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ABSTRACT
Testing rendering algorithms is time intensive. New renderings have to be compared to reference renderings
whenever a change is introduced into the render system. To speed up the test process, unit testing can be applied.
However, detecting differences at the pixel level does not provide a sufficient criterion for the tests. For instance, in
the context of games or scientific visualization, we are often faced with random procedurally generated geometry
like e.g. particle systems, waving water, plants or molecules. Therefore, a more sophisticated approach than a
pixelwise comparison is needed. We propose a Smart Image Quality Assessment algorithm (SIQA) based on a
self-organizing map which can handle random scene elements. We compare our method with traditional image
quality assessment methods like Mean Squared Error (MSE), Peak Signal-to-Noise Ratio (PSNR) and Structural
Similarity Index Maps (SSIM). The proposed method helps to prevent the detection of images being categorized
wrongly as correct or having errors, and ultimately helps saving time and increases productivity in the context of a
test-driven development process for rendering algorithms.
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1 INTRODUCTION
During the last three decades, rendering systems have
grown immensely in complexity: real time rendering
subsystems of 3D gaming engines such as the Unreal
Engine can contain millions of lines of code, while
offline rendering systems such as RenderMan or Au-
todesk 3ds Max have been in development for almost
thirty years [AGB99]. The increase in complexity of
rendering systems makes it a challenging task to ensure
at the same time a high software quality.

To handle the increasing software complexity and to as-
sure the quality of such a rendering system, the system
must be tested. Testing can be done in different ways.
For instance, a quality assurance team can check differ-
ent outputs of the rendering system and compare them
to old output. For example, a scene can be loaded and
rendered with the same camera settings and same ren-
dering settings twice: once with an early revision of the
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software, and a second time with the new version. If the
images generated differ, a software bug or a concep-
tual error might have sneaked into the rendering sys-
tem. This manual work is very labor intensive and a
tedious task for a tester, especially when many differ-
ent test scenes have to be checked with all the different
variants of render settings.

To improve this situation, unit testing can be used in-
stead of manual testing. Unit testing allows to test the
system automatically whenever new code has been in-
troduced into the codebase. Also, a unit test can be ex-
ecuted for instance by a nightly build server to supply
the developers daily with a current quality assessment
report.

This paper is concerned with the automatization of this
testing process, outlines how such an automatic process
can be implemented, develops a method for measuring
the quality of rendered images and traces the path for
managing random output tests for a rendering system.

The novel contribution of this article is a smart image
quality assessment algorithm (short SIQA) which can
evaluate the quality of an image based on similar refer-
ence images. This makes the algorithm unique with re-
spect to existing reference based image quality assess-
ment methods like Mean Square Error measures, Peak
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Signal-to-Noise Ratio (PSNR) or Structural Similarity
Index Maps (SSIM) [WBS03].

Our proposed algorithm (SIQA) can be used for black
box testing and does not need any knowledge of the
internal structure of the render system. This gives the
algorithm the typical disadvantages of black box tests,
such as being broad based, but also their advantages of
being very general and flexible to software changes.

2 MOTIVATION
Software bugs can easily be introduced in a render sys-
tem when changing its code. Often, bugs are not de-
tected immediately. Sometimes, a bug in a subcompo-
nent of a rendering system can affect other parts of the
rendering system. A typical example of such cascading
error behaviour can be seen for instance in the discon-
tinuities in the shadows of Figure 1.

Figure 1: A discontinuity in shadow due a software bug.

The growing complexity of rendering systems called
for changes in the software engineering process: to en-
sure a high quality of the images, bugs and errors must
be detected early and in a reliable way.

One approach to detect render system bugs early is
Test-Driven Devolpment (TDD) [Bec02]. TDD has be-
come quite popular in software development. In TDD
tests (unit tests) for a software component are devel-
oped before new features are implemented. After the
implementation of a new software component, all exist-
ing tests are executed to see if one or more of them fail.
Quite often, testing fails and early bug tracking will
help to produce a better implementation, which even-
tually will pass all tests defined at the beginning. In
the next step of TDD, refactoring is used to eliminate
for example redundancies in the source code. This can
again introduce new bugs which can be detected early
by unit tests.

A test process for a rendering system consists of three
steps: at first, the code is modified. Subsequently tests
are run. Finally, the test results are analyzed (Figure
2). If a tests fails, the process is restarted. The code is
modified again and eventually it will pass all tests.

Using TDD implies a paradigm change in software pro-
duction: before the introduction of TDD, small ad hoc
test applications were made to test the software, but

Modify Code

Analyze Test
Results

Run Test

Figure 2: The test procedure

they were discarded after the testing. In TDD, unit tests
are as important as production code [Rob08], and code
quality of the test code becomes as important as the
software itself and gets the same attention and care as
the actual software. Testing makes sense even when not
using a test driven development process.

2.1 An automatic test process
The TDD steps illustrated in Figure 2 can be easily au-
tomated with the help of a test server (e.g. a nightly
build server). Developers check in code to a reposi-
tory. The code contains unit tests that can be executed
automatically by a unit test system. The build server
automatically checks out the repository on a dialy basis
and runs all unit test. Finally, it reports the test results
to the developers through a website. This test approach
can be implemented for instance with CDash in combi-
nation with CTest, CMake, Visual Studio and Mercurial
as a version control system [Kit13]. An overview of this
test process configuration can be seen in Figure 3.

Testserver

CDash             Repository

Developer

CMake/CTest

Figure 3: An automated test process with CMake,
CTest and CDash
The following pseudo code demonstrates how a unit test
is usually implemented:

TEST(Core, myAddition)
{

int result = Bar::myAddition(3,4);
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EXPECT_TRUE(result == 7);
}

The method myAddition adds two numbers
and returns the computed result. The assertion
EXPECT_TRUE(result == 7) validates the com-
puted result. It checks if the addition of the numbers 3
and 4 results in the sum of 7. If so, the unit test passes
without failures, if not, the unit test framework reports
an error.

Because images are difficult to compare, in the context
of a rendering system, it is not easy to focus on how to
test or what to test on. A trivial solution to this problem
could be to generate a reference image, render the scene
with the updated software, and compare the reference
and the generated image.

For each unit test, a correct reference image (valid
screenshot) has to be created. For example, we can cre-
ate a unit test which checks if tessellation is working.
Another test can check if pixel shaders are working or
if volume rendering works. Figure 4 shows some ex-
amples of such reference images.

Draw triangle unit test             Reflection unit test

Ray casting unit test              Tessellation unit test

Figure 4: Each picture is a reference image for a spe-
cific unit test.

Comparison between the rendered image, the correct-
ness of which is not known, and the reference (a valid
screenshot from the past) is done pixel by pixel. If one
pixel differs, the test fails. This test would work in case
different renderings produce exactly the same output.
Unfortunately, this is almost never the case: even the
same setting, rendered through two different graphic
cards, do not produce the same output. Figure 5 shows
renderings of the same scene on a GeForce GTX 480
and on a GeForce GTX 560 Ti: the output is different,
but it looks the same at a first glance.

Figure 6 highlights in red different pixels in the ren-
dered output through a GeForce GTX 560 Ti and a
GeForce GTX 480. Remarkable here is that both times

(a) GeForce GTX 560 Ti (b) GeForce GTX 480

Figure 5: The same unit test rendered on two different
GPUs.

the same program with the same Direct3D 11 ren-
der commands and the same driver (GEFORCE R300
DRIVER, 301.42 WHQL) has been executed. This can
be due to non-deterministic behavior or implementation
defined behavior. The DirectX 11 specification allows
some freedom in the concrete driver implementation
which can result in such differences. A reason for the
different render output can be for instance differences
in the texture sampling pipeline across different GPUs.

Figure 6: Red pixels mark differences between the ren-
der output of a GeForce GTX 560 Ti and a GeForce
GTX 480.

A more sophisticated solution to prevent false positives
in the classification has to be found. A pixelwise com-
parison does not work here. Furthermore, a distinction
between unintentional randomness in the render out-
put as seen above in the tessellation example and in-
tentional randomness in a scene is necessary. Figure
7 shows two examples of intentional randomness in a
scene. The first one is an ivy generator which gener-
ates a new ivy structure each time executed. The other
example shows waving water. The differences are high-
lighted in red (Fig. 7(e) and 7(f)). Although it is pos-
sible to record the random parameters to regenerate the
same scene twice, it can be sometimes quite cumber-
some. For example, some data might be only GPU ac-
cessible and can be difficult to access from the CPU
side. In this case, our technique can help. It is just eas-
ier, because it works without knowledge of the internal
code structure as a black box test.
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(a) Ivy Test 1 (b) Ivy Test 2

(c) Ocean Test 1 (crop) (d) Ocean Test 2 (crop)

(e) Highlighted Differences in
Ivy Test

(f) Highlighted Differences in
Ocean Test (crop)

Figure 7: Two examples of intentional randomness

3 RELATED WORK
Quality assessment methods for images can be subdi-
vided into subjective and objective approaches. In sub-
jective assessment, human observers are asked to eval-
uate the quality of an image, and the results are evalu-
ated statistically. Such methods are slow and expensive,
which makes them not well-suited for their use in soft-
ware development.

Objective methods instead try to determine the qual-
ity of an image automatically through some measure.
They can be further subdivided into full-reference, no-
reference and reduced-reference approaches [WB06],
depending on the availability of a reference image,
which is assumed to be error free and of highest quality.
In reduced reference methods, features are extracted
from the reference image and the method only com-
pares this limited set of features with the image the
quality of which has to be evaluated, which we will call
subject image.

One of the most used full-reference methods is the
Mean Square Error (MSE), which is the square of the L2

distance of the images, and computes the square of the
difference of corresponding pixels in the reference im-
age A and the subject image B. Let A = {a1,a2, ...,aN}
and B = {b1,b2, ...,bN} be the images, then MSE is cal-
culated by:

MSE(A,B) =
1
N

N

∑
i=1

(ai−bi)
2. (1)

MSE provides an overall measure of how the intensities
of two images differ from each other [WB06].

Another commonly used measure is Peak Signal-to-
Noise ratio (PSNR), which is based on the LP norm and
is defined as follows:

PSNR(A,B) = 10log10
I2

MSE(A,B)
, (2)

where I is the maximum allowed pixel intensity (i.e.
255 for an 8-bit grayscale image).

PSNR is also often used to evaluate the quality of an
image. A PSNR value is typically in the range of 30 dB
to 40 dB. A higher PSNR value is better than a lower
PSNR value, since a higher value indicates that the sig-
nal is closer to the original signal than a signal with a
lower PSNR value [WB06].

MSE and PSNR work only in a full-reference setting
and consider an image only on a pixel-by-pixel basis.

A third type of quality measure commonly used in full
reference approaches is structural similarity. In contrast
to MSE and PSNR, structural similarity does not only
consider individual pixels, but also the neighborhood
of a pixel. For instance, a structural similarity index
can be computed by cropping two small image regions
from the reference and subject images and combining
the neighborhood by a weighting function. A simple
structural similarity index can be computed by consid-
ering the luminance and the contrast of an image.

The Structural Similarity Index Map (SSIM) of two im-
age regions x and y can be computed by

SSIM(x,y) =
(2µxµy +C1)(2σxy +C2)

(µ2
x +µ2

y +C1)(σ2
x +σ2

y +C2)
, (3)

where C1 and C2 are constants which prevent a division
by zero, µx and µy are sample means of x and y respec-
tively and σ2

x , σ2
y are the sample variances of x and y

[LB09] . Usually, the mean SSIM value is used to eval-
uate the quality of an image.

In a reduced-reference setting, for example keypoint
matching can be used. The goal is to find a certain
number of interesting points in the reference image and
match these in a similar subject image. For instance, the
Scale-Invariant Feature Transform (SIFT) can be used
here [Low99]. But it is not yet clear how this technique
can be used to assess the quality of an image.

[Rob12] introduced a no-reference algorithm for de-
tecting global-illumination based rendering artifacts via
a machine learning approach supposedly competitive
with state of the art full-reference algorithms. This al-
gorithm uses "right" and "wrong" image samples. Af-
ter manual masking of the problematic areas, a classi-
fier is trained with features extracted from these areas.
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Starting with a pool of features, the most discrimina-
tive ones concerning this artifact in consideration are
selected. After the detection, a correction method is
used, removing the artifacts from the image.

4 SELF ORGANIZING MAPS TO
EVALUATE QUALITY

4.1 Overview
Our method is based on a self-organizing map (SOM)
which allows us to classify images as correct or wrong.
The idea of a SOM, also known as Kohonen map has
been introduced in [KT82]. From a high level point
of view, a SOM maps feature vectors of an arbitrary n
dimensional space to a 2D space. The SOM has the
characteristic that feature vectors with similar proper-
ties form clusters on the 2D projection of the corre-
sponding SOM.

Figure 8: Projection map of classified items on a SOM

Figure 8 shows this effect: as can be seen in the picture,
different types of items concentrate to different map re-
gions. Images with a green border are correct. Images
with a blue border have incorrect alpha blending issues.
A red border marks images with a wrong depth stencil
test.

The complicated part of the design of the method for
evaluating mistakes in rendering is to find good features
that help to distinguish between correct and incorrect
images.

Self-organizing maps support a non-supervised learn-
ing process. However, to get interesting results one has
to pre-classify at least one item. Otherwise, the SOM
can only tell us that an image belongs to a certain clus-
ter, for instance to the cluster of the images marked
with a red border in image 8. However, it cannot tell

us if the corresponding cluster is a cluster which con-
tains only correct or only incorrect images. Ideally, we
pre-classify a set of correct and incorrect images be-
forehand. A person from the quality assessment team
has then to decide if the image is correct or not. The
SIQA system stores this information and uses it to make
an independent decision for future test images. Further-
more, the SIQA can also compute an estimate of how
likely it is correct. This is done by determining the dis-
tance of the test image to the already correct classified
images in the SOM.

4.1.1 Self-organizing map
Our implementation of a self-organizing map is repre-
sented by a square lattice. Each node in this lattice is
associated with a vector whose dimension equals the
dimension of the feature vector. These are called code-
book vectors. At first, the SOM has to be initialized.
We implemented random initialization and linear gra-
dient initialization. The latter means that the codebook
vectors start with 0 in the upper left corner and increase
linearly until the right bottom corner where they reach
1. Afterwards, the training of the SOM may begin. The
amount of training feature vectors has to be known to
compute the decay of the learning rate and the neig-
bourhood radius. Additionally, they have to be passed
as a set in order to be able to determine the minimum
and maximum value of each feature which in turn are
used to normalize the values so they are inbetween 0
and 1. This is done automatically during the training,
so there is no need for the input to be normalized. The
order in which the training vectors are used can in our
case either be random or round-robin.

Another option would be to leave the ordering of the
items as provided which might result in unpredictable
behaviour.

Training then works as follows: the algorithm iterates
through all the codebook vectors and calculates the Eu-
clidean distance in feature space between the code-
book vector and the training item vector. The item is
then projected onto the node with the smallest distance,
which is denoted best matching unit. Codebook vectors
that lie inside the neighbourhood radius are modified
in a way that they get closer to the feature vector of the
projected item. Such radius decreases over time. The
starting radius rstart is calculated as

rstart =
w
2
, (4)

where w is the width of the square lattice. The current
radius r dependent on the time t is computed as

r = decayFct(rstart , t,τ), (5)

while the time constant τ is obtained as
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τ =
N

ln(rstart)
, (6)

where N is the amount of training items. The decay
function is defined as follows:

decayFct(a,b,c) = a · e−
b
c (7)

An additional variable called the learning rate (l) is
used in the learning process. This variable is inititial-
ized with a user provided value lstart which is between
0 and 1. The learning rate controls how much impact
the learning process has on the codebook vectors. It
decreases over time (t) using the same decay function

l = decayFct(lstart , t,τ). (8)

The impact of the learning procedure on the nodes in-
side the neighbourhood radius also depends on the dis-
tance to the best matching unit, and decay is defined
through a Gaussian bell:

gaussFct(δ ,σ) = e−
δ2

2·σ2 . (9)

The distance can be calculated as the Euclidean dis-
tance using the x,y-coordinates of the nodes. Now with
all of the aforementioned parameters, the actual learn-
ing process may take place:

ψ = ψ +gaussFct(δbmu,r) · l · (ω−ψ). (10)

Here ψ is the codebook vector that is getting trained and
ω the feature vector used for training. The variable δbmu
denotes the distance between the best matching unit and
the node containing ψ . Concerning the time value t, it
has to be noted that t is initialized with 0 before start-
ing the training procedure and is increased by 1 after
each training item. The order of the training items has a
great influence on the quality of the learning. We exper-
imented with random (shuffled) and round-robin order
and could achieve the best result with linear gradient
initialization in combination with round-robin order.
When the training process is finished, the SOM may
be saved as a file, allowing the user to load it again for
classification purposes whenever he needs to, saving the
training (learning) step to the user.
The classification process is very simple: similarly to
the training phase, the best matching unit for an item is
chosen. Then, the average distance to all the training
items is calculated per item group. The item group with
the lowest distance wins and the classification item is
classified as that type.
It is also possible to use another type of cluster analysis.
[Ran71] describes some objective criteria for the evalu-
ation of clustering methods that can also be considered
here. Similar work has also been done in [BGV92].

4.2 Feature Vector
The self-organizing map approach requires feature vec-
tors for training. A feature vector can be seen as an n-
dimensional vector, where each component represents
one type of feature. Per image one feature vector is cre-
ated and each feature is described by a floating point
value. These values have to be greater than zero. Dur-
ing the training process, they will automatically be nor-
malized between 0 and 1. The purpose of the feature
vector is to describe an image as distinct as possible.
In short, a number of features is extracted from each
image and pooled into a vector.

The task of the self-organizing map is to distinguish dif-
ferent types of images. Therefore, the features must be
selected in a way that they are as similar as possible for
images of the same kind, and differ as much as possible
when images are different. The approach we followed
was to design potentially effective features at first and
to select those that were actually the most useful after-
wards by evaluating them directly on the image set.

4.2.1 Choice of the features
At first, the features chosen were the ones represented
in table 1.

For most calculations, only the brightness information
of the image is being used. Only the average hue and
the color histogram make use of the color informa-
tion. Hue, saturation and brightness values were calcu-
lated according to the transformations of the HSV color
model [Rei08]. Alternatively, also the L*a*b* model
could suit the purpose of providing luminosity values.
The first block contains values that are extracted from
the power spectrum of a 2-dimensional Fourier trans-
form of the image, as shown in Figure 9.

Figure 9: The extraction of the frequency measures

The values of the low, mid and high areas are getting av-
eraged. These values give an impression on how much
low, mid and high frequency detail can be found in the
luminosity information, which is most important for hu-
man perception. The Pixel-value-median is a measure
for the general brightness of the image. Edginess is
calculated as the averaged sum of the differences from
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Feature group Feature values
Two-
dimensional
Fourier
transform

Steady component
Low frequencies
Medium frequencies
High frequencies

Medium luminosity Median of the pixel values
Horizontal
and vertical
edginess

Summed absolute differ-
ences in horizontal direction
Summed absolute differ-
ences in vertical direction

Average hue Average of the HSV hue
value

Darkest and
brightest
areas

Darkest pixel x-Coordinate
median
Darkest pixel y-Coordinate
median
Brightest pixel x-Coordinate
median
Brightest pixel y-Coordinate
median
Darkest pixel value
Brightest pixel value
Darkest pixel amount
Brightest pixel amount

Average
gradient

Average gradient x-direction
Average gradient y-direction
Average gradient length

Histogram
Red channel histogram
Green channel histogram
Blue channel histogram

Table 1: The features

one pixel to the next, once in the horizontal and once
in the vertical direction. Average hue is obtained by
averaging the hue information of all pixels, providing
a value for the prevalent color in the image. Darkest
and brightest pixels denote the pixels with the highest
brightness value and the pixels with lowest brightness
value in the image. There might be one or more pix-
els of that kind, the exact number is saved in the cor-
responding features darkest pixel amount and brightest
pixel amount. The median of the x- and y-coordinates
of these pixels is also being used as a feature, indicat-
ing the position where the brightest and darkest areas in
the image are concentrated. Darkest and brightest pixel
value denote the exact brightness values of the bright-
est and darkest pixel. This feature group gives a hint on
how these very distinctive areas are distributed over the
image. The gradient is a 2-dimensional vector that is
based on the gradients in x- and in y-direction. These
gradients are calculated by making use of the difference
quotient

f ′central(xi)
′ =

f (xi+1)− f (xi−1)

2
. (11)

The x- and y-gradients are combined into a vector.
Then, all gradient vectors are averaged, while the di-
rection is only taken into consideration, if the gradient
length lies beyond a certain threshold. The direction, as
well as the length of this average vector, is being used as
a feature providing information of the edge distribution
in the image. The color histogram is defined through
the red, green and blue component histogram. Each of
those is generated out of the red, green and blue chan-
nels of the image by calculating the relative occurence
frequency of each color value, meaning the percentage
of pixels of this color in the respective channel. The
amount of histogram values is reduced by combining
a certain amount of neighbouring values through av-
eraging. This way, a histogram width of 32 values is
reached. The color histogram can reveal changes in the
color distribution.

4.2.2 Evaluating Feature Effectiveness
As mentioned above, an evaluation of the features was
performed directly on the image set that should be
worked on. The process of this evaluation was im-
plemented in the following way: assuming we have m
groups of images denoted as Gi with one feature vector
v j per image

Gi = {v1,v2,v3, ...,vp}, (12)

and that these feature vectors all contain n features,

v j =


f1
f2
f3
...
fn

 , (13)

then the average α and variance σ of the feature k in
group i is given by

α(k,Gi) =
1
|Gi|

p

∑
j=1

v j[k] (14)

σ(k,Gi) =
1
|Gi|

p

∑
j=1

(v j[k]−α(k,Gi))
2. (15)

Now the distance between two groups Gh and Gi con-
cerning the feature k can be computed as

δ (k,Gh,Gi) = |α(k,Gh)−α(k,Gi)| . (16)

δ (k,Gh,Gi) indicates how well the feature k is suited
for distinguishing items of the groups Gh and Gi.

A more complete approach for selecting the best fea-
tures could be done through principal component anal-
ysis. However, this is beyond the scope of this paper.
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5 RESULTS
There are tasks where conventional methods like MSE
or SSI are completely sufficient for quality assessment.
One is, as turns out, the evaluation of defective images
as shown in Figure 5. The error is small enough to be
able to discriminate correct looking images that only
contain minor errors caused by differences in driver im-
plementation (referred to as false negatives) from actu-
ally erroneous images (referred to as correct rejections)
by defining a threshold value for MSE or SSIM. Ta-
ble 2 shows this: for the false negatives, the SSI value
is always very close to 1, while for the correct rejec-
tions the values are lower than 0.8. Hence, it would be
possible to say that all images with an SSI value above
0.99 are supposed to be seen by an observer as being
correct. The same conclusion can be deduced from the
MSE values. They are all below 0.05 for the false neg-
atives and above 3000 for the correct rejections.

False Negatives Correct Rejections
MSE SSI MSE SSI
0.0490115 0.999995 18951.6 6.52E-14
0.000315755 1 3248.31 0.748823
0.031875 0.999983 10301.5 1.04E-07
0.00200065 1 10699.3 1.60E-07
0.000706706 1 10301.5 1.04E-07
0.000199653 1 19775.1 0.754946
<0.05 >>0.99 >3000 <0.8

Table 2: MSE and SSI values for images with minor
(false negatives) and major errors (correct rejections)

Figure 10 shows an example of randomly generated
plants. While 10(a) shows a correctly rendered version,
10(b) (referred to as Error-1) and 10(c) (referred to as
Error-2) show two kinds of rendering errors.

The images look different each time they are rendered,
since the plants are based on a stochastic approach.
Mean squared error (MSE) and Structural Similarity
Index (SSI) measures are not suitable here due to the
fact that there is no reference image that can be used
for comparison. To prove this, we classified images
through MSE and SSI. As footage, we used 300 of the
ivy images, 100 for each type. We then compared each
image with 30 images of each group and averaged the
MSE respectively SSI value per group. The image was
then classified as the type that had the lowest average
MSE value or in case of SSI the highest value. The
MSE results can be seen in table 3, and the SSI results
are shown in table 4.

Classified as
Correct Error-1 Error-2

Correct 52 48 0
Error-1 12 88 0
Error-2 9 91 0

Table 3: Classification via MSE

(a) Reference

(b) Depth ordering issue

(c) Alpha blending issue

Figure 10: Generic plants

Classified as
Correct Error-1 Error-2

Correct 54 46 0
Error-1 49 51 0
Error-2 79 10 11

Table 4: Classification via SSI

As can be seen, results are not satisfying. In the case of
MSE, no image at all was classified as Error-2 type. The
rest is distributed randomly, only for Error-1 a small
correlation in the case of MSE could be seen. SSI per-
forms even worse, although it classifies 11 images as
Error-2.

We then trained a self-organizing map with 100 images
of each kind, using linear gradient initialization and
round-robin order. Afterwards, we classified the same
set with the trained SOM. Figure 8 shows the result of
the classification. The red, blue and green frames rep-
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resent the different image types. It turns out that they
are concentrated in three different areas of the SOM and
three distinct clusters can be observed. The classifica-
tion success in numbers can be seen in table 5.

Classified as
Correct Error-1 Error-2

Correct 100 0 0
Error-1 0 100 0
Error-2 0 1 99

Table 5: The results of the SOM classification

The amount of false negatives, meaning images that are
correct but have been classified as erroneous, in com-
parison between the different evaluation methods pixel-
wise comparison (PWC), Mean Squared Error (MSE),
Structural Similarity Index (SSI) and our Smart Image
Quality Assessment Algorithm (SIQA), is shown in ta-
ble 6.

PWC MSE SSI SIQA
False Negatives 100% 48% 46% 0%
Table 6: Comparison of the evaluation methods

The results of the SOM are a big improvement com-
pared to MSE or SSI. Nearly all images were classi-
fied correctly, only one Error-2 image was classified as
Error-1. Table 7 shows how the classification success
increases, depending on the amount of items used for
training the map. Here, the set was split 70:30 (classifi-
cation:training). We then started with one training item
per group and increased the amount gradually. Just five
training images per set were enough to level down the
false negatives and false positives to zero.

Training Item Count 1 2 3 4 5
False Positives 41% 9% 1% 1% 0%
False Negatives 1% 1% 0% 1% 0%

Table 7: False positive and false negative rate in corre-
lation to the amount of training items (per set).

For practical purposes, it would only be necessary
to distinguish between correct and incorrect images,
which would further lower the complexity of the
decision. Naturally, the quality of the results depends
on the used images, the selection of the features and the
quality of the SOM implementation. Hence, it would
probably be unrealistic to expect equal good results in
all cases. But the example shows the potential of this
approach.

Concerning the performance of the algorithm, it can
be stated that the runtime is linear with respect to the
amount of items used and quadratically with respect
to the width of the lattice (see tables 8 and 9). On a
2.4 GHz dual-core mobile CPU with 8 GB RAM train-
ing and classification both took approximately 5.9 ms
per item using a lattice width of 100. Feature extrac-
tion takes most time: approximately 600 ms per image

(1600x1000 pixels). It has to be noted that the feature
extraction was not optimized for performance in any
way and that the code was not multi-threaded.

Width (px) 32 64 128 256 512
Duration (s) 0.183 0.291 1.006 4.068 15.864

Table 8: The performance dependent on the width of
the lattice

Items 8 16 32 64 128
Duration (s) 0.75 0.142 0.255 0.465 0.96

Table 9: The performance dependent on the amount of
items (training)

A possible software production workflow using quality
assessment could look as follows: a number of scenes is
chosen, possibly using all critical parts of the rendering
engine. Two pools of images are created, one with cor-
rectly rendered images, and one with images contain-
ing artifacts or errors. For each scene, the best features
are selected, a SOM is trained and saved as file. Each
time the code has to be assessed, an amount of images
is rendered for each scene, the corresponding SOM lat-
tice gets loaded and the images are classified. Even if
one might not want to fully rely on automatic evalua-
tion, this can give at least a good hint on whether the
images are correct or not.

6 CONCLUSION AND FUTURE
WORK

In this paper we proposed the use of image quality as-
sessment methods for automatically testing rendering
software. The use of automatic quality assessment can
ease the rendering software development process, since
errors in software development can be discovered early
and do not remain undetected until the final version of
the software is released. Depending on the characteris-
tics of the scene to be rendered, traditional assessment
methods such as MSE, PSNR and SSIM measures per-
form differently. They are quite helpful for small de-
tail differences, but deliver wrong results if procedu-
ral or randomized algorithms are used in the rendering
pipeline.

In the latter case, using Self Organizing Maps can com-
pensate and automatically recognize and categorize er-
rors. After a first training phase, SOMs deliver quite
accurate results and allow to automatically warn if the
image being generated by the software has problems.
Of course, the methods proposed for quality assessment
have still to be expanded and tuned for their applica-
tion in real, less controlled situations. In other words,
their applicability under real life circumstances has to
be thoroughly tested: standard image sets with a vari-
ety of images containing artifacts and rendering errors
of different types have to be developed. The self or-
ganizing map should then be trained with a selection
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of erroneous images and, of course, with correct im-
ages. Then, the classification must take place with im-
ages containing errors that did not appear in the images
used for training. Only this way a realistic estimation
of whether this method is really suitable for practical
use is possible. The implementation of the self organiz-
ing map still offers great potential for improvements,
considering the ordering of the training items, the ini-
tialization of the map prior to training and the training
process itself.

The selection of the features is a factor with a lot of
potential for improvement. As mentioned before, there
are alternative approaches for the discrimination of the
really useful features with respect to a specific scene,
like principal component analysis.

Also, instead of a SOM, other types of neural networks
could be used and be tested for their suitability in im-
age quality assessment. For instance, multilayered net-
works in conjunction with the back-propagation algo-
rithm can be considered [Roj96]. There is also a wide
diversity of learning methods like for instance Quick-
prop and network types like the Hopefield Model which
can also be considered. Furthermore, variants of SSIM
like Multi-scale SSIM, Modified gradient-based SSIM
[LB09] or Complex Wavelet Domain Structural Simi-
larity Map [WB06] [CW12] could be tested.

As a conclusion, this paper is a simple start of a new
theme which is worth exploring, since it bears a lot of
potential to ease hardware and software development
for Computer Graphics.
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