing libraries,
such as Blender, either create a very disjoint map of
triangle patches, or create a single parameter patch
with large distortions. We hence use a Feature-
based Surface Parameterization, which consists of
three stages [ZMT05]: Genus reduction, feature
identification, and patch creation.

Genus reduction In order to identify non-zero genus
surfaces, a surface-based Reeb graph [Ree46] induced
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by the average geodesic distance [HSKK01] is con-
structed. The leaf nodes of this graph reveal the tips of
the protrusions of the meshes, while loops in the graph
signify the existence of handles. The principle behind
genus reduction is to identify loops that do not separate
the surface into two disjoint connected components and
cut the surface open along the cycle, which reduces the
combined genus of the surface segments by one. This
process is repeated until there are no more handles.

Feature identification From the Reeb graph the tips
of protrusions are identified and the features are sep-
arated from the rest of the surface by constructing a
closed curve γ as follows: We separate the region R that
corresponds to the tip of the protrusion by first com-
puting the function fp(q) = g(p,q), where fp(q) is the
geodesic distance function [HSKK01] with respect to
p. The value of fp is normalized to fit in the interval
[0,1]. Regions which are bounded by a given isovalue
are examined. Specifically, the interval [0,1] is parti-
tioned into k equal sections. The surface is then divided
into levelset bands by performing region-growing from
the tip of the protrusion p based on the values of fp in
these intervals [ZMT05].

Variation in the area of this sequence of bands tends to
be small along a protrusion slope, and large where the
feature connects to the remaining section of the surface.
The separating region R can be extracted by examining
these areas, which are considered as a continuous func-
tion A(x). To remove any small undulations, A(x) is
passed through a Gaussian filter function N times.

Three parameters (isovalue, k, and N) influence the ef-
fectiveness and efficiency of the region separation pro-
cess. The larger the isovalue is, the further the region-
growing process continues. This leads to fewer surface
patches being generated. Higher k values result in more
samples being used to discretize A(x), increasing the
probability of small noise being considered as potential
candidate places for the separating region. Large N val-
ues tend to cause the location of the separating region to
shift or it being lost, while too small values often result
in false separations.

Once the separating region R has been identified, a
closed curve γ separating the surface into segments is
constructed as follows: A collection of edges in the
surface separating the feature from the rest of the sur-
face (the skeleton) of R is found. During this process
dangling edges are rejected. A separating cycle ρ from
this skeleton is then extracted. Finally, a shorter and
smoother separating cycle γ is constructed based on ρ .

Patch creation Patches are created by unwrapping
them using a discrete conformal mapping [EDD+95].
The method creates first texture coordinates of the
boundary vertices, and then determines texture co-
ordinates of the interior vertices through solving a
closed form system. The main problem with this

mapping technique is that regions can be stretched or
compressed during the process leading to areas of the
meshes not being preserved. This in turn results in
uneven sampling rates across the surface.

Interior vertices’ texture coordinates are optimized to
reduce the geometric distortion by first computing an
initial harmonic parameterization [Flo97]. A square
virtual boundary enclosing the patch is constructed.
The exact coordinates of the boundary are not impor-
tant as long as they do not coincide with those of the
patch boundary. We then perform triangulation of the
regions between the virtual boundary and the original
boundary using Scaffold triangles. The patch optimiza-
tion technique proposed by Sandle et al. [SGSH02] is
then applied to the enlarged patch.

4.2 Texture Map Generation
At this stage, we have successfully generated a parame-
terization of the 3D model. The next task is to construct
a complete texture map using the computed parameter-
ization. This is accomplished in three steps:

1. Identify images and regions of input images to be
mapped onto each patch of the parameterization.

2. Cut these patches and paste them over the parame-
terized surface.

3. Merge overlapping regions using a graph cut tech-
nique [KSE+03a, CFW+12].

Texture region identification: For each patch
of the surface parameterization we need to identify
the image regions mapping onto it. We project all
triangles of a patch onto all input images where it is
visible, i.e.: (1) the triangle normal forms an angle of
less than 90◦ with the vector to the estimated camera
position; (2) the triangle is not occluded by other
surface regions. The resulting image regions and the
one-to-one correspondence between projected triangles
and original triangles of the patch is saved for the next
stage of the algorithm.

Texture map computation: At this stage for each
patch we have a set of texture regions. The goal is to
process these texture regions to produce a new texture
that will cover the patch. We perform the mapping of a
texture region from an input image to a patch for each
triangle separately. Given two arbitrary triangles 41
and 42, an affine transformation that transforms trian-
gle41(P,Q,R) to42(P◦,Q◦,R◦) is defined as follows:
Let Φ1 be the affine transformation that maps the unit
triangle to41, and Φ2 be the affine transformation that
maps the unit triangle to42. The affine equivalence of
these two triangles is Φ2 ◦Φ

−1
1 .

The procedure is repeated for each texture region yield-
ing a set of overlapping textures covering the face of the
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processed patch. We use a greedy technique to assem-
ble these textures. We start with the least fitting texture
and project it onto the input image. We then use the
next least fitting texture and add as much as possible of
it while minimizing the seam between the two textures
using a graphcut technique [KSE+03a]. This process
is repeated until all input images have been considered.
The effect of this strategy is that artifacts which occur
only in one input image, such as highlights, are reduced
since frequently they result in a visible seam with the
current partial texture map. Furthermore the last tex-
ture added is the one from the best fitting input image,
so most of the final texture results from this image un-
less it creates inconsistencies with the other input im-
ages. Note that the current method does not guarantee
removal of artifacts. For example, if a surface region is
only visible in one input image and it contains a high-
light, then this highlight is part of the final texture map.
We have tested this algorithm with more than 40 data
sets and did not encounter any problems apart from the
shading inconsistencies explained in subsection 5.2.3.

Seam Minimization: Seams between overlapping in-
put image texture regions are minimized by using a
graphcut technique [KSE+03a]. Given two overlapping
images A and B, we want to find the cut within the over-
lap region, which creates the best transition between
these images. The overlap region is represented as di-
rected graph, where each node represents a pixel posi-
tion p in the overlap region, which is denoted A(p) and
B(p) for the two images A and B, respectively. Nodes
are connected by edges representing 4-connectivity be-
tween pixels. Each edge is given a cost encoding the
pixel differences between the two source images at that
position.

We have investigated the effect of different parame-
ters for image fusion applications [CFW+12] and tested
them with various 3D models. Based on this we use the
following parameters: Image pixels are represented in
the RGB color space. Color distances are computed us-
ing the L2 norm. The cost function w corresponds to the
gradient weighted color difference between the images
A and B at the neighboring pixels p and q, i.e.,

w∇ =
||A(p)−B(p)||+ ||A(q)−B(q)||

||Gpq
A (p)||+ ||Gpq

A (q)||+ ||Gpq
B (p)||+ ||Gpq

B (q)||

where Gpq
A (p) is the image gradient in the direction of

the edge pq at pixel p. This cost function has been orig-
inally devised by Kwatra et al. [KSE+03b] based on
the observation that seams are more noticeable in low-
frequency regions, and a visually more pleasing cut is
computed by increasing the cost of an edge with a de-
creasing image gradient.

Figure 3 illustrates an example in which two texture
patches of our Rooster model are fused together to form
a larger and more complete texture patch. The newly

merged texture patch is then fused together with the
next available texture patch in the list. The process ter-
minates when all texture patches have been successfully
merged.

Figure 3: Seam minimization. Source texture patches are
shown in the the left column, while the merged texture patch
is shown in the right column.

Figure 4 shows the texture map obtained by back-
projection surface patches onto the input images (right)
and the resulting textured 3D model (left). In many
instances the input images do not cover the entire
surface of the object. For example, in many of our
experiments users did not take photos of the underside
of objects. In this case the 3D point cloud contains
large gaps. The Poisson surface reconstruction will
create a smooth watertight surface interpolating the
gaps, but the corresponding regions of the texture map
have no color information (red color regions in the
top-right image of Figure 4). The accuracy of our
new texture reconstruction process is illustrated by
comparing the bottom-left image of Figure 2 and the
bottom-right image of Figure 4.

5 RESULTS

5.1 Effect of Parameters

We have investigated the effect of different algorithm
parameters on the quality of the surface parameteriza-
tion and texture reconstruction.

5.1.1 Isovalue

The larger the isovalue is, the farther the region-
growing process continues, and the fewer surface
patches are generated. Figure 5 illustrates the sur-
face segmentation and Figure 6 the resulting texture
patches. If the isovalue is too large the resulting texture
map suffers from large distortions. However, having
a single texture patch simplifies some operations such
as image inpainting to fill surface regions without
matching input images.
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Figure 4: Top row: Reconstruction of the Rooster in Figure 2
(left) and the surface parameterization after texture map com-
putation (right). Regions that were not visible in any of the in-
put images are colored red. Bottom row: Surface appearance
of the rooster’s neck region using vertex color interpolation
(left) and our new texture reconstruction process (right).

Figure 5: Parameterization of our Bird model with the isoval-
ues of 1.0, 2.0, and 5.0, respectively.

Figure 6: Texture map for the surface parameterization ob-
tained using an isovalue of 2.0 (left) and 5.0 (right).

5.1.2 Number of Gaussian Iteration Steps

Increasing the number of times the Gaussian filter func-
tion is applied during the parameterization process, ef-
fects how sensitive the segmentation process is towards
differently sized features. Figure 7 demonstrates that
small values result in unnecessarily many segments,

whereas large values result in too few patches and hence
larger texture distortions.

Figure 8 shows that the resulting texture maps look very
similar. However, the texture map generated using 10
Gaussian steps contains falsely oriented texture features
in the neck region of the bird model. This seems to be
due to aliasing effects caused by a high distortion of
the corresponding parameter space region. Contribut-
ing causes are the relatively low resolution of the web-
cam images, and the fact that we currently use a nearest
neighbor interpolation for the texture reconstruction.

Figure 7: Parameterization of the Bird model with (from left
to right) 10, 30, and 50 Gaussian steps, respectively.

Figure 8: Top: an input image of the bird data set. Bottom:
the texture map created using 10 (left) and 30 (right) Gaussian
steps.

5.2 Reconstruction Results
We have evaluated our system using a variety of
datasets of objects at different scales acquired under
different weather and lighting conditions. In general,
our system produces qualitatively good results with
high resolution textures for both uniformly colored
and feature-poor objects, and for objects with concave
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regions and moderately complex geometries. The size
of our test datasets varied from as few as 6 images to
hundreds of images. All input images were acquired
with simple consumer-level handheld cameras, includ-
ing a Smartphone camera. Our systems fails for objects
which have viewpoint dependent surface appearance,
e.g., refractive and reflective materials within complex
environments. This section contains a summary of
different experiments that we performed to evaluate
our texture reconstruction method.

5.2.1 Rooster Dataset

The first dataset contains 35 images of a White Rooster
with a resolution of 2592× 1944 pixels. Figure 9 shows
some of the input images. The original object has a
complex surface geometry with many bumps and wrin-
kles. Notice that most of the surface of the model con-
tains few visual features.

Figure 9: Two out of 35 input images of the White Rooster
datasets.

The resulting reconstructed model, shown in the left
of Figure 13, is of good quality and bears a high re-
semblance to the original object. The overall shape,
along with details such as feathers of the original model
are reconstructed well. The resulting model consists of
298,187 polygons. There are a few regions (underneath
the model) where no texture has been generated (col-
ored in red) due to missing input images showing these
regions.

5.2.2 General Dataset

This data set contains 18 images (2592 × 1944 pixels
resolution) of a General figurine. The original model
has a very smooth, reflective and shiny surface. The re-
construction, shown on the right-hand side of Figure 10,
is of good quality and the final model has a high resem-
blance to the original object. The resulting model con-
sist of 101,778 polygons. The texture is very realistic,
but contains some visible seams along patch boundaries

Figure 10: Input image of the General dataset (left) and the
resulting reconstruction (right).

5.2.3 Vase Dataset

This dataset contains 26 images (2592 × 1944 pixels
resolution) of a vase. The original object has a very
smooth, reflective and shiny surface with repetitive tex-
tures. The reconstructed model has 215,918 polygons.
The geometry of the reconstruction is very realistic.
However, the texture reconstruction shows some visible
illumination differences due to some input images hav-
ing been taken with flash and some without. In future
we plan to overcome these problems by using multi-
band blending techniques [APK08] and global opti-
mization of luminance values in CIELUV color space
along seam boundaries.

Figure 11: Image of a vase (left) and the resulting 3D re-
construction (right). The enlargement shows brightness vari-
ations due to some input images taken with flash.

5.2.4 Objects with High Genus

Section 2 reviewed previously presented techniques for
texture reconstruction. Despite some seemingly im-
pressive results, we did not find any examples in the lit-
erature for objects with high genus, for which geometry
and texture reconstruction are notoriously difficult. Fig-
ure 12 illustrates that our image-based modeling system

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Full papers proceedings 45 ISBN 978-80-86943-74-9



and texture reconstruction method handles such cases
without problems.

Figure 12: Two examples of models with a high genus: in-
put image (top), 3D reconstruction (middle), and the surface
parameterization (bottom).

5.3 Running Time
The presented algorithm has not been optimized yet
and the running time varies between approximately 10
minutes for the reconstruction of an apple from 6 pho-
tographs, to many hours for more complex models. For
example, the reconstruction of the rooster data set in
subsection 5.2.1 takes 6 hours and 19 minutes on a PC
with Intel Quad Core i7 CPU and 6GB RAM. The time
requirements of the various stages of the algorithm are:

1. Camera Parameter Estimation: 18.6% = 71 minutes
(feature detection and matching are implemented in
parallel and use all four cores of the CPU)

2. Point Cloud Generation: 33.0% = 125 mins

3. Mesh Processing: 9.8% = 37 mins

4. Texture Reconstruction: 38.6% = 146 minutes

Initial tests indicate that a GPU implementation would
be 50-100 times faster. Alternatively a compute cloud
could be used to speed up computation.

5.4 Comparison
The combination of “Bundler” [SSS08] and CMVS
& PMVS [FCSS10] is a well-known and open-source

image-based modeling system. However, the output of
these research tools is a dense point cloud. While we
can easily obtain a closed surface from this data, we
were unable to find published software for texture re-
construction. We hence compared our system with the
only complete systems we could find. We identified
thirteen companies working in this field and compared
the best four algorithms [NWDL12a]. We showed that
our solution and “123D Catch” achieved the best geom-
etry reconstruction. The system presented in this paper
achieves even higher quality reconstructions due to the
integration of silhouette information and the novel tex-
ture reconstruction algorithm. Figure 13 demonstrates
that these improvements make a significant difference
when dealing with data sets containing few distinct vi-
sual features. For such data sets “123D Catch” strug-
gles both with reconstructing a correct geometry and
appropriate texture map.

Figure 13: 3D reconstruction from the “white rooster data set”
using our method (left) and “123D Catch” (right).

6 CONCLUSION AND FUTURE
WORK

We have described a texture reconstruction technique
for image-based modeling systems. In contrast to pre-
viously presented methods we integrate shape-from-
silhouette and correspondence-based methods, which
gives us very reliable camera parameter estimates and
excellent geometry reconstruction. This enables us to
fuse together texture regions obtained from input im-
ages without requiring excessive blending and defor-
mations. Textures are combined using a greedy al-
gorithm and a graph-cut technique minimizing gradi-
ent weighted color differences. The texture reconstruc-
tion uses an advanced surface parameterization method
which takes into account the genus and geometric fea-
tures of an object We have demonstrated the quality of
the reconstruction process using objects with different
geometries, genus, colors and surface properties. In all
cases we achieved an excellent reconstruction and re-
alistic texture. In contrast to laser scanners our system
also works for shiny and dark objects, and is easily scal-
able.
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Some problems still exist with seams along texture
patches, and discontinuities due to color inconsistencies
created during the image acquisition process. The cur-
rent system does not generate a texture for surface re-
gions not visible in the input images. We currently work
on texture inpainting techniques and exemplar-based
texture synthesis to fill such regions [PGB03, CPT04].
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