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ABSTRACT 
Migration velocity of cell populations in vitro is one of important measurements of cell behaviors. As there are 

massive amount of cells in one image that share similar characteristics and are highly deformable, it is often 

computational expensive to track every individual cell. It is also difficult to track cells over a long period of time 

due to propagation of segmentation and tracking errors. This paper presents an algorithm to estimate migration 

velocity of cell populations observed by time-lapse microscopy. Instead of tracking cells individually, our 

proposed algorithm computes mutual information between image blocks of consecutive frames. The migration 

velocity is then estimated by a linear regression, with mutual information and foreground area ratio as input. 

Experiments on a variety of image sequences verified that our algorithm can give accurate and robust estimation 

under different situations in real-time. 
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1. INTRODUCTION 
It is important to measure cell migration velocity in 

many biomedical applications, such as wound 

healing assay of cell monolayers [YPW+04] and 

analysis of red blood cell in microcirculation 

[WZH+09]. For cell populations, there are mainly 

two obstacles to estimate the migration velocity 

accurately and robustly. First, all the cells in a 

population have very similar characteristic, such as 

shape and intensity. Second, cells are often highly 

deformable. For example, two cells could merge into 

one cell, and one cell could divide to two or more 

cells. As a result, it could be difficult and 

computational expensive to track every cell in image 

sequences. Figure 1 shows three examples of cell 

populations. Cells in some types of images even have 

very similar intensities to the background as shown in 

figure 1(b). Thus, the segmentation algorithms based 

on intensity values would easily fail. 

 

In this paper, we present an efficient and novel 

algorithm to estimate cell migration velocity. Our 

algorithm first computes mutual information and 

foreground ratio between image blocks of two 

consecutive frames. A linear regressor is then trained 

and applied to estimate migration velocity.  

 

Mutual information has been widely used to align 

two images in many medical applications [PMV03] 

in order to reduce the error during the image 

acquisition (e.g., finger jigging). However, to our 

knowledge, there is no work that uses mutual 

information as an input variable of regression for the 

estimation of cell migration velocity. As there are no 

individual cells involved in the estimation process, 

our algorithm contains no accumulated segmentation 

and tracking errors. 

 

Therefore, the proposed algorithm has several 

advantages. First, accurate segmentation and data 

association of cell contours are not required. Second, 

it can be performed in real-time without using motion 

trackers for all the cells. Third, since tracking 

accuracy is not an issue (e.g., there are no 

accumulation errors), it can be used to estimate 

migration velocity for a long period.
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The remainder of this paper is organized as follows. 

Section 2 describes related work. Our proposed 

algorithm is given in section 3. Section 4 shows the 

experiments using three different datasets. The 

conclusion is given in section 5. 

 

2. RELATED WORK 
Wu et al. proposed an approach to measure velocity 

of red blood cell from capillary video using the 

optical flow technique [WZH+09].  In order to apply 

the optical flow technique, the skeleton of vessel 

needs to be extracted first based on a set of pre-

processing steps, such as connected component 

labeling, thinning, and length pruning. These pre-

processing processes may not be applied to other 

types of cells in general due to occlusions, 

deformations, and even varying illuminations. More 

importantly, the velocity determination in this 

approach is based on two assumptions: a) intensity of 

each cell does not change over time; b) the 

surrounding area of the cell move in a similar 

manner. These two assumptions are fundamental to 

apply the optical flow on the skeletons. They 

however, are too restricted and cannot be extended in 

general. Other approaches [DSA+08, LGM04] that 

based on detection and graph extraction of vessel 

shapes also have similar problems. 

 

In [LMC+08], Li et al. proposed an automated 

tracking algorithm to track hundreds to thousands of 

cells and construct lineages simultaneously. This 

tracking system first segments candidate cell regions 

and tracks them over frames by forming a 

minimization problem with a topological constraint. 

Then this system predicts and filters the cell motion 

dynamics using interacting multiple model filters, 

and construct lineages by checking the entire tracking 

history. The proposed system can be used to analyze 

a number of cell behaviors including migration, 

division, death, and so on.  

 

According to [MDI+09], tracking in cell can be 

divided into two stages, segmenting individual cells 

and connecting cells over time. However, since each 

possible candidate cell needs to be considered, the 

whole process could be computational expensive. For 

the purpose of estimating migration velocity, the 

algorithms based on tracking individual cells could 

be complicated and hence may not be the best choice. 

Moreover, common used segmentation algorithms 

based on intensity values could easily fail to 

distinguish between background areas and candidate 

cells. 

 

Figure 1. Examples of microcopy images of cell populations: (left) primary keratinocytes [Cel09]. (middle) 

cancer cells captured spinning disc confocal microscope [Mar09]. (right) human umbilical vein endothelial 

cells (HUVEC) [Yam09]. 
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Figure 2.  Overview of our methodology 
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3. METHODOLOGY 
Our algorithm can be divided into three modules, 1) 

image enhancement and foreground detection; 2) 

computation of mutual information between image 

blocks; 3) velocity estimation using linear regression. 

Figure 2 gives an overview of the algorithm. 

 

3.1 Image Enhancement and Foreground 

Detection 
The purpose of image enhancement is to reduce noise 

and enhance the image contrast. For simplicity, we 

assume two image frames has been aligned. This can 

be achieved by an affine transformation based on an 

estimated homography [HZ04], or a non-linear 

transformation using mutual information [PMV03]. 

 

First, we enhance the image by a linear contrast 

stretch that enlarges the range of intensity values to 

the entire available range. If the cells appear darker 

than the background, the images are inverted so that 

the cell interior areas are brighter. Next, the enhanced 

image is convolved with a ͹ ൈ ͹ top-hat filter, which 

is often used to detect bright features on a dark 

background. A 3ൈ ͵	median filter is then applied 

twice to remove small grey objects that could be 

noise or artifacts caused by the top-hat filter. The 

output image after the median filter is the input 

image for the computation of mutual information. We 

further detect the foreground by using Otsu 

thresholding [Otu79] to obtain a binary image where 

the white pixels indicate the foreground. Figure 3 

visualizes these image processing steps. 

 

Unlike many algorithms that require fairly accurate 

foreground and cell detections, we only need to 

detect a rough foreground as shown in Figure 3(f). 

Moreover, there are no accumulated segmentation 

errors. 

 

3.2 Computation of Mutual Information 

Mutual information is usually used to test the 

independence between two random variables x and y. 

If two random variables are independent, the joint 

probability ݌ሺܠ,  ሻ  can be factorized into the productܡ

of their marginals ݌ሺܠሻ݌ሺܡሻ. In our application, the 

random variables x and y are two same image blocks 

from two consecutive image frames. 

Figure 3. Image enhancement and foreground detection. (a) Original color image. (b) Grayscale image. (c) 

Result after intensity inversion and contrast stretching. (d)  Result of top-hat filtering. (e) Output of median 

filtering. (f) Foreground detection by Otsu thresholding.  

(a) (b) (c) 

(d) (e) (f) 
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We do not use the entire image frames as the random 

variables. This is mainly because that the majority of 

an image could be the background, in which case, 

when the entire images are used, the mutual 

information between them could mainly reflect the 

differences between backgrounds. Furthermore, when 

the captured image has a high resolution, it also could 

be inefficient since the memory storage is increased. 

Therefore, we divide each frame into a set of image 

blocks with overlapping areas. The size of the image 

block is determined by the maximum of cell 

migration velocity, which can be easily estimated by 

the visual inspection. For many types of cells, the 

size of an image block is often around a few times 

that of a single cell.  

 

Let us denote an image block as x and the same 

image block in the next image frame as y. The 

mutual information between the variables x and y is 

defined as 

 

,ܠሺܫ              ሻܡ ൌ KLሺ݌ሺ࢞, 																											 ሻሻܡሺ݌ሻܠሺ݌||ሻ࢟ ൌ ෍෍݌൫ݔ௜ , ቆ	௝൯lnݕ ௜ݔ൫݌ , ௝ሻቇேݕሺ݌௜ሻݔሺ݌௝൯ݕ
௝ୀଵ

ே
௜ୀଵ  

 

where KLሺ∙ሻ is known as the Kullback-Leibler 

divergence, and ݌ሺܠሻ and ݌ሺܡሻ are histogram 

distributions of two image blocks. We can see that ܫሺܠ, ሻܡ ൌ Ͳ if and only if two image blocks are 

independent, which indicates a very large migration. 

The larger the ܫሺܠ,  ሻ, the more similar two imageܡ

blocks are, which indicate a small migration. 

 

3.3 Velocity Estimation using Linear 

Regression 

For each pair of image blocks x and y, we describe 

the cell migration using two features: the mutual 

information I and the difference between foregrounds 

of x and y. The mutual information I measures 

independence between two image blocks including 

both foreground and background. The difference 

between two foregrounds is measured by the ratio of 

non-overlapping foreground to the union of the two 

foregrounds, which is defined by	 
ܦ  ൌ ிܠ| ׫ ிܡ െ ிܠ ת ிܠ||ிܡ ׫ |ிܡ  

 

where subscript F indicates the foreground. In 

general, the smaller the ratio, the more similar two 

image blocks are. Thus, the inputs for the regression 

are the mutual information I and area ratio D, and the 

output is the cell migration velocity v. Since there 

could exist multiple moving cells in one image block, 

the maximum velocity is chosen as output.  

In order to avoid over-fitting problem, we only 

consider the second order of the inputs. Therefore, 

the possible variables include ܫ, ,ܦ ,ଶܫ	 ,ଶܦ and	ܦܫ. 

We adopt the forward selection to select a suitable 

model for the data. In this model selection approach, 

we add one variable that results in the largest 

reduction in sum squared errors (SSE), and then carry 

out a hypothesis test to determine whether this 

reduction in SSE is significant. If the reduction is 

significant, we continue the adding process and stop 

otherwise. The results show that the full model is the 

most suitable regression model when the area ratio 

can be robustly estimated. The regression model is 

given by 

,ܫሺݒ  ሻܟ,ܦ ൌ ሾͳ			ܫ			ܦ			ܫଶ			ܦଶ		ܦܫሿ்ܟ 	
where ܟ ൌ ሺݓ଴, … , ହሻ்ݓ . 
 

In order to estimate the parameters w, we first 

developed an interactive user interface to measure the 

velocities of a set of sample cells (ܰ ൎ ͵Ͳ) by 

manually clicking centroids of the same cells in two 

image frames. Then the parameters w can be 

estimated by the normal equations 

ܟ  ൌ ሺ்ࣘࣘሻିଵ்ࣘ࢜ 

 

where ࣘ is ܰ ൈ ͸ design matrix given by 

 

ࣘ ൌ ൮ͳ ଵͳܫ ଵܦ				ଶܫ ଶܦଵଶܫ ⋮ଶܦଶܫଵܦଵܫ			ଶଶܦଵଶܦ				ଶଶܫ ⋮ͳ 		ேܫ ⋮ ேܦ⋮ ேଶܫ 				 ேଶܦ⋮ 		 ேܦேܫ⋮
൲ 

 

It could be very difficult to estimate the area ratio D 

for some types of microcopy images. For example, 

for the image type shown in figure 1(b), the 

intensities of both foreground and background are 

very similar and illumination conditions also change 

when cells are moving. Therefore, the most exiting 

cell segmentation algorithms based on intensity 

values would fail to detect foreground and moving 

cells accurately.  

 

For these types of images, we discard the area ratio D 

in our regression model and only use the mutual 

information. Thus, the model could be changed to a 

polynomial regression with order 3, which is given 

by 

ሻܟ,ܫሺݒ  ൌ ሾͳ			ܫ				ܫଶ			ܫଷሿ்ܟ 

 

where ܟ ൌ ሺݓ଴, … ,  ଷሻ். The normal equationsݓ

remain same and the ܰ ൈ Ͷ design matrix is defined 

by 
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ࣘ ൌ ൮ͳ ଵͳܫ ଵଶܫ				ଶܫ ଶଶܫଵଷܫ ⋮	ଶଷܫ ⋮ͳ 				ேܫ ⋮ ேଶܫ⋮  ேଷ൲ܫ

 

During the prediction stage, we divide each image 

frame into ݊ ൈ݉ blocks and estimate the migration 

velocity for each block using the linear regression. 

We can then plot the velocity distribution over time. 

The expectation of the migration velocity can also be 

estimated for each frame by 

ሻݒሺܧ  ൌ ͳ݊݉ ෍෍ݒ௜௝௠
௝ୀଵ

௡
௜ୀଵ  

 

where ݒ௜௝ is the velocity in each block. 

 

4. EXPERIEMNTS 
 

4.1 Datasets 

Our proposed algorithm is tested on three microcopy 

image sequences. A few frames of the same cell type 

are used for estimation of parameters w. 

 

Dataset A has one sequence of human umbilical vein 

endothelial cells (HUVEC) that are isolated from 

normal umbilical vein [Cel09]. The images are 

cropped to Ͷ͹Ͷ ൈ ͵͸Ͷ.  

 

Dataset B includes image sequences that show cell 

migration of primary keratinocytes before and after 

calcium switch [Yam09]. These images have a 

dimension cropped to ͸Ͷʹ ൈ ͶͶ9 pixels.  

 

Dataset C contains one image sequence taken 

overnight by using a spinning disc confocal 

microscope [Mar09]. It shows motility of cancer 

cells. This image sequence has 111 frames with Ͷ͹ʹ ൈ ͵͸Ͳ pixels/frame.  

 

4.2 Estimation of Parameters 
The parameters w for the linear regression are 

learned from the training data. For each dataset, the 

parameters are learned using a set of samples marked 

by our interactive graphic interface. The image block 

size is set to ͸Ͷ ൈ ͸Ͷ, which is around 2 times larger 

than a typical cell length The training sets include 

20~40 samples from each dataset. Figure 4-7 show 

the scatterplot matrix of the 34 training samples from 

dataset A, and 25 training samples from dataset C. It 

is easy to see the strong correlation among mutual 

information, area ratio, and migration. The training 

samples from the dataset B have the distribution 

similar to the figure 4 and 5 from the dataset A. 

 

The area ratio distribution in figure 7 is more 

dispersed than the distribution shown in figure 5. 

This is mainly because that the cell intensity is very 

close to the background intensity as shown figure 

1(b). The segmentation based on intensity tends to 

fail. In this case, the regression with only mutual 

information can provide a more stable result. Table 1 

gives a summary of parameters for dataset A and C. 

 

 
Figure 4. Mutual information I versus migration 

using 34 training samples from dataset A. 

 

 
Figure 5. Area ratio D versus migration using 34 

training samples from dataset A. 

 

 
Figure 6. Mutual information I versus migration 

using 25 training samples from dataset C. 

 

Journal of WSCG, Vol.20 33 http://www.wscg.eu 



 
Figure 7. Area ratio D versus migration using 25 

training samples from dataset C. 

 

Table 1. Summary of parameters for dataset A and 

database C. 

 

 

 

4.3 Estimation of Migration Velocity 

After the training stages, we compute the migration 

velocity over the whole range of each dataset.  

 

Figure 8 shows the result from the dataset A. We 

computed migration velocity using our algorithm for 

every 50 frames over 4271 image frames captured 

over 70 hours and 37 minutes. This velocity 

distribution with the bell shape is same as our 

expectation. At the beginning of the captured image 

sequences, the number of cells is relatively small and 

the cell growth rate is high. After the growth rate 

reaches its peak, the cells are very crowded and touch 

each other in the limited space. As a result, the 

growth rate decreases. Figure 9 shows two image 

frames at the beginning and at the end of the dataset 

A. 

 

Figure 8. Velocity distribution for the dataset A. 

 

 

(a) 92th Frame at 01m00s 

 

 

(b) 4,250th Frame at 68h46m30s 

Figure 9. Two image frames from the dataset A that 

could be used to further verify the cell growth rate. 

 

For the dataset B, as the concentration of calcium 

was increased from low to high, cell migration 

velocity is prevented by the maturation of cell-cell 

adhesion after the calcium switch. Therefore, the 

velocity decreases shown in figure 10 is also same as 

our expectation. Here we take every 3 frames to 

compute velocity over 73 frames that are captured 

using 6 hours. 

 

 

Figure 10. Velocity distribution for the dataset B. 

 

Figure 11 shows the velocity distribution for the 

dataset C over 111 frames using more than 18 hours. 

DB ݓ଴ ݓଵ ݓଶ ݓଷ ݓସ ݓହ Block Size

A 0.202 0.246 0.039 0.349 0.016 0.031 ͸Ͷ ൈ ͸Ͷ
C 0.114 0.041 0.019 0.010 N/A N/A ͸Ͷ ൈ ͸Ͷ
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We sample every 10 frame. As the population of 

cancer cells gradually reaches its peak in the limited 

space, the velocity also decreases gradually. We 

further plot the mutual information distribution for 

every frame in order to verify our results. Figure 12 

shows the distributions and the corresponding image 

frames. It is clear to see the distributions of mutual 

information are very similar to the distribution of the 

migration velocity. 

 

 

Figure 11. Velocity distribution for the dataset C. 

 

 

                          (a) 

 

(b) 

 

(c) 

 

 

(d) 

 

Figure 12. Images and distributions of mutual 

information. (a) 45th frame of dataset C. (b) 109th 

frame of dataset C. (c) distribution of mutual 

information corresponding to (a). (d) distribution of 

mutual information corresponding to (b). (c) and (d) 

are enhanced for the purpose of visualization. The 

brighter a region, the larger the mutual information 

is. 

 

5. CONCLUSION AND FUTURE 

WORK 
In this paper, we propose a novel algorithm to 

estimate cell migration velocity. As individual cell 

segmentation and tacking are avoided, this algorithm 

is efficient and robust. Our experiments show that 

this algorithm is also accurate and can be used to 

measure cell motility over a long time. In the future, 

we would like to extend our work to estimation of 

cell division, merging, and growth based on our 

regression framework. 
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