
Coupling between Meshless FEM Modeling and
Rendering on GPU for Real-time Physically-based

Volumetric Deformation

Muhammad Mobeen
Movania

Nanyang Technological
University, Singapore

mova0002@e.ntu.edu.sg

Feng Lin

Nanyang Technological
University, Singapore

asflin@ntu.edu.sg

Kemao Qian

Nanyang Technological
University, Singapore

mkmqian@ntu.edu.sg

Wei Ming Chiew

Nanyang Technological University,
Singapore

chie0017@e.ntu.edu.sg

Hock Soon Seah

Nanyang Technological University,
Singapore

ashsseah@ntu.edu.sg

ABSTRACT
For real-time rendering of physically-based volumetric deformation, a meshless finite element method (FEM) is
proposed and implemented on the new-generation Graphics Processing Unit (GPU). A tightly coupled
deformation and rendering pipeline is defined for seamless modeling and rendering: First, the meshless FEM
model exploits the vertex shader stage and the transform feedback mechanism of the modern GPU; and secondly,
the hardware-based projected tetrahedra (HAPT) algorithm is used for the volume rendering on the GPU. A
remarkable feature of the new algorithm is that CPU readback is avoided in the entire deformation modeling and
rendering pipeline. Convincing experimental results are presented.

Keywords
Volumetric deformation, physically based deformation, finite element method, meshless model, GPU transform
feedback, volume rendering

1. INTRODUCTION
Interactive visualization of physically-based
deformation has been long pursued as it plays a
significant role in portraying complex interactions
between deformable graphical objects. In many
applications, such subtle movements are necessary,
for example, surgical simulation systems in which a
surgeon's training experience is directly based on the
feedback he/she gets from the training system.

Prior to the advent of the Graphics Processing Unit
(GPU), such interactions were only restricted to
sophisticated hardware and costly workstations.
Thanks to the massive processing capability of

modern GPUs, such interactions can now be carried
out on a consumer desktop or even a mobile device.
However, even with such high processing capability,
it is still difficult to simultaneously deform and
visualize a volumetric dataset in realtime. Several
promising volumetric deformation techniques have
been proposed, but they have mostly favored a
specific stage of the programmable graphics pipeline.
Therefore, these approaches could not utilize the full
potential of the hardware efficiently.

With new hardware releases, new and improved
features have been introduced into the modern GPU.
One such feature is transform feedback in which the
GPU feedbacks the result from the geometry shader
stage back to the vertex shader stage. While this
method was usually used for dynamic tessellation and
level-of-detail (LOD) rendering, we have proposed to
use this mode for an efficient deformation pipeline.
Since this deformation uses the vertex shader stage,
we may streamline the fragment shader stage for
volume rendering, forming a coupled graphics
pipeline.

Permission to make digital or hard copies of all or part
of this work for personal or classroom use is granted
without fee provided that copies are not made or
distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first
page. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Journal of WSCG, Vol.20 1 http://www.wscg.eu

In Section 2, we report a comprehensive survey on
deformation algorithms and GPU acceleration
technologies. Then, we describe our new meshless
FEM approach and the formulation of the physical
model in Section 3. In Section 4, we present the
techniques for coupling between the novel
deformation pipeline and the GPU-based volume
rendering. Experimental results and comparisons of
the performance are given in Section 5. And finally,
Section 6 concludes this paper.

2. PREVIOUS WORK
Up to now, physically-based deformation can be
broadly classified into mesh-based and meshless
methods. Mesh-based methods include finite element
method (FEM), boundary element method (BEM),
and mass spring system. Meshless methods include
smoothed point hydrodynamics (SPH), shape
matching and Lagrangian methods. We refer the
reader for meshless methods to [ST99], [HF00]
[BBO03], [NRBD08] and for physically-based
deformation approaches in computer graphics to
[NMK06].

One of the first mass spring methods for large
deformation on the GPU for surgical simulators is
attributed to Mosegaard et al. [MHSS04], in which
Verlet integration is implemented in the fragment
shader. Using the same technique, Georgii et al.
[GEW05] implemented a mass spring system for soft
bodies. The approach by Mosegaard et al. [MHSS04]
requires transfer of positions in each iteration.
Georgii et al. [GEW05] thus focused on how to
minimize this transfer by exploiting the ATI
Superbuffers extension. They described two
approaches for implementation: an edge centric
approach (ECA) and a point centric approach (PCA).
A CUDA-based mass spring model has been
proposed recently [ADLETG10].

All of the mass spring models and methods discussed
earlier used explicit integration schemes which are
only conditionally stable. For unconditional stability,
implicit integration could be used as demonstrated for
the GPU-based deformation by Tejada et al. [TE05].

The mass spring models are fast but inaccurate. FEM
methods have been proposed for more accurate
simulation and animation. The model assumes linear
elasticity so the deformation model is limited to small
displacements. In addition, the small strain
assumption produces incorrect results unless the
corotational formulation is used [MG04] which
isolates the per-element rotation matrix when
computing the strain.

With the increasing computational power, non-linear
FEM has been explored, in which both material and
geometric non-linearities are taken into consideration
[ML03], and [ZWP05]. The fast numerical methods

for solving FEM systems for deformable bodies are
based on the multi-grid scheme. These approaches
have been extended in animation [SB09] and medical
applications for both the tetrahedral [GW05] [GW06]
and hexahedral FEM [DGW10].

In addition to the above approaches, explicit non-
linear methods have been proposed using the
Lagrangian explicit dynamics [MJLW07] which are
especially suitable for real-time simulations. A single
stiffness matrix could be reused for the entire mesh.
Especially with the introduction of the CUDA
architecture, the Lagrangian explicit formulation has
been applied for both the tetrahedral FEM [TCO08]
as well as the hexahedral FEM [CTA08].

The problem with explicit integration is that it is only
conditionally stable, that is, for convergence, the time
step value has to be very small. In addition, such
integration schemes may not be suitable during
complex interactions as in surgery simulations and
during topological changes (for example, cutting of
tissues). Allard et al. [ACF11] circumvent these cons
by proposing an implicitly integrated GPU-based
non-linear corotational model for laparoscopic
surgery simulator. They use the pre-conditioned
Conjugate Gradient (CG) solver for solving the FEM.
They solve the stiffness matrices directly on the mesh
vertices rather than building the full stiffness
assembly. Ill-conditioned elements may be generated
in the case of cutting or tearing which may produce
numerical instabilities.

3. THE MESHLESS FEM APPROACH
Although there have been significant achievements in
deformable models, a few difficulties in the mesh-
based models still exist in real-time volumetric
deformation, as highlighted in the followings:

 Approximating a volumetric dataset requires a
large number of finite tetrahedral elements.
Numerical solution of such a large system would
require a large stiffness matrix assembly. This
makes the model unsuitable for real-time
volumetric deformation. In addition, the corotated
formulation is needed which further increases the
computational burden.

 The solution of the tetrahedral FEM requires an
iterative implicit solver for example Newton
Raphson (Newton) or Conjugate Gradient (CG)
method. These methods converge slowly.
Moreover, the implicit integration solvers reduce
the overall energy of the system causing the
physical simulation to dampen excessively.

 Even though multi-grid schemes are fast, they have
to update the deformation parameters across
different grid hierarchy levels. This requires
considerable computation. Moreover, the number

Journal of WSCG, Vol.20 2 http://www.wscg.eu

of grid levels required is subjective to the dataset at
hand and there is no rule to follow for accurate
results.

On the other hand, we have noticed that the meshless
FEM approach has not been applied for volumetric
deformation in the literature. Our preliminary study
shows that the meshless formulation possesses a few
advantages:

 It supports deformations without the need for
stiffness warping (the corotated formulation).

 The solution of meshless FEM is based on a semi-
implicit integration scheme which not only is stable
but also converges faster as compared to the
implicit integration required by the tetrahedral
FEM solver. In addition, it does not introduce
artificial damping.

 It does not require an iterative solver such as
conjugate gradient (CG) method which is required
for conventional FEM.

Therefore, in this study, we are interested in
exploiting the meshless FEM approach for volumetric
deformation, coupled with simultaneous GPU-based
real-time visualization.

Formulation of the Physical Model
We base our deformation modeling and rendering on
the continuum elasticity theory. Key parameters in
the physical model are stress, strain and
displacement. Strain (ε) is defined as the relative
elongation of the element. Assuming an element
undergoing a displacement (ΔL) having length (l), the
strain may be given as:

l

L

For a three-dimensional problem, the strain (ε) is
represented as a symmetric 3×3 tensor. There are two
popular choices for the strain tensor in computer
graphics, the linear Cauchy strain tensor given as

)][(
2

1 T

Ca uchy UU  (1)

and the non-linear Green strain tensor given as

)][][(
2

1
UUUU TT

Green  (2)

In Eq. (1) and (2), the ∇U is the gradient of the
displacement field U. Similar to the strain, in the
three-dimensional problem, the stress tensor (σ) is
also given as a 3×3 tensor. Assuming that the material
under consideration is isotropic and it undergoes
small deformations (geometric linearity), the stress
and strain may be linearly related (material linearity)
using Hooke’s law, given as

  D (3)

Since stress and strain are symmetric matrices, there
are six independent elements in each of them. This
reduces the isotropic elasticity matrix (D) to a 6×6
matrix as follows:

)21)(1(

2

21
00000

0
2

21
0000

00
2

21
000

0001

0001

0001









































E
B

BD

where, E is the Young's modulus of the material
which controls the material's resistance to stretching
and ν is the Poisson's ratio which controls how much
a material contracts in the direction transverse to the
stretching.

In a finite element simulation, we try to estimate the
amount of displacement due to the application of
force. There are three forces to consider (see Fig. 1):

 Stress force (σ) which is an internal force,

 Nodal force (q) which is an external force applied
to each finite element node, and

 Loading force (t) which is an external force applied
to the boundary or surface of the finite element.

For the finite element to be in static equilibrium, the
amount of work done by the external forces must be
equal to that of the internal forces, given as

  
ee A

t

V

q dAWWdVW (4)

where, Wσ is the internal work done per unit volume
by stress σ, Wq is the external work done by the nodal
force q on the element’s node and Wt is the external
work done by the loading force t on the element per
unit area. Ve is the volume and Ae is the area of the
finite element e. Wσ is given as

Stress Force (Internal)

Nodal Force (External)

Loading Force (External)

(a) (b)

Figure 1. Different forces acting on a finite

tetrahedral element (a), with (b) its cross

sectional view highlighting the different

internal and external forces acting on the finite

element

Journal of WSCG, Vol.20 3 http://www.wscg.eu

   T
W 

where, įİ is the strain produced by the stress σ.
Similarly, Wq is given as

   eTe

q quW 

where, įue is the displacement of the finite element e
produced by the force qe. Wt is given as

   tuW
T

t 

Substituting these in Eq. (4), we get

       
ee A

T

V

eTeT
tdAuqudV  (5)

Since įue provides the displacement of node e at
vertices only, to get the displacement at any point
within the finite element, we can interpolate it with
the shape function N. After applying a differential
operator S to the shape functions, we get the change
in strain (įİ). The matrix product (SN) can be
replaced by B

 euB 

Substituting (įİ) in Eq. (5), we get

       
ee A

Te

V

eTeTe tdAuNqudVuB  (6)

Simplifying Eq. (6), taking the constant terms out of
the equation and solving integral (see Appendix)
gives

 
eA

TeeeT dAtNqVDBuB)((7)

The left side is replaced by the element stiffness
matrix (Ke

=BTDBVe) and the right by the element
surface force (f e), which gives us the stiffness matrix
assembly equation:

 eeee fquK  (8)

The Meshless FEM
The conventional FEM methods discretize the whole
body into a set of finite elements. Calculation of the
element stiffness matrix in Eq. (8) requires the
volume of the body which is represented as the sum
of the finite elements' volume. For instance, the
widely used corotated linear FEM [MG04] has to
construct the global stiffness matrix for each
deformation frame, and the matrix is then solved
using an iterative solver such as the conjugate
gradients (CG). This makes the implementation
inefficient for a large volume.

In our meshless FEM, the whole body is sampled at a
finite number of points. The typical simulation
quantities such as the position (x), velocity (v) and
density (ρ) are all stored with the points, and the
displacement field is estimated from the volume of

the point and its mass distribution. The gradient of
the displacement field is then estimated to obtain the
Jacobian. Finally, the Jacobian is used to calculate
the stresses and strains. These, in turn, allow us to
obtain the internal forces. Since the meshless FEM
uses the moving least square approximation, it does
not require the stiffness matrix assembly, enabling a
much better execution performance.

To ascertain that our proposed meshless FEM is able
to produce the same deformation as that in the
conventional FEM such as the corotated linear FEM,
we conducted a computational experiment on a
horizontal beam as shown in Fig. 2. The two results
show a horizontal beam having Young's modulus of
500,000 psi and the Poisson ratio of 0.33. The
dimensions of the two beams are the same. The beam
in Fig. 2 (a) contains 450 tetrahedra for the corotated
linear FEM whereas its equivalent one in Fig. 2 (b)
contains 176 points for the meshless FEM.

While the two computations yield the same
deformation under the given load, our meshless FEM
has a significantly improved execution performance:
40 msecs per frame by the corotated linear FEM,
compared to 1.25 msecs per frame with the meshless
FEM. These timings include both the deformation as
well as rendering time.

In a dynamic simulation, we are to solve the
following system:

    extffxcxm int
 (9)

The first term on the right is the velocity damping
term with c being the damping coefficient. For an
infinitesimal element, the mass is approximated using
density (ρ). This changes Eq. (9) to

    extffxcx int
 (10)

(a)

(b)

Figure 2. Comparison of deformation of a

horizontal beam using (a) linear FEM and (b)

meshless FEM

Journal of WSCG, Vol.20 4 http://www.wscg.eu

The external forces (fext) are due to gravity, wind,
collision and others. Since our system assumes
geometric and material linearity, Eq. (10) becomes a
linear PDE that may be solved by discretizing the
domain of the input dataset using finite differences
over finite elements. This system may be solved using
either explicit or implicit integration schemes.

Smoothing Kernel
In the conventional FEM, the volume of the body is
estimated from the volume of its constituent finite
elements. Calculation of the element stiffness matrix
requires the volume of the body which is usually
represented as the sum of the finite elements volume.
In the case of the meshless FEM, it is approximated
from the point's neighborhood. For each point, its
mass is distributed into its neighborhood by using a
smoothing kernel (w)



 

else

hrifrh
hhrw

0

)()(
64

313
),(

322

9
 (11)

where, r is the distance between the current particle
and its neighbor, and h is the kernel support radius.
The density is approximated by summing the product
of the current point's mass with the kernel.

We analyzed the effect of varying the smoothing
kernel [MCG03]. These kernels include the normal
smoothing kernel (as given in Eq. (11)) the spiky
kernel given as







hr

hrrh
hhrw

0

0)(
15

),(
3

6 (12)

and the blobby kernel given as







hr

hr
r

h

h

r

h

r

hhrw

0

0)1
22

(
2

15
),(2

2

3

3

3
 (13)

The deformation results on a horizontal beam
containing 176 points are shown in Fig. 3. Note that
for all the beams shown in Fig. 3, the Young’s
modulus of 500,000 psi and the Poisson ratio of 0.33
are used. As can be seen, changing the smoothing
kernel alters the stiffness of the soft body. This is
because each kernel has a distinct support radius
which influences the neighboring points. Moreover,
each of these kernels has a different falloff (or,
different derivative) which gives a different
deformation result even though the rest of the
simulation parameters are the same.

Propagation of Deformation
For propagating the stress, strain and body forces in
the meshless FEM, we compute the gradient of the
displacement field (U) by a moving least square
interpolation between the displacement values at the
current point (ui) and its neighbor (uj) as given by

ij

i

ij wuue
2

)(  (14)

where, wij is the kernel function given in Eq. (11).

The displacement values (uj) are given using the
spatial derivatives approximated at point (i) as

).(ijij xxuuu 

We want to minimize the error (e) in Eq. (14) so we
differentiate e with respect to X, Y and Z and set the
derivatives equal to zero. This gives us three
equations for three unknowns

 


  
ij

i

ijijx wxxuuAu))((| 1

where, A=Σi(xj-xi)(xj-xi)
Twij is the moment matrix that

can be pre-calculated since it is independent of the
current position and displacement. Once ∇u is
obtained, the strain (İ) is obtained using Eq. (2).
Using this strain, the stress (σ) may be obtained using
Eq. (3). The internal forces (fint) in Eq. (10) are
calculated as the divergence of the strain energy
which is a function of the particle's volume

).(
2

1
iiii vU 

where, vi is the volume of the particle. The force
acting on neighboring particle (j) due to particle (i) is
given as

iiiij vUf  .

2

1

To sum up, the internal forces acting on the particles i
and j may be given as

jjjj

iiii

dJvf

dJvf




2

2


 (15)

(a)

(b)

(c)

Figure 3. Effects of different smoothing

kernels on the deformation: (a) the normal

smoothing kernel (Eq. 11), (b) the spiky kernel

(Eq. 12) , and (c) the blobby kernel (Eq. 13)

Journal of WSCG, Vol.20 5 http://www.wscg.eu

if we have a mass point xi, a sphere with a radius r
and center C, the collision constraint may be given as



 


elsex

rCxif
Cx

rCx
C

x

i

i

i

i

i

).(

1

Likewise, other constraints may be integrated directly
in the proposed pipeline using the vertex or geometry
shader.

5. EXPERIMENTAL RESULTS AND

PERFORMANCE ASSESSMENT
The coupled deformation and rendering pipeline has
been implemented on a Dell Precision T7500 desktop
with an Intel Xeon E5507 @ 2.27 MHz CPU. The
machine is equipped with an NVIDIA Quadro FX
5800 graphics card. The viewport size for the
renderings is 1024×1024 pixels.

The output results with deformation and rendering are
shown in Fig. 6. We applied the meshless FEM to
two volumetric datasets, the spx dataset (containing
2896 points and 12936 tetrahedra) and the liver
dataset (1204 points and 3912 tetrahedra).

For all our experiments, the normal smoothing kernel
Eq. (11) is used. We allowed the spx dataset to fall
under gravity while the liver dataset was manipulated
by the user. The time step value (dt) used for this
experiment is 1/60. Thanks to the convenience of our
proposed deformation pipeline, we can integrate our
deformation pipeline directly into the HAPT
algorithm.

In the second experiment, to assess the performance
of the proposed method, we compare our GPU-based
meshless FEM with an already optimized CPU
implementation that utilized all available cores of our
CPU platform. For this experiment, the bar model
containing varying number of points (from 250 to
10000) was used with the time step value (dt) of 1/60.
These timings only include the time for deformation
using a single iteration and they do not include the
time for rendering. These results are given in Fig. 7.
The results clearly show that the performance of the
meshless FEM scales up well with the large datasets
and we gain an acceleration of up to 3.3 times
compared to an optimized CPU implementation.
From this graph, it is clear that the runtime for CPU
would be exponentially increased for larger datasets
and the performance gap between the CPU and the
GPU would be widened further.
It is the first time a meshless FEM model is applied to
unstructured volumetric datasets. Our method uses
the leap-frog integration which is semi-implicit
whereas the existing mesh based FEM approaches
use implicit integration schemes. The amount of time
required for convergence in the case of implicit
integration schemes is much more as compared to
semi-implicit integration.

Moreover, the simulation system built using such
formulation requires the stiffness matrix assembly
which is then solved using an iterative solver such as
Newton Raphson method or Conjugate Gradients
(CG) method. Such stiffness assemblies are not
required in meshless FEM. Therefore, ours converges
much faster.

Nevertheless, for completeness, in the third
experiment, we compared the performance of
meshless FEM with an implicit tetrahedral FEM
[ACF11]. These results are presented in Table 1.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of points

25
0

12
50

50
00

10
00

0

T
im

e
(m

se
cs

)

Performance comparison

CPU

GPU

Figure 7. Performance of meshless FEM on

GPU and CPU

(a)

(b)

Figure 6. Two frames of deformation of (a) the

spx dataset falling due to gravity on the floor

and (b) the liver dataset manipulated by the

user

Journal of WSCG, Vol.20 8 http://www.wscg.eu

Dataset Tetrahedra
Frame rate (frames per second)
Implicit FEM Meshless FEM

liver 3912 118.50-78.70 249.50-331.01
spx 12936 76.70-81.90 124.80-128.23

raptor 19409 40.30-43.80 71.22-71.71

Table 1. Comparison of meshless FEM against

implicit tetrahedral FEM solver [ACF11]

As expected, the performance of meshless FEM is
better as compared with the implicit tetrahedral FEM.
Our meshless FEM is based on a semi-implicit
integration scheme which does not require an
iterative solver as is required for the implicit
tetrahedral FEM.

6. DISCUSSION AND CONCLUSION
We have applied meshless FEM to nonrigid
volumetric deformation. Using the proposed
approach, interactive visualization of deformation on
large volumetric dataset is made possible. We are
confident of the results obtained from our
experiments and would like to expand the model to
address specific applications such as biomedical
modeling [MCZLQS09], [MLQS09]; simulation
[LSL96], [LSL97], [LSWM07]; fast ubiquitous
visualization [YLS00], [ML12c]; and confocal
imaging [TOTMLQS11].

We reiterate our main contributions. Firstly, we have
applied meshless FEM for volumetric deformation.
Secondly, we have integrated the meshless FEM into
a novel deformation pipeline exploiting the transform
feedback mechanism. And finally, we have integrated
our novel deformation pipeline into the HAPT
algorithm. There are some considerations on the
meshless FEM. The deformation result is directly
dependent on the number of mesh points used. More
points generally give better approximation and vice
versa. For better performance, we can think of two
strategies. Firstly, we can use the image load-store
extension in OpenGL 4.2 which allows shader
programs to have access to arbitrary GPU memory.
Since the hardware used in this study did not support
OpenGL 4.2, this approach could not be verified.
Secondly, we may use a CUDA kernel to do scattered
writes, alongside a GLSL shader. This will possibly
be a future research direction.

7. ACKNOWLEDGMENTS
This work is partially supported by a research grant
(M408020000) from Nanyang Technological
University and another (M4080634.B40) from
Institute for Media Innovation, NTU. We would also
like to thank the anonymous reviewers for their
helpful suggestions and feedback.

8. REFERENCES
[ACF11] Allard J., Courtecuisse H., Faure F.: Implicit fem

and fluid coupling on GPU for interactive multiphysics
simulation. ACM SIGGRAPH 2011.

[ADLETG10] Andres D. L. C., Eliuk S., Trefftz G. H.:
Simulating soft tissues using a GPU approach of the
mass-spring model. Virtual Reality Conference
(VR’2010), pp. 261–262, 2010.

[BBO03] Babuška I., Banerjee I., Osborn J. E., Survey of
meshless and generalized finite element methods: A
unified approach, Acta Numerica, 12, pp:1-125, 2003.

[Buc05] Buck I., Taking the plunge into GPU computing.
Chapter 32 in GPU Gems 2, Matt Pharr and Randima
Fernando (editors), 2005.

[CTA08] Comas O., Taylor Z., Allard J., Ourselin S., Cotin
S., Passenger J., Efficient nonlinear fem for soft tissue
modelling and its GPU implementation within the open
source framework SOFA. International Symposium on
Computational Models for Biomedical Simulation’08,
pp. 28–39, 2008.

[DGW10] Dick C., Georgii J., Westermann R., A real-time
multigrid finite hexahedra method for elasticity
simulation using CUDA. In Simulation Modelling
Practice and Theory’10, 19, No. 2, pp. 801–816, 2010.

[GEW05] Georgii J., Echtler F., Westermann R.:
Interactive simulation of deformable bodies on GPUs.
In Simulation and Visualization’05, 2005.

[GW05] Georgii J., Westermann R.: A multi-grid
framework for real-time simulation of deformable
volumes. Workshop on Virtual Reality Interactions and
Physical Simulations’05, 2005.

[GW06] Georgii J., Westermann R., A generic and scalable
pipeline for GPU tetrahedral grid rendering. IEEE
Transaction on Visualization and Computer
Graphics’06, 2006.

[HF00] Huerta A., Fernandez M. S., Enrichment and
coupling of the finite element and meshless methods,
International Journal for Numerical Methods in
Engineering, 48, No. 11, pp:1615–1636, August 2000.

[LSL97] Lin F., Seah H. S., Lee Y. T., Structure Modeling
and Context-Free-Grammar: Exploring a new approach
for surface construction. Computers and Graphics
(1997), 21, No. 6, pp. 777–785, 1997.

 [LSL96] Lin F., Seah H. S., Lee Y. T., Deformable
volumetric model and isosurface: Exploring a new
approach for surface construction. Computers and
Graphics (1996), 20, No. 1, pp. 33–40, 1996.

 [LSWM07] Lin F., Seah H. S., Wu Z., Ma D.,
Voxelisation and fabrication of freeform models.
Virtual and Physical Prototyping’07, 2 No. 2, pp. 65–
73, 2007.

[MCG03] Mueller M., Charypar D., Gross M.: Particle
based fluid simulation for interactive applications. In
Proceedings of the ACM SIGGRAPH Symposium on
Computer Animation (SCA’03), pp. 154–159, 2003.

[MCZLQS09] Movania M. M., Cheong L. S., Zhao F., Lin
F., Qian K., Seah H. S., “GPU-based Surface Oriented
Interslice Directional Interpolation for Volume
Visualization,” The 2nd International Symposium on
Applied Sciences in Biomedical and Communication
Technologies (ISABEL’09), Bratislava, Slovak
Republic, November 24-27, 2009.

Journal of WSCG, Vol.20 9 http://www.wscg.eu

[MG04] Mueller M., Gross M., Interactive virtual
materials. Proceedings of Graphics Interface (GI’04),
pp. 239–246, 2004.

[MHSS04] Mosegaard J., Herborg P., Sangild Sorensen T.:
A GPU accelerated spring mass system for surgical
simulation. Health Technology and Informatics’04, pp.
342–348, 2004.

[MJLW07] Miller K., Joldes G., Lance D., Wittek A.,
Total Lagrangian explicit dynamics finite element
algorithm for computing soft tissue deformation.
Communications in Numerical Methods in
Engineering‘07, 23, No. 1, pp. 801–816, 2007.

[ML03] Mendoza C., Laugier C., Simulating soft tissue
cutting using finite element models. IEEE International
Conference on Robotics and Automation’03, pp. 1109–
1114, 2003.

[ML12a] Movania M. M., Lin F., A novel GPU-based
deformation pipeline. ISRN Computer Graphics, vol.
2012 (2012), p. 8.

[ML12b] Movania M. M., Lin F., Real-time physically-
based deformation using transform feedback. Chapter
17 in The OpenGL Insights, Christophe, Riccio and
Patrick, Cozzi (Ed.), AK Peters/CRC Press, 2012, pp.
233-248.

[ML12c] Movania M. M., Lin F., High-Performance
Volume Rendering on the Ubiquitous WebGL
Platform, 14th IEEE International Conference on High
Performance Computing and Communications
(HPCC’12), Liverpool, UK, 25-27 June, 2012.

[MLQS09] Movania M. M., Lin F., Qian K., Seah H. S.,
“Automated Local Adaptive Thresholding for Real-
time Feature Detection and Rendering of 3D
Endomicroscopic Images on GPU,” The 2009
International Conference on Computer Graphics and
Virtual Reality (CGVR'09), Las Vegas, US, July 13-16,
2009.

[MMF10] Maximo A., Marroquim R., Farias R., Hardware
assisted projected tetrahedra. Computer Graphics
Forum, 29, No. 3, pp: 903–912, 2010.

[NMK06] Nealen A., Mueller M., Keiser R., Boxermann
E., Carlson M., Physically based deformable models in
computer graphics. In STAR Report Eurographics
2006 vol. 25, pp. 809–836, 2006.

[NRBD08] Nguyena V. P., Rabczukb T., Bordasc S.,
Duflotd M., Meshless methods: A review and computer
implementation aspects, Mathematics and Computers
in Simulation, 79, No. 3, pp:763–813, December 2008.

[SB09] Sampath R., Biros G., A parallel geometric
multigrid method for finite elements on octree meshes.

In review, available online accessed in 2012
http://www.cc.gatech.edu/grads/r/rahulss/, 2009.

[ST99] Shapiro V., Tsukanov I., Meshfree Simulation of
Deforming Domains," Computer Aided Design, 31,
No. 7, pp: 459–471, 1999.

[TCO08] Taylor Z., Cheng M., Ourselin S., High-speed
nonlinear finite element analysis for surgical simulation
using graphics processing units. IEEE Trans. Medical
Imaging, vol. 27, pp. 650–663, 2008.

[TE05] Tejada E., Ertl T., Large steps in GPU-based
deformable bodies simulations. In Simulation
Modeling Practice and Theory, 13 No. 8, Elsevier, pp.
703–715, 2005.

[TOTMLQS11] Thong P. S. P, Olivo M., Tandjung S. S.,
Movania M. M., Lin F., Qian K., Seah H. S., Soo K.
C., “Review of Confocal Fluorescence
Endomicroscopy for Cancer Detection,” IEEE
Photonics Society (IPS) Journal of Selected Topics in
Quantum Electronics, Vol. PP, Issue 99, 2011. DOI:
10.1109/JSTQE.2011.2177447.

[VR08] Vassilev T., Rousev R., Algorithm and data
structures for implementing a mass-spring deformable
model on GPU. Research and Laboratory University
Ruse 2008 (2008), pp. 102–109, 2008.

[YLS00] Yang Y. T., Lin F. and Seah H. S., “Fast Volume
Rendering,” Chapter 10 in Volume Graphics, Springer,
January 2000.

[ZWP05] Zhong H., Wachowiak M., Peters T.: A real time
finite element based tissue simulation method
incorporating nonlinear elastic behavior. Computer
Methods Biomechan. Biomed. Eng., 6, No. 5, pp. 177–
189, 2005.

9. APPENDIX

 
 

 






e e

e e

e e

V A

TeT

V A

TeTeTTe

V A

TeeTeTe

tdANqdVB

tdANqudVBu

tdAuNqudVuB





)()()(

)()()(

Substitution using Eq. (3)


 

 
 







e

e e

e e

e e

A

TeeeT

V A

TeeT

V A

TeeT

V A

TeT

tdANqVDBuB

tdANqdVDBuB

tdANqdVDBuB

tdANqdVDB 

Journal of WSCG, Vol.20 10 http://www.wscg.eu

http://www.cc.gatech.edu/grads/r/rahulss/

	A31-full.pdf

