
GPU-Optimized Bi-Directional Path Tracing

Denis Bogolepov

Lobachevsky State University of Nizhni Novgorod
603950, Nizhni Novgorod, Russia

denisbogol@gmail.com

Dmitry Sopin

Lobachevsky State University of Nizhni Novgorod
603950, Nizhni Novgorod, Russia

sopindm@gmail.com

Danila Ulyanov

Lobachevsky State University of Nizhni Novgorod
603950, Nizhni Novgorod, Russia

danila-ulyanov@ya.ru

Vadim Turlapov

Lobachevsky State University of Nizhni Novgorod
603950, Nizhni Novgorod, Russia

vadim.turlapov@gmail.com

ABSTRACT
In this paper we present a light-weight modification of bi-directional path tracing algorithm that is optimized for
massively parallel architectures with limited memory, like GPU. The amount of computations performed by the
algorithm is still comparable to unidirectional path tracing. Though modified algorithm preserves some benefits
of general bi-directional path tracing and handles indirect illumination and caustics quite efficiently.

Keywords
Realistic Image Synthesis, Interactive Global Illumination, Bi-Directional Path Tracing, GPU, GPGPU.

1. INTRODUCTION
Path tracing is an image synthesis algorithm based
on the numerical solution of the rendering equation.
This technique allows solving all rendering problems
that assume geometric optics, such as soft shadows,
indirect lighting, caustics, motion blur, and depth of
field. Path tracing provides superior quality visuals
compared to rasterization rendering but is also very
computationally expensive. Because of the stochastic
nature, the image is subject to some variance which
is visible as noise. The main contributors to noise are
indirect illumination and caustics.

A more general rendering algorithm is bi-directional
path tracing (BPT) that was independently proposed
by Lafortune [Laf93] and Veach [Vea94]. The basic
idea is that paths are traced at the same time from a
light source and from the camera aperture. All the
vertices on the respective paths are then connected
using shadow rays and appropriate contributions are
added to the measurement of radiance through the
corresponding image pixel. BPT handles caustics and
indirect illumination effects far more efficiently than
ordinary (unidirectional) path tracing (PT).

Despite the fact that the BPT can be implemented on
the GPU, it is quite resource intensive. The memory
consumption is significantly higher than for ordinary
PT (more than 20x for each sample) and depends on

the maximum path length [Ant11]. At the same time,
effective GPU utilization is achieved for several tens
of thousands of concurrent threads that require large
amount of onboard memory. However, current GPUs
have limited memory resources that should be used
sparingly to store 3D geometric models, accelerating
structure, texture maps, and other data.

Therefore, we propose a light-weight modification of
BPT. The amount of computations performed by the
algorithm is still comparable to ordinary PT. Though
modified algorithm preserves some benefits of BPT
and handles indirect illumination and caustics quite
efficiently.

2. THE MEASUREMENT EQUATION
The total radiance �� measured by the sensor (pixel)
� is computed by integrating the incoming radiance �
over both the film plane � and all of the surfaces of
the scene	�:

�� = � 	�
�� → ����
�� → ����
�� ↔ �����������
	

�×�

In the equation above, 	� is response function that
depends on a pixel filter (and/or other factors), and �
is geometry term defined as

�
�� ↔ ��� = �
�� ↔ ��� ���� ∙ ������������������� ∙ ���������������
‖�� − ��‖"

Here V is the visibility function (V = 1 if �� and ��
are mutually visible, and V = 0 otherwise).

The total amount of outgoing radiance, L
�� → ���,
can be computed as the sum of emitted radiance �#
plus reflected radiance	�$:
�
�� → ��� = �#
�� → ��� + �&
�� → ��� =	

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

WSCG 2013 Conference on Computer Graphics, Visualization and Computer Vision

Poster proceedings 57 ISBN 978-80-86943-76-3

�# +�'&
�" → �� → ����
�" → ����
�" ↔ ������(
	

)

Here '& is the bi-directional scattering distribution
function (BSDF), which describes the reflectance
and transmittance properties of a surface.

The last equation is called the rendering equation and
formulates the law of conservation of light energy in
3D scene. By recursively substituting � on the right
side of the rendering equation by the complete right
side, we get:

�
�� → ��� = �#
�� → ���	
																															 + * � +
�����"…�-����(…���.

	

�./�

0

-1"

Here	+: ⋃ �34�031" → ℝ is the radiance flow function
defined as

+
��…�-� = 6'&
�34� → �3 → �37���
�3 ↔ �34��
-7�

31�
	

																																																																										 ∙ �#
�- → �-7��
This function describes the fraction of radiance from
the light source that arrives at the sensor after all of
the scattering at vertices between them.

A light transport path Xk is any sequence of surface
points �� … �- ∈ I × �- of which the first point ��
lies on the film plane � and the remaining lie on the
scene surfaces	�. The set of all paths of all lengths is
called the path space and is written as Ω.

The measurement equation can also be written over
unified path space Ω. The generalized measurement
function, fj:	Ω → ℝ, is defined as

'�
��…�-� = 	�
�� → ��� ∙6�
�3 ↔ �34��
-7�

31�
	

																					 ∙6'&
�34� → �3 → �37��
-7�

31�
∙ �#
�- → �-7��

Thus, the measurement of radiance through sensor
(pixel) j can be expressed over unified path space as

�� = �'�
9��Ω
9�
	

:

�Ω
��…�-� = ���� ∙ ���� ∙ … ∙ ���.
This equation formulates the fundamental problem
that a global illumination algorithm must solve. To
estimate the high-dimensional integral �� the Monte-
Carlo methods are used.

3. GPU-OPTIMIZED BPT
Instant bidirectional path tracing (IBPT) is unbiased
rendering algorithm which generates an image in two
independent passes (can be executed in any order):

• Path tracing pass (PT). Tracing a path starting at
the eye (camera lens). The path is extended until it

is terminated with a certain probability by Russian
roulette. Each vertex ;3 is connected to a random
point < on a light source to form the explicit view
path ;�	…	;3<. If the path accidentally hits a light
source at point	;3, then the sequence ;�	…	;3 forms
implicit view path.

• Light tracing pass (LT). Tracing a path starting at
a selected light source. Each vertex <3 is directly
connected to a random point ; on the camera lens
to form the explicit light path <�	…	<3;. If the path
accidentally hits the camera lens at point	<3, then
the sequence <�	…	<3 forms implicit light path.

Thus, in IBPT algorithm each path 9-
 = ��	…	�- can

be constructed in four different ways as either an
explicit or implicit path on the LT and PT stages. It
should be noted that the “implicit light” strategy can
be realized only when using the camera with finite
aperture (that was implemented in this study).

3.1. Compute Path Contributions
In order to compute the Monte-Carlo contribution of
path Xk = x0 … xk , the probability density of sampling
this path needs to be expressed with respect to unit
surface area. Further the following notation is used to
write the densities. Let =)
�3� be a PDF of sampling	�3, measured with respect to unit surface area. The =>?
�37� → �3� and =>?
�3 ← �34�� are the PDFs of
sampling	�3 from points �37�	and �34�, respectively,
measured with respect to projected solid angle. These
PDFs relate according to

=)
�3� = �
�3 ↔ �34��=>?
�3 ← �34��
= �
�3 ↔ �37��=>?
�37� → �3�

The probability density of generating a light transport
path can be expressed as the product of the sampling
densities for the individual path vertices.

PDF of implicit view path Xk = x0 … xk equals

=AB
9-� = =�
��� ∙6=)
�3�
-

31�
= =�
���=)
���	

																															 ∙6�
�3 ↔ �34��=>?
�3 → �34��
-7�

31�

PDF of explicit view path Xk = x0 … xk equals

=AC
9-� = =�
��� ∙6=)
�3�
-

31�
= =�
���=)
���	

														 ∙6�
�3 ↔ �34��=>?
�3 → �34��
-7"

31�
∙ =)
�-�

Here =�
��� and =)
���	are the probability densities
of sampling the vertices �� and ��, respectively. The
specific choice of such PDFs is defined by camera
model used. For example, finite aperture lens camera
is described in [Url01].

PDF of implicit light path Xk = x0 … xk equals

WSCG 2013 Conference on Computer Graphics, Visualization and Computer Vision

Poster proceedings 58 ISBN 978-80-86943-76-3

=DB
9-� = 6=)
�3�
-

31�
	

													 = 6�
�3 ↔ �34��=>?
�3 ← �34��
-7�

31�
∙ =)
�-�

PDF of explicit light path Xk = x0 … xk equals

=DC
9-� = =�
��� ∙6=)
�3�
-

31�
= =�
���	

												 ∙6�
�3 ↔ �34��=>?
�3 ← �34��
-7�

31�
∙ =)
�-�

For compactness, let 	E� denote the modified sensor

response function:

	E�
�� → ��� = 	�
�� → ����
�� ↔ ���=�
���=)
���

When points on the camera lens and view plane are
sampled uniformly, 	E�
�� → ��� = F for the simple
finite aperture camera model (constant C determines
the total sensor sensitivity) [Url01].

After canceling out the common factors, the Monte-
Carlo contribution of implicit view path Xk = x0 … xk
equals

'�
9-�
=
9-� = 	E�
�� → ���6'&
�34� → �3 → �37��=>?
�3 → �34��

-7�

31�
	

																																																																										 ∙ �#
�- → �-7��
The Monte-Carlo contribution of explicit view path
Xk = x0 … xk equals

'�
9-�
=
9-� = 	E�
�� → ���6'&
�34� → �3 → �37��=>?
�3 → �34��

-7"

31�
	

	 ∙ '&
�- → �-7� → �-7"��
�- ↔ �-7��=)
�-� ∙ �#
�- → �-7��
The Monte-Carlo contribution of implicit light path
Xk = x0 … xk equals

'�
9-�
=
9-� = 	�
�� → ����
�� ↔ ���	

						 ∙6'&
�34� → �3 → �37��=>?
�37� ← �3�
-7�

31�
∙ �#
�- → �-7��=)
�-�=>?
�-7� ← �-�

The Monte-Carlo contribution of explicit light path
Xk = x0 … xk equals

'�
9-�
=
9-� = 	�
�� → ����
�� ↔ ���=�
��� '&
�" → �� → ���	

					 ∙6'&
�34� → �3 → �37��=>?
�37� ← �3�
-7�

31"
∙ �#
�- → �-7��=)
�-�=>?
�-7� ← �-�

3.2. Multiple Importance Sampling (MIS)
If there are multiple sampling strategies to generate
light transport paths, the samples can be combined in
a single unbiased estimator by using MIS.

We propose an efficient procedure for computing the
power heuristic weights. Let us consider the inverse
weight for explicit view path Xk = x0 … xk :

1
wAC
9-� = 1 + =AB
9-�H

=AC
9-�H + =DC
9-�H
=AC
9-�H + =DB
9-�H

=AC
9-�H 	
																				 = 1 + =AB
9-�H

=AC
9-�H + =DC
9-�H
=AC
9-�H I1 + =DB
9-�H

=DC
9-�HJ

Both explicit and implicit view paths are sampled in
the same way except for the last vertex �-. Thus, the
common factors cancel out:

=AB
9-�
=AC
9-� =

=>?
�-7� → �-��
�-7� ↔ �-�=)
�-�

Similar, explicit and implicit light paths differ in how
the first vertex �� is generated:

=DB
9-�
=DC
9-� =

=>?
�� ← ����
�� ↔ ���=�
���

The ratio of the densities of generating explicit light
and view paths can be written in the following way:

=DC
9-�
=AC
9-� =

1
=)
��� ∙

1
=>?
�� → �"�	

		 ∙ =>?
�� ← �"�=>?
�" → �K� ∙ … ∙ =>?
�-7K ← �-7"�=>?
�-7" → �-7��												 ∙ =>?
�-7" ← �-7��	
																					 ∙ =>?
�-7� ← �-��
�- ↔ �-7�� = 6 LM-

31�

Obviously, this expression can be computed during
the incremental path construction. At the M-th vertex
(M = 0… 	O) the following scalar variable needs to be
accumulated:

																							L� = =)7�
���
																							L� = =>?7�
�� → �"�
																							L3 = =>?
�37� ← �3�=>?
�3 → �34��
																							L-7� = =>?
�-7" ← �-7��
																							L- = �
�- ↔ �-7��=>?
�-7� ← �-�
Thus, to compute the inverse MIS weight of explicit
view path we only need the accumulated value s for
the current path vertex. MIS weights for other light
transport paths are computed similarly.

3.3. GPU-Specific Features
IBPT can be effectively implemented on massively
parallel GPUs due to the following features:

1. Both render passes generate intermediate images
independently. Thus, computations can be easily
parallelized. In particular, LT and PT passes may
be executed on different GPUs (to get the final
result two images must be simply summed up).

2. To process paths of any length a constant amount
of memory is needed. Therefore, the GPU can be

WSCG 2013 Conference on Computer Graphics, Visualization and Computer Vision

Poster proceedings 59 ISBN 978-80-86943-76-3

utilized efficiently by running a large number of
light-weight threads. Furthermore, this eliminates
restrictions on the unbiased image synthesis.

3. The path connection stage is eliminated (requires
information on all vertices of each path).

4. The optimal MIS weights can be computed using
only one floating variable per path regardless of
its length.

4. RESULTS
The IBPT allows improving the convergence rate (as
compared to “ordinary” PT) for regions with indirect
illumination problems. Figure 1 shows an example of
scene with a significant amount of caustics, which
would have taken a long time to render using PT.

Figure 1. Reference image and weighted

contributions of LT and PT sampling techniques

The IBPT was compared with the unidirectional MIS
PT (combines explicit and implicit view paths). For
both rendering algorithms the speed of convergence
to the reference image was measured (the difference
between images was computed using L2 norm). This
comparison is appropriate, since the computational
cost of the IBPT is much closer to the ordinary PT
than to the general BPT. Strictly speaking, one IBPT
sample corresponds to two PT samples. For the test
scene, in the region of caustics the IBPT allows to
increase the convergence rate by more than an order
of magnitude (see Figure 2).

Figure 2. The absolute error depending on the

number of samples per pixel (SPP)

Intermediate images generated with a small number
of samples per pixel are shown in Figure 3. Bright
pixels (fireflies) on the stems of wine glasses are the
main factor that limits the convergence speed. These
pixels are generated by complicated SDS paths (in
Heckbert’s notation) that can be processed only by
implicit sampling strategies.

Figure 3. PT 128 SPP and IBPT 64 SPP

The general BPT does not solve the problem because
the whole set of additional sampling strategies will
have zero contribution. For efficient handling of such
paths Metropolis Light Transport (MLT) can be used.
An alternative approach is the Vertex Merging and
Connection algorithm (VCM).

5. CONCLUSION
In this paper we presented light-weight modification
of BPT, which is specially optimized for massively
parallel architectures with limited memory resources
like GPU. We showed that IBPT performs a lot better
than simple MIS PT, especially in scenes containing
strong indirect illumination and caustics.

6. REFERENCES
[Ant11] D. Antwerpen. Improving SIMD Efficiency for

Parallel Monte Carlo Light Transport on the GPU. In
Proceedings of High Performance Graphics 2011, pp.
41–50, 2011.

[Laf93] E. Lafortune, and Y. Willems. Bi-Directional Path
Tracing. In Proceedings of Compugraphics ’93, pp.
145–153, 1993.

[Vea94] E. Veach, and L. Guibas. Bidirectional Estimators
for Light Transport. In Fifth Eurographics Workshop
on Rendering, pp. 147–162, 1994.

[Url01] D. Antwerpen. A Survey of Importance Sampling
Applications in Unbiased Physically Based Rendering:
http://graphics.tudelft.nl/~dietger/survey.pdf

0

20

40

60

80

128 256 512 1024 2048 4096 8192

MIS PT IBPT

WSCG 2013 Conference on Computer Graphics, Visualization and Computer Vision

Poster proceedings 60 ISBN 978-80-86943-76-3

	!_2013-WSCG-Posters.pdf
	B07-full.pdf
	B19-full.pdf
	Introduction
	Our Contributions

	Previous Work
	Approaches Using Bounding Volume Hierarchies
	GPU-based Collision Detection

	Sweep-Plane Technique Using PCA
	Object Subdivision Using Fuzzy C-Means
	GPU-based Collision Detection
	Accuracy & Limitations

	Results
	Benchmarking
	Cloth on Ball
	Funnel

	Conclusions
	REFERENCES

	C13-full.pdf
	C37-full.pdf
	D02-full.pdf
	D07-full.pdf
	D43-full.pdf
	D89-full.pdf
	E17-full.pdf
	E61-full.pdf
	E79-full.pdf
	F02-full.pdf
	F19-full.pdf
	G13-full.pdf
	G17-full.pdf
	G19-full.pdf
	G23-full.pdf
	G29-full.pdf

	!_2013-WSCG-Posters.pdf
	G17-full.pdf

