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ABSTRACT 
This paper describes an experiment aimed at discovering how humans perceive vanishing points depicted in 

perspective sketches of engineering shapes. The goal is to find criteria and metrics for an algorithmic approach 

to replicate human perception of vanishing points. A new approach is required for Sketch-Based Modelling, 

since most current image analysis approaches take 2D camera images as their input, so do not solve satisfactorily 

the problem of geometrical imperfections inherent in sketches. 

We have conducted a pilot experiment to determine which vanishing points are perceived by people, and under 

what circumstances they are perceived. We test the hypotheses that (i) people are able to detect and locate 

vanishing points in sketches in spite of their inherent imperfections, and (ii) factors such as distance of vanishing 

points from the sketch and number and lengths of lines converging at the vanishing points influence their 

perception. 
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1. INTRODUCTION 
Our goal is to assist designers to interact in a friendly 

way with computers. The advantages of this are well-

documented [Joh09], but we believe that this 

interaction must not come at the cost of unexpected 

behavior. People will only trust the computer if they 

feel that it interprets things more or less as they do. 

To this end, we intend to develop algorithmic 

approaches which replicate human perception when 

reconstructing models depicted in perspective 

sketches of engineering designs. 

Hence, we should know how humans interpret design 

sketches. Here, we describe an experiment aimed at 

discovering: which vanishing points people perceive, 

where they are located; and what geometrical 

flexibility in their locations can be tolerated. 

After analysing the results, we obtain criteria and 

metrics which will help to create algorithms which 

mimic human behaviour. 

We first revisit the background of central projection 

and vanishing points. We then describe the design of 

our experiment and analyse our results. 

2. DEFINITION OF TERMS 
In the field of sketch-based geometric reconstruction, 

one approach is to tackle the issue as an artificial 

perception problem [Lip96], [Var03], [Com04], 

[Yua08], [Tia09]. Human beings have an intrinsic or 

learnt capability to mentally reconstruct three-

dimensional objects from 2D images by means of 

pictorial clues [Gol99], [Hof00]. Here, we are 

interested in a specific pictorial clue, the vanishing 

point (VP). 

In perspective projection, parallel lines not parallel to 

the image plane converge to a vanishing point (VP). 

The fundamentals of perspective were first codified 

in Durer’s Four Books on Measurement in 1522, and 

their effects on how we see and draw are well-known 

[Pal99], [Wri83].  

The number of VPs in an image depends on the 

orientation of the depicted object relative to the 

projection plane. A normalon polyhedron (one with 

all its edges parallel to one of the three main 
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Cartesian axes) may produce three distinct situations: 

a) two axes parallel to the image plane and just one 

VP where the lines parallel to the third axis converge; 

b) one axis parallel to the image plane and two VPs 

where the lines parallel to the other two axes 

converge, and c) no axis parallel to the image plane 

and three VPs where the lines parallel to the three 

axes converge. The three varieties, known as one, 

two and three vanishing point perspectives, are 

shown in Figure 1. 

   

Figure 1. Linear perspective with one (left), two (middle) and 

three (right) vanishing points.  

Another important distinction is between main and 

oblique VP. For a general polyhedron with n 

different sets of parallel edges, the varieties of linear 

perspective become n, n-1, n-2, ..., depending on the 

number of groups of parallel edges in the model 

which are parallel to the image plane. Figure 2 shows 

an example with only two main VP: the vertical axis 

is parallel to the image plane, so vertical lines do not 

converge; however, an additional oblique VP results 

from the convergence of the lateral edges of the 

wedge. 

 

Figure 2. Wedge with two main vanishing points plus one 
oblique vanishing point.  

There is no theoretical distinction between different 

locations of VPs relative to the object. But there is a 

useful practical distinction between VPs located 

inside and outside the object (Figure 3). Internal VPs 

are typical in indoor architectural scenes, but are 

rarely used to depict engineering products. Hence, we 

do not study them here. 

 

Figure 3. Linear perspectives of a prismatic shape with one 

external (left) and internal (right) vanishing point. 

3. HYPOTHESES 
The purpose of our experiment is to obtain criteria 

and metrics for algorithms which mimic human 

perception in detecting vanishing points in a sketch. 

Here, we propose the hypotheses to be tested: 

1. Human beings perceive the existence of intended 

vanishing points in sketches of 3D polyhedral shapes, 

in spite of their inherent imperfections. 

2. Humans beings are able to locate quite precisely 

those vanishing points which are neither too close to 

nor too far away from the drawing. 

3. The lengths of lines influence convergence 

detection. The longer the lines, the easier it is to 

detect a vanishing point. 

4. Design of the experiment 
We designed our pilot experiment as follows. First, 

we selected a set of sketches. Then, we asked a group 

of subjects to determine the approximate number and 

location of vanishing points implied by a sketch, and 

also to label the different sets of parallel edges. 

Finally, we analysed the results to determine to what 

extent people agree in perceiving the same vanishing 

points, and what are the most influential factors in 

this perception process. 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

 

10 

 

11 

 

12 

 

13 

 

14 

 

15 

 

16 

 

17 

 

18 

 

Figure 4. Set of sketches used in the experiment 

Here, we have not considered the scale as a main 

factor, because we guess that it only affects human 

perception for too small or too big drawings, where 
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some lines may be perceived with difficulty. But this 

is not the case for design drawings sketched on pen 

input devices. 

Set of sketches 
Our set of test sketches is derived from typical 

Engineering Design training exercises (Figure 4). 

The sketches were selected to meet the following 

criteria: 

 They should be simple, containing no 

unnecessary features or details which could 

divert the attention 

 They should be representative of shapes 

usually sketched in engineering design 

processes 

 They should represent polyhedral shapes, in 

both natural and wireframe styles. 

 They should be tidied line drawings in 

central projection style. 

 They should represent different varieties of 

central projection (one, two, three vanishing 

points). 

 Some of them should contain vanishing 

points corresponding to oblique directions. 

The result was the set of 18 sketches shown in Figure 

4. 

We then circulated these sketches to our test subjects, 

who marked them up as requested. 

Finding vanishing points 
The first task for the test subjects was to find and 

mark all the VPs for a given sketch. We gave them 

standardised A4 questionnaire containing a short 

explanation of the task, a visual example (Figure 5), 

and two sketches selected randomly from the test set. 

 

Figure 5. Questionnaire. 

Finding non-convergent groups of lines 
We also wanted to know why possible VPs were left 

unmarked: were they dubious, or did they 

corresponding to perceived parallel (i.e. non-

converging) edges? Hence, as second task, the 

subjects were asked to mark all those groups of lines 

representing parallel edges, and label them as 

separate sets. 

Participants 
The bulk of the subjects who participated in the 

experiment were drawn from diverse departments of 

the same university, and included mechanical, 

electric and industrial engineers, architects, designers 

and artists. The level of experience ranged from 

undergraduate students to professors. Of the 149 

participants, 92 (61.7%) were engineers, 23 (15.4%) 

architects, 20 (13.4%) had artistic knowledge, and 14 

(9.4%) were school-age (17-18 years) students whose 

studies included technical drawing. 

We found no systematic differences in the results 

between subjects from different backgrounds. In the 

analysis below, we treat the subjects as a single 

homogeneous group. 

5. Results 
We issued 298 questionnaires, of which 291 were 

returned. At this stage, we removed from the study 

those questionnaires which did not give coherent 

results. The most common mistakes were due: (i) to 

misunderstanding the concept of vanishing points, 

marking erroneous VPs which did not correspond to 

intersections of lines of the drawing (Figure 6a); or 

(ii) failing to understand the drawing as a 

representation of a 3D shape with parallel edges, 

marking erroneous VPs at the intersection of lines of 

the drawing which did not represent parallel edges of 

the depicted 3D shape (Figure 6b). 

 
(a) 

 
(b) 

 
(c) 

Figure 6. Erroneous vanishing points. 

Some other questionnaires were also dismissed or 

only partially considered as it was difficult to 

interpret them objectively. Most of these dubious 

questionnaires were of sketch 15 (Figure 6c). 

From the total of 291 collected questionnaires, we 

were left with 266 coherent responses. Of these, 7 

were explicitly marked as not containing any VPs 
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(four of these were sketch 18, two were sketch 15 

and one was sketch 11). 

Qualitative validation of the first 

hypothesis 
We grouped the lines of each sketch by the parallel 

edges they belong to in the 3D object. Since all of the 

sketches depict polyhedral models, they always have 

at least three main axes; we labelled these three main 

axes as X, Y and Z (or 1st, 2nd and 3rd), as in Figure 

7; verticality is always labelled as Z (axis 3). Objects 

3, 7, 10, 11, 12 and 15 include one or two additional 

oblique axes, labelled as axes 4 and 5. 
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Figure 7. Main axis in the set of sketches used in the experiment 

We then analysed the perception of VPs for each 

sketch and each candidate axis. Table 1 lists the 

percentage of polled people who perceived 

convergence for each sketch and axis. 

These results show that people perceive the existence 

of a VP for axis 1 in sketches 3, 4, 5, 6, 9, 12, 13, 14 

and 17. The existence of VP 1 is uncertain for 

sketches 7 and 8. Lines parallel to axis 1 are 

perceived as non-convergent for sketches 1, 2, 10, 

11, 15, 16 and 18. 

Similarly, people perceive the existence of a VP for 

axis 2 in all sketches except 3 and 15 (where the 

vanishing point is uncertain), and 9, 14, 17 and 18, 

which are perceived as non-convergent. 

Sketch Axis 1 (X) Axis 2 (Y) Axis 3 (Z) Axis 4 Axis 5 

1 46.67 93.33 33.33     

2 17.65 94.12 23.53     

3 100.00 72.22 5.56 66.67   

4 100.00 76.92 0.00     

5 100.00 84.21 5.26     

6 100.00 85.71 78.57     

7 68.75 93.75 6.25 75.00   

8 72.22 94.44 0.00     

9 100.00 7.14 0.00     

10 7.14 92.86 0.00 71.43 

 11 22.22 77.78 0.00 44.44 33.33 
12 100.00 76.47 5.88 35.29 5.88 
13 100.00 92.31 0.00     
14 83.33 8.33 75.00     
15 28.57 57.14 28.57 28.57 42.86 
16 6.67 100.00 0.00 

  17 94.74 31.58 84.21 68.42 

 18 6.25 12.5 68.75     

Table I. Perceived vanishing points 

Axis 3 is perceived as convergent in sketches 6, 14, 

17 and, with less certainty, in sketch 18. No- one 

perceived convergence in sketches 4, 8, 9, 10, 11, 13 

and 16. It appears that engineering designers are less 

used to sketching convergence in the vertical 

direction, and subjects seem to be less willing to 

perceive convergence for this axis. 

Convergence of oblique lines is only perceived with 

certainty for sketch 7; it is uncertain for sketches 3, 

10 and 17. It appears that (i) humans do not readily 

perceive oblique convergence, but (ii) a large number 

of lines (as in sketch 7) help humans to identify 

convergence to an oblique VP. 

In summary, convergence of the main axes seems to 

be readily and generally perceived, regardless of 

sketching imperfections. It is somewhat more 

difficult to perceive VPs for oblique axes. In Section 

6, we shall attempt to determine the minimum 

threshold of angle of convergence and number of 

lines which guarantee a general perception of VPs. 

Qualitative validation of the second 

hypothesis 
For each sketch, we superimposed all VPs located by 

the subjects. For example, the red points in Figure 8 

are the locations of the VP of lines aligned with axis 

1, the blue points those aligned with axis 2, and the 

green points those aligned with axis 4. The results 

clearly show that people agree about the orientation 

angle along which the VP is located, but fail to agree 

about the position of the VP along this line. 

It also appears that clouds of clearly-perceived VPs 

are shorter (and may be bounded by an ellipse), while 

clouds of uncertain VPs tend to be longer and 

resemble a straight line. 

It also appears that the dispersion in the location 

increases when a) the VP is distant from the drawing, 

and b) when the group of lines is small and/or the 

lines are short. 
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Figure 8. Superimposition of all VPs located by the subjects for 

sketch 3. 

We note in passing that in 4 of the questionnaires 

where objects are depicted by natural drawings, 

subjects drew the hidden lines in order to find the VP 

locations. This demonstrates that they knew how to 

interpret the sketches, but felt unable to fix VP 

location with precision. Figure 9 (sketch 12) shows 

how one subject even used hidden lines to locate an 

additional VP which corresponds just to a single line 

of the original sketch. 

 

Figure 9. Hidden lines for VPs location in sketch 12. 

Analysing the questionnaires, we noticed that the 

subjects used one of three strategies to overcome the 

imperfections of the sketches and find the most likely 

location for VPs. 

 
                        (a)                                                 (b) 

 
                        (c)                                                 (d) 

Figure 10. Strategies to select the most likely VP location 

Firstly, some subjects selected the most likely lines in 

the group and use them to find the VP. Subjects in 

this group used different strategies to select the most 

representative lines: (a) select the outer lines (those 

which encompass the whole group, as in Figure 10a), 

(b) to discard the shortest lines (Figure 10b) and the 

most erratic lines (Figure 10c); or (c) simply estimate 

a rough VP location using a random subset of the 

lines (Figure 10d). This strategy was most commonly 

used for sketches 2 (Fig. 10b), 3, 5 (Fig. 10d), 7, 10 

(Fig. 10a), 13 (Fig. 10c) and 14. 

Secondly, some subjects calculated more than one 

location for the same VP. These subjects identified 

the convergence in two ways: (a) by means of a point 

cloud formed by intersections of the lines of the same 

group (Figure 11a), or 2) defining different groups of 

lines which belong to the same axis (Figure 11b). 

This strategy was most commonly used for sketches 

9 (Figure 11b), 12 (Figure 11c), 13 (Figure 11d) and 

18 (Figure 11e). 

(a) 
 

(b) 

 
(c) 

 

(d) 

Figure 11. Point clouds for VPs definition 

Thirdly, some subjects seemed to detect convergence 

but did not locate any VPs. 

Thus, our second hypothesis should be rejected: 

humans do not seem to be able to locate VPs 

precisely: they agree about the orientation angle of 

the VP, but not about its position along this line. 

Qualitative validation of the third 

hypothesis 
We note that the uncertain cases in Table I (those in 

the range 50-75%) are typically those formed from 

either a) groups of lines which contain the shortest 

lines of the drawing, or b) groups with low density of 

lines. This perception supports our third hypothesis: 

that length of lines influences the convergence 

detection. However, in the light of the data, we must 

also take into account the density of the group of 

lines. 

6. Numerical measurement 
Having evaluated our hypotheses qualitatively, we 

now search for metrics which can help to tune 

automatic algorithms for finding VPs in engineering 
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sketches. We define and study some geometric 

parameters. 

Firstly, since our goal is finding parameters which 

influence in the perception success, we shall compare 

our geometric parameters with the parameter used in 

Table I: 

Perception degree (Det) is the percentage of the 

subjects who identified a VP for a specific sketch and 

axis. 

Det = (No. detections / No. Questionnaires)*100 (1) 

Some geometric parameters must be normalised to 

avoid the influence of the drawing size. We use the 

radius of the sketch’s bounding circle. We calculate 

this as the maximum distance between the centre of 

mass of the sketch and any of its vertices. First, the 

centre of mass of the sketch is calculated (xcom, ycom). 

 xcom= (∑ xi)/nv),  ycom= (∑ yi)/nv      ∀ i ∈ VS (2) 

where nv represents the number of vertices of the 

sketch S and VS is the set of vertices of sketch S.  

 size = max(((xi-xcom)
2 
+ (yi-ycom)

2
)

1/2
)   ∀ i ∈ VS (3) 

In order to evaluate metrics related to the first 

hypothesis we analysed the convergence by means of 

the following parameter: 

Angular dispersion (AD) is the maximum aperture 

angle between pairs of lines in a group of lines which 

represent parallel edges in space: 

 AD = max (|i -j|)   ∀ i, j ∈ LSA (4) 

where i and j represent, respectively, the angles of 

edges i and j relative to the same origin; and LSA is 

the group of lines of sketch S and axis A. 

In order to evaluate metrics related to the second 

hypothesis we define the following parameters: 

Dispersion (Disp) measures the density of the point 

cloud of VPs located by the subjects (such as the 

blue, green and red clouds in Figure 8). 

First, the centroid of the cloud is calculated: 

xcentroid= (∑ xi)/nvp), ycentroid= (∑ yi)/ nvp   ∀ i ∈ VPSA(5) 

where VPSA is the cloud of VPs for sketch S and axis 

A, and nvp is the size of this cloud. Next we calculate 

the Euclidean distances di between each point (xi, yi) 

in the cloud and its centroid (xcentroid, ycentroid). 

 di= [(xi-xcentroid)
2
 + (yi-ycentroid)

2
]

½  ∀ i ∈ VPSA (6) 

Then, the standard deviation of these distances (dev) 

is calculated. 

 Av = (∑ di)/n   ∀ i ∈ VPSA (7) 

 dev = [(1/(n-1))*∑(di–Av)
2
]

 ½
   ∀ i ∈ VPSA (8) 

Finally, to avoid the influence of the drawing size, 

the parameter is normalised. 

 Disp= (dev/size)*100 (9) 

Distance ratio between centroids (DRC) measures 

how far away the point cloud is from the sketch. It is 

calculated as the Euclidian distance between the 

centre of mass of the sketch and the centroid of the 

point cloud: 

 Dist = ((xcentroid – xcom)
2
 + (ycentroid – ycom)

2
)

½
 (10) 

 

Figure 12. DRC calculation for Sketch 3, Axis 4 

Finally, to avoid the influence of the drawing size, 

the parameter is normalised: 

 DRC = Dist / size (11) 

In order to evaluate metrics related to the third 

hypothesis we define the following parameters: 

Length Dispersion (LeD) is a standard deviation 

which measures the dispersion of the lengths of the 

lines (li) which belong to the same sketch and axis: 

the more the lengths of lines differ, the higher its 

value. First the average length Laver is calculated. 

Taking li as the length of each line and nl as the 

number of lines: 

 Laver = (∑li)/nl    ∀ i ∈ LSA (12) 

 LeD= [(1/(nSA-1))*∑(li–Laver)
2
]

½
   ∀ i ∈ LSA (13) 

where nSA is the number of lines in the group of 

parallel edges of sketch S, axis A. 

Number of lines (NL) which belong to the same 

sketch and axis. 

 NL= nSD (14) 

Location Dispersion (LoD) is a standard deviation 

which measures the influence of dispersion of the 

locations of the midpoints of lines which belong to 

the same sketch and axis) and the normalised length 

of each line. The more the locations of lines differ, 

and the shorter the lines, the higher the value. 

We first compute the location of each midpoint, by 

way of the head (xhi, yhi) and tail (xti, yti) 

coordinates of each line: 

 loci = ((xhi+xti)/2 , (yhi+yti)/2 )  ∀ i ∈ LSA (15) 

 Locaver = (∑loci)/nl   ∀ i ∈ LSA (16) 

Next we calculate the standard deviation normalised 

with the relative length: 

LoD= [(1/(nSD-1))*(size/li)*∑(loci–Locaver)
2
]

½
   

 ∀ i ∈ LSA  (17) 
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We calculated all of these parameters for each sketch 

and axis. The results are shown in the Table II, which 

is arranged in decreasing order of values of 

convergence detection. 
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3 1 100.00 16.99 27.54 3.15 12.61 3 7.23 
4 1 100.00 27.95 51.92 2.19 1.91 6 4.76 
5 1 100.00 15.25 45.26 3.46 14.46 7 37.17 
6 1 100.00 31.67 35.54 2.03 3.34 6 6.85 
9 1 100.00 51.51 50.89 1.69 7.44 6 50.18 

12 1 100.00 41.24 22.31 1.91 8.98 8 10.69 
13 1 100.00 23.73 32.11 1.72 12.19 5 20.11 
16 2 100.00 17.42 23.30 3.18 1.67 5 7.04 
17 1 94.74 16.12 44.48 3.66 9.33 4 9.99 

8 2 94.44 15.23 46.23 4.70 1.58 5 5.06 
2 2 94.12 24.65 26.51 2.16 12.09 6 22.61 
7 2 93.75 16.85 39.22 3.70 11.47 3 7.66 
1 2 93.33 16.35 39.05 3.46 4.39 5 14.87 

10 2 92.86 16.32 96.48 4.00 13.19 7 26.21 
13 2 92.31 14.21 36.53 2.11 20.59 5 25.36 

6 2 85.71 15.12 30.89 2.93 8.95 6 22.06 
17 3 84.21 21.27 200.23 3.53 2.43 4 12.89 

5 2 84.21 26.42 78.50 2.82 0.95 6 14.84 
14 1 83.33 13.57 40.21 3.02 8.37 6 16.51 

6 3 78.57 21.04 86.08 4.18 6.30 5 29.35 
11 2 77.78 7.24 25.93 3.11 5.15 2 4.82 

4 2 76.92 27.29 194.10 1.64 5.11 6 27.50 
12 2 76.47 12.20 33.43 3.14 11.17 2 13.92 

7 4 75.00 17.07 62.57 3.92 4.18 4 5.38 
14 3 75.00 44.09 20.41 1.75 0.94 6 90.77 

3 2 72.22 15.31 224.17 3.39 1.67 3 14.74 
8 1 72.22 14.05 161.48 5.94 4.84 5 14.88 

10 4 71.43 16.45 26.16 2.38 6.73 3 7.32 
7 1 68.75 33.87 12.41 2.33 2.73 4 5.26 

18 3 68.75 19.70 63.05 3.49 4.63 8 61.74 
17 4 68.42 5.95 68.31 4.82 3.57 2 0.67 

3 4 66.67 8.52 44.61 4.22 2.27 2 0.60 
15 2 57.14 6.23 86.23 4.19 6.14 3 14.47 

1 1 46.67 1.55 545.13 8.02 2.67 5 6.09 
11 4 44.44 8.93 20.18 5.63 2.44 2 5.33 
15 5 42.86 3.90 164.41 7.14 1.41 2 4.62 
12 4 35.29 6.10 15.12 3.31 4.26 2 7.94 

1 3 33.33 6.36 197.15 4.61 2.12 5 18.98 
11 5 33.33 1.62 113.02 7.52 2.60 2 9.45 
17 2 31.58 4.60 479.19 1.99 2.61 4 14.12 
15 1 28.57 1.06 0.00 18.07 1.47 5 2.73 
15 3 28.57 2.12 1429.85 20.07 2.38 6 21.68 
15 4 28.57 2.29 0.00 16.70 0.61 2 1.91 

2 3 23.53 7.03 144.20 2.52 1.46 6 92.01 
11 1 22.22 1.92 0.00 1.79 4.09 5 2.43 

2 1 17.65 3.82 745.68 12.49 21.37 6 83.56 
18 2 12.50 4.18 0.00 1.78 24.38 8 9.63 
14 2 8.33 1.54   3.38 19.12 6 19.98 

9 2 7.14 1.17   4.15 5.73 6 8.66 
10 1 7.14 5.29   2.31 13.76 3 30.75 
16 1 6.67 3.73   5.76 7.29 5 23.03 

7 3 6.25 3.26   12.89 4.67 4 10.96 
18 1 6.25 5.89   2.41 29.39 8 16.92 
12 3 5.88 1.61   2.18 9.51 7 17.04 
12 5 5.88 0.00   3.26   1   

3 3 5.56 1.71   10.14 2.60 3 19.86 
5 3 5.26 4.08   4.71 6.71 6 17.25 
4 3 0.00 1.88     8.98 6 43.72 
8 3 0.00 1.91     4.49 5 17.59 
9 3 0.00 1.76     8.11 6 26.04 

10 3 0.00 2.82     2.52 6 30.36 
10 5 0.00 0.00       1   
11 3 0.00 1.76     1.53 4 35.24 
13 3 0.00 3.27     4.88 6 252.70 
16 3 0 2.05     8.16 5 28.28 

Table II. Parameters which influence perception 

success 

7. Analysis 
A statistic analysis based on Pearson correlation 

shows the mutual influence of each pair of 

parameters. For this study we omitted the cases 

where the group was a single line (NL= 1), as they 

give no useful information (specifically, we omitted 

sketch 10 axis 5 and sketch 12 axis 5, although, as it 

was showed in Fig. 9, some people included hidden 

lines for sketch 12 axis 5 to get the information they 

needed to locate the VP). 

 Det AD Disp DRC LeD NL LoD 

D
et

 Pear 1 .757
**
 -.378

**
 -.403

**
 -.054 -.044 -.222 

Sig.   .000 .009 .002 .672 .733 .080 

N 63 63 47 56 63 63 63 

AD
 Pear  1 -.295

*
 -.460

**
 -.064 .229 .018 

Sig.    .044 .000 .621 .071 .888 

N  63 47 56 63 63 63 

D
is

p  

Pear   1 .581
**
 -.028 .117 .166 

Sig.     .000 .854 .433 .266 

N   47 47 47 47 47 

D
R

C
 Pear    1 -.219 -.181 -.064 

Sig.      .104 .181 .642 

N    56 56 56 56 
Le

D
 Pear     1 .379

**
 .048 

Sig.       .002 .710 

N     63 63 63 

N
L 

Pear      1 .301
*
 

Sig.        .017 

N      63 63 

Lo
D

        1 

        
       63 

Table III. Pearson correlation among parameters 

We analyse our hypotheses in the light of these 

results. 

Hypothesis 1 
Table III shows that detection degree (Det) correlates 

best with AD (as was qualitatively deduced in 

Section 5.2). From Table II, we can see that, for 

directions where Det > 75%, the minimum AD value 

is 7.24º (sketch 11 axis 2, or figure 13a). This could 

be used as a minimum threshold, particularly since it 

is close to the maximum threshold of 8º proposed in 

[Plu10] for considering a bundle of lines as parallel. 

However, our qualitative analyses found sketch 11 to 

be uncertain. If we exclude this result, we get a more 

conservative minimum value of AD = 12.2º (sketch 

12 axis 2, or figure 13b). 

         
(a)  

(b) 

Figure 13. Sketches 11 and 12 

We conclude that people clearly and consistently 

perceive convergence in spite of sketch imperfection 
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if the lines span an angle of at least 12º. Between 12º 

and 8º the perception is uncertain. Hence, an 

algorithm for finding VPs should give a high 

probability to bundles spanning at least 12º; the 

probability should decrease between 12º and 8º, and 

should be close to zero below 8º. 

Considering the uncertain cases of table II (those 

detected between 50% and 75%), three of them 

(sketch 17 axis 4, sketch 3 axis 4 and sketch 15 axis 

2) have AD values close to 8º, as predicted by the 

above criterion. However, other cases (sketch 3 axis 

2 (Fig. 14a), sketch 8 axis 1(Fig. 14b), sketch 10 axis 

4 (Fig. 14c), sketch 7 axis 1 (Fig. 14d) and sketch 18 

axis 3 (Fig. 14e) have AD higher than 12º, which, 

according to our criterion, should encourage subjects 

to perceive them as unambiguously convergent. We 

note that all of these contain the shortest lines of their 

sketches (sometimes alongside medium-length lines), 

and in addition they have a low line density (i.e. not 

only is the number of lines low—3 or 4 lines, except 

sketch 8, which has 5 lines for axis 1—but they are 

dispersed around the sketch rather than clustered 

together). This seems to support our third hypothesis, 

that the lengths of lines will influence perception of 

their convergence.  

 

(a) 

 

(b) 

(c) 
 

(d) 

 

(e) 

Figure 14. Sketches and axis 

Hypothesis 2 
As argued in section 5.2, humans are able to agree 

about the orientation angle of a VP but not about the 

precise location of the VP along this line. This 

pattern can be quantified by means of DRC and its 

dispersion measure Disp. 

Table III shows that detection degree (Det) correlates 

with small values of distance ratio between centroids 

(DRC), and usually with small dispersion between 

the intersection points (Disp). 

From Table II, we see that, for those VPs perceived 

by all subjects (Det=100), the value of DRC varies 

between 1.6 and 3, except in those cases where the 

group of lines includes the largest lines of the 

drawings (sketch 3 axis 1, sketch 5 axis 1, sketch 16 

axis 2), in which cases the length of the lines seems 

to encourage subjects to locate the VP further away, 

and the value of DRC rises to 3.46. These locations 

correspond to small or medium values of the 

dispersion point cloud (with Disp between 22.31% 

and 51.92%), which means that people agree to 

locate the VPs within a small area. 

(a) 
(b) 

(c) 
(d) 

Figure 15. Sketches and axis 

For Det in the range 99–75, the value of DRC is 

generally in the range 3 to 5. The exceptions are 

those examples which are uncertain or have a DRC 

value slightly lower than 3. In both Sketch 2 axis 2 

(Fig. 15a) and sketch 13 axis 2 (Fig. 15b), the 

difference of line lengths is evident, and the shortest 

lines form a visual group distinct from the longest 

lines. The other exceptions are sketch 4 axis 2 (Fig. 

15c), sketch 14 axis 3 (Fig. 15d), sketch 6 axis 2 and 

sketch 5 axis 2 in which short or medium lines are 

dispersed around the drawing. 

Cases with detection under 50% generally have 

values of DRC higher than 5, except sketch 12 axis 4 

(two lines in an oblique direction, Fig. 16a) and 

sketch 1 axis 3 (Fig. 16b), sketch 17 axis 2 (Fig. 16c) 

and sketch 2 axis 3 (Fig. 16d), which contain short 

and medium lines, far apart in the drawing. 

Cases with detection under 50% also generally have 

values of “Disp” over 100%, except for two cases of 

oblique axes (sketch 11 axis 4 and sketch 12 axis 4, 

Fig. 16a) where subjects seem to reach agreement 

about the locations.  
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(a) 

 

(b) 

(c) 

(d) 

Figure 16. Sketches and axis 

We do not take into account those cases with very 

low point cloud density, since the information is 

insufficient to extract any significant conclusion. For 

example, the closeness of the centroid of the point 

cloud to the sketch for sketch 11 axis 1 (Fig. 17) is 

clearly irrelevant. 

 

Figure 17. Point cloud for sketch 11 axis 1. 

In summary, we found that DRC between 1.6 and 3 a 

VP is likely to be perceived. With DRC between 3 

and 5 a VP is somewhat less likely to be perceived. 

With DRC higher than 5, lines are not perceived as 

convergent. 

Hence, an algorithm for finding VPs should assign a 

high probability to candidate VPs located in a ring 

whose minimum radius is 1.6 times the radius of the 

bounding circle, and whose maximum radius is 3 

times the radius of the bounding circle. The 

probability should decrease outside this ring, and be 

close to zero outside an outer ring whose radius is 5 

times the radius of the bounding circle. 

In cases where the lines are short and visually apart 

from one another, people’s behaviour changes. This 

is considered under the third hypothesis. 

Hypothesis 3 
To evaluate our third hypothesis, we focus on the 

standard deviation between lengths LeD. Table III 

shows no relationship between the detection of 

convergence (Det) or the answers dispersion (Disp) 

and LeD. Should we then simply reject hypothesis 3? 

We cannot deny the influence of differences in line 

length, since we have already noticed that subjects 

changed their answer patterns under specific 

situations: 

a) When the group of lines contains lines of very 

different lengths. 

b) When the group of lines includes only short lines 

and they are dispersed through drawing.  

c) When number of lines in the group is low. 

Thus we should consider LoD as a secondary 

parameter, whose influence appears only in certain 

cases. 

According to table II, for values of LoD higher than 

70 (short lines widely dispersed around the sketch), 

our subjects generally followed the criteria described 

in previous hypotheses, and parameters AD and DRC 

reflect the response of human perception. 

LoD values below 5 may result from long lines with 

a homogeneous location in the drawing (as in Fig. 

18). However, a low value may also be due to low 

number of lines, which distorts the standard deviation 

measure. For groups of fewer than 4 lines, this 

parameter may not give reliable information. 

 
 

Figure 18.  Sketches 11 and 15 with low value of LoD. 

LoD in the range 5-70 seems to influence human 

perception in two different ways: (i) sometimes the 

detection degree is slightly different from that 

predicted by parameters AD and DRC—for example, 

in sketch 18 axis 3(Fig. 14e), it seems that in spite of 

having an AD higher than 12, the separation between 

the lines, which are also the shortest in the sketch, 

prevents humans from perceiving the convergence 

(25% of subjects said it was an axonometric 

drawing); (ii) at other times the location agreement 

decreases which results in higher values of Disp. 
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15 3 28.57 2.12 1429.85 20.07 2.38 6 21.68 
2 1 17.65 3.82 745.68 12.49 21.37 6 83.56 
1 1 46.67 1.55 545.13 8.02 2.67 5 6.09 

17 2 31.58 4.60 479.19 1.99 2.61 4 14.12 
3 2 72.22 15.31 224.17 3.39 1.67 3 14.74 

17 3 84.21 21.27 200.23 3.53 2.43 4 12.89 
1 3 33.33 6.36 197.15 4.61 2.12 5 18.98 
4 2 76.92 27.29 194.10 1.64 5.11 6 27.50 

15 5 42.86 3.90 164.41 7.14 1.41 2 4.62 
8 1 72.22 14.05 161.48 5.94 4.84 5 14.88 
2 3 23.53 7.03 144.20 2.52 1.46 6 92.01 

11 5 33.33 1.62 113.02 7.52 2.60 2 9.45 
10 2 92.86 16.32 96.48 4.00 13.19 7 26.21 

Table IV. Perceived vanishing directions 

Table IV is a sub-table of table II rearranged in 

descending order of Disp. From this table, it appears 
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that very high values of Disp (Disp>500) seem to 

correspond to nearly parallel groups of edges 

(AD<4). Values of Disp in the range (100 to 500) 

seem to appear as a combined effect of small number 

of lines (NL<=3), and/or high dispersion of the 

location of lines LoD (5, 70). 

Thus, dispersion is high for uncertain cases which 

have small values of AD, or when the set of lines 

contains short and medium lines dispersed through 

the sketch. However, we have previously noted that 

when the group of lines contains lines of very 

different lengths people usually apply the strategies 

illustrated in figure 10 (using outermost lines, 

ignoring short or erratic lines) - the most common is 

ignoring the shorter lines, and using only the longer 

lines to locate the vanishing point - and in such cases 

it seems that the dispersion decreases. 

This strategy is easy to replicate algorithmically and 

it would model human perception well. The most 

representative cases (sketches 2, 5, 10, 13, illustrated 

in Fig. 10, and sketches 3, 7 and 14) have values of 

Led higher than 10. Thus Led > 10 could be used as a 

threshold for signalling to the algorithm that it should 

use only long lines to locate the VP. 

8. Conclusions 
Current image analysis approaches take 2D camera 

images as their input, so do not solve satisfactorily 

the problem of geometrical imperfections inherent in 

sketches. At this end we have conducted a pilot 

experiment which gives us preliminary criteria and 

metrics for implementing algorithms which mimic 

human perception in detecting vanishing points in 

design sketches. 

Human beings can perceive the existence of intended 

vanishing points in sketches of 3D polyhedral shapes, 

in spite of their inherent imperfections. Humans 

generally perceive vanishing points for sets of lines 

spanning 12 or more degrees. 

Humans agree about the orientation angle of the VP 

relative to the sketch. They often do not agree about 

the distance of the VP from the sketch. VPs are 

easiest to perceive and to locate if they are neither 

too close nor too far away from the sketch: ideally, at 

distances not much more than the size of the sketch. 

(We can hypothesise that sketches are produced 

according to these expectations.) Algorithms should 

follow these perceptual criteria: enforcement of the 

acceptance criteria should be tolerant to 

imperfections inside the main region (1.6x to 3x), 

and stricter outside (3x to 5x). 

A number of secondary parameters combine to 

influence the perception and location of VPs, 

including line length, lines location and density of 

lines. The influence of these “distractions” can be 

subtle, and remain a matter for future research.  
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