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ABSTRACT 
For real-time rendering of physically-based volumetric deformation, a meshless finite element method (FEM) is 
proposed and implemented on the new-generation Graphics Processing Unit (GPU). A tightly coupled 
deformation and rendering pipeline is defined for seamless modeling and rendering: First, the meshless FEM 
model exploits the vertex shader stage and the transform feedback mechanism of the modern GPU; and secondly, 
the hardware-based projected tetrahedra (HAPT) algorithm is used for the volume rendering on the GPU. A 
remarkable feature of the new algorithm is that CPU readback is avoided in the entire deformation modeling and 
rendering pipeline. Convincing experimental results are presented. 
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1. INTRODUCTION 
Interactive visualization of physically-based 
deformation has been long pursued as it plays a 
significant role in portraying complex interactions 
between deformable graphical objects. In many 
applications, such subtle movements are necessary, 
for example, surgical simulation systems in which a 
surgeon's training experience is directly based on the 
feedback he/she gets from the training system. 

Prior to the advent of the Graphics Processing Unit 
(GPU), such interactions were only restricted to 
sophisticated hardware and costly workstations. 
Thanks to the massive processing capability of 

modern GPUs, such interactions can now be carried 
out on a consumer desktop or even a mobile device. 
However, even with such high processing capability, 
it is still difficult to simultaneously deform and 
visualize a volumetric dataset in realtime. Several 
promising volumetric deformation techniques have 
been proposed, but they have mostly favored a 
specific stage of the programmable graphics pipeline. 
Therefore, these approaches could not utilize the full 
potential of the hardware efficiently.  

With new hardware releases, new and improved 
features have been introduced into the modern GPU. 
One such feature is transform feedback in which the 
GPU feedbacks the result from the geometry shader 
stage back to the vertex shader stage. While this 
method was usually used for dynamic tessellation and 
level-of-detail (LOD) rendering, we have proposed to 
use this mode for an efficient deformation pipeline. 
Since this deformation uses the vertex shader stage, 
we may streamline the fragment shader stage for 
volume rendering, forming a coupled graphics 
pipeline. 

Permission to make digital or hard copies of all or part 
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without fee provided that copies are not made or 
distributed for profit or commercial advantage and that 
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page. To copy otherwise, or republish, to post on 
servers or to redistribute to lists, requires prior specific 
permission and/or a fee. 
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In Section 2, we report a comprehensive survey on 
deformation algorithms and GPU acceleration 
technologies. Then, we describe our new meshless 
FEM approach and the formulation of the physical 
model in Section 3. In Section 4, we present the 
techniques for coupling between the novel 
deformation pipeline and the GPU-based volume 
rendering. Experimental results and comparisons of 
the performance are given in Section 5. And finally, 
Section 6 concludes this paper. 

2. PREVIOUS WORK 
Up to now, physically-based deformation can be 
broadly classified into mesh-based and meshless 
methods. Mesh-based methods include finite element 
method (FEM), boundary element method (BEM), 
and mass spring system. Meshless methods include 
smoothed point hydrodynamics (SPH), shape 
matching and Lagrangian methods. We refer the 
reader for meshless methods to [ST99], [HF00] 
[BBO03], [NRBD08] and for physically-based 
deformation approaches in computer graphics to 
[NMK06]. 

One of the first mass spring methods for large 
deformation on the GPU for surgical simulators is 
attributed to Mosegaard et al. [MHSS04], in which 
Verlet integration is implemented in the fragment 
shader. Using the same technique, Georgii et al. 
[GEW05] implemented a mass spring system for soft 
bodies. The approach by Mosegaard et al. [MHSS04] 
requires transfer of positions in each iteration. 
Georgii et al. [GEW05] thus focused on how to 
minimize this transfer by exploiting the ATI 
Superbuffers extension. They described two 
approaches for implementation: an edge centric 
approach (ECA) and a point centric approach (PCA). 
A CUDA-based mass spring model has been 
proposed recently [ADLETG10]. 

All of the mass spring models and methods discussed 
earlier used explicit integration schemes which are 
only conditionally stable. For unconditional stability, 
implicit integration could be used as demonstrated for 
the GPU-based deformation by Tejada et al. [TE05].  

The mass spring models are fast but inaccurate. FEM 
methods have been proposed for more accurate 
simulation and animation. The model assumes linear 
elasticity so the deformation model is limited to small 
displacements. In addition, the small strain 
assumption produces incorrect results unless the 
corotational formulation is used [MG04] which 
isolates the per-element rotation matrix when 
computing the strain.  

With the increasing computational power, non-linear 
FEM has been explored, in which both material and 
geometric non-linearities are taken into consideration 
[ML03], and [ZWP05]. The fast numerical methods 

for solving FEM systems for deformable bodies are 
based on the multi-grid scheme. These approaches 
have been extended in animation [SB09] and medical 
applications for both the tetrahedral [GW05] [GW06] 
and hexahedral FEM [DGW10]. 

In addition to the above approaches, explicit non-
linear methods have been proposed using the 
Lagrangian explicit dynamics [MJLW07] which are 
especially suitable for real-time simulations. A single 
stiffness matrix could be reused for the entire mesh. 
Especially with the introduction of the CUDA 
architecture, the Lagrangian explicit formulation has 
been applied for both the tetrahedral FEM [TCO08] 
as well as the hexahedral FEM [CTA08].  

The problem with explicit integration is that it is only 
conditionally stable, that is, for convergence, the time 
step value has to be very small. In addition, such 
integration schemes may not be suitable during 
complex interactions as in surgery simulations and 
during topological changes (for example, cutting of 
tissues). Allard et al. [ACF11] circumvent these cons 
by proposing an implicitly integrated GPU-based 
non-linear corotational model for laparoscopic 
surgery simulator. They use the pre-conditioned 
Conjugate Gradient (CG) solver for solving the FEM. 
They solve the stiffness matrices directly on the mesh 
vertices rather than building the full stiffness 
assembly. Ill-conditioned elements may be generated 
in the case of cutting or tearing which may produce 
numerical instabilities. 

3. THE MESHLESS FEM APPROACH 
Although there have been significant achievements in 
deformable models, a few difficulties in the mesh-
based models still exist in real-time volumetric 
deformation, as highlighted in the followings: 

 Approximating a volumetric dataset requires a 
large number of finite tetrahedral elements. 
Numerical solution of such a large system would 
require a large stiffness matrix assembly. This 
makes the model unsuitable for real-time 
volumetric deformation. In addition, the corotated 
formulation is needed which further increases the 
computational burden.  

 The solution of the tetrahedral FEM requires an 
iterative implicit solver for example Newton 
Raphson (Newton) or Conjugate Gradient (CG) 
method. These methods converge slowly. 
Moreover, the implicit integration solvers reduce 
the overall energy of the system causing the 
physical simulation to dampen excessively.  

 Even though multi-grid schemes are fast, they have 
to update the deformation parameters across 
different grid hierarchy levels. This requires 
considerable computation. Moreover, the number 

Journal of WSCG, Vol.20 2 http://www.wscg.eu 



of grid levels required is subjective to the dataset at 
hand and there is no rule to follow for accurate 
results. 

On the other hand, we have noticed that the meshless 
FEM approach has not been applied for volumetric 
deformation in the literature.  Our preliminary study 
shows that the meshless formulation possesses a few 
advantages:  

 It supports deformations without the need for 
stiffness warping (the corotated formulation).  

 The solution of meshless FEM is based on a semi-
implicit integration scheme which not only is stable 
but also converges faster as compared to the 
implicit integration required by the tetrahedral 
FEM solver. In addition, it does not introduce 
artificial damping. 

 It does not require an iterative solver such as 
conjugate gradient (CG) method which is required 
for conventional FEM. 

Therefore, in this study, we are interested in 
exploiting the meshless FEM approach for volumetric 
deformation, coupled with simultaneous GPU-based 
real-time visualization. 

Formulation of the Physical Model 
We base our deformation modeling and rendering on 
the continuum elasticity theory. Key parameters in 
the physical model are stress, strain and 
displacement. Strain (ε) is defined as the relative 
elongation of the element. Assuming an element 
undergoing a displacement (ΔL) having length (l), the 
strain may be given as:  

   
l

L  

For a three-dimensional problem, the strain (ε) is 
represented as a symmetric 3×3 tensor. There are two 
popular choices for the strain tensor in computer 
graphics, the linear Cauchy strain tensor given as 

   )][(
2

1 T

Ca uchy UU              (1) 

and the non-linear Green strain tensor given as 

   )][][(
2

1
UUUU TT

Green                        (2) 

In Eq. (1) and (2), the ∇U is the gradient of the 
displacement field U. Similar to the strain, in the 
three-dimensional problem, the stress tensor (σ) is 
also given as a 3×3 tensor. Assuming that the material 
under consideration is isotropic and it undergoes 
small deformations (geometric linearity), the stress 
and strain may be linearly related (material linearity) 
using Hooke’s law, given as 

    D              (3) 

Since stress and strain are symmetric matrices, there 
are six independent elements in each of them. This 
reduces the isotropic elasticity matrix (D) to a 6×6 
matrix as follows: 
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where, E is the Young's modulus of the material 
which controls the material's resistance to stretching 
and ν is the Poisson's ratio which controls how much 
a material contracts in the direction transverse to the 
stretching. 

In a finite element simulation, we try to estimate the 
amount of displacement due to the application of 
force. There are three forces to consider (see Fig. 1): 

 Stress force (σ) which is an internal force, 

 Nodal force (q) which is an external force applied 
to each finite element node, and 

 Loading force (t) which is an external force applied 
to the boundary or surface of the finite element. 

 

For the finite element to be in static equilibrium, the 
amount of work done by the external forces must be 
equal to that of the internal forces, given as 

    
ee A

t

V

q dAWWdVW                     (4) 

where, Wσ is the internal work done per unit volume 
by stress σ, Wq is the external work done by the nodal 
force q on the element’s node and Wt is the external 
work done by the loading force t on the element per 
unit area. Ve is the volume and Ae is the area of the 
finite element e. Wσ is given as  

Stress Force (Internal)

Nodal Force (External)

Loading Force (External)

 

(a)                      (b) 
 

Figure 1. Different forces acting on a finite 

tetrahedral element (a), with (b) its cross 

sectional view highlighting the different 

internal and external forces acting on the finite 

element 
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   T
W   

where, įİ is the strain produced by the stress σ. 
Similarly, Wq is given as 

     eTe

q quW   

where, įue is the displacement of the finite element e 
produced by the force qe. Wt is given as 

     tuW
T

t   

Substituting these in Eq. (4), we get 

         
ee A

T

V

eTeT
tdAuqudV                        (5) 

Since įue provides the displacement of node e at 
vertices only, to get the displacement at any point 
within the finite element, we can interpolate it with 
the shape function N. After applying a differential 
operator S to the shape functions, we get the change 
in strain (įİ). The matrix product (SN) can be 
replaced by B 

   euB   

Substituting (įİ) in Eq. (5), we get 

         
ee A

Te

V

eTeTe tdAuNqudVuB                    (6) 

Simplifying Eq. (6), taking the constant terms out of 
the equation and solving integral (see Appendix) 
gives 

   
eA

TeeeT dAtNqVDBuB )(                    (7) 

The left side is replaced by the element stiffness 
matrix (Ke

=BTDBVe) and the right by the element 
surface force (f e), which gives us the stiffness matrix 
assembly equation: 

   eeee fquK              (8) 

The Meshless FEM 
The conventional FEM methods discretize the whole 
body into a set of finite elements. Calculation of the 
element stiffness matrix in Eq. (8) requires the 
volume of the body which is represented as the sum 
of the finite elements' volume. For instance, the 
widely used corotated linear FEM [MG04] has to 
construct the global stiffness matrix for each 
deformation frame, and the matrix is then solved 
using an iterative solver such as the conjugate 
gradients (CG). This makes the implementation 
inefficient for a large volume.   

In our meshless FEM, the whole body is sampled at a 
finite number of points. The typical simulation 
quantities such as the position (x), velocity (v) and 
density (ρ) are all stored with the points, and the 
displacement field is estimated from the volume of 

the point and its mass distribution. The gradient of 
the displacement field is then estimated to obtain the 
Jacobian. Finally, the Jacobian is used to calculate 
the stresses and strains. These, in turn, allow us to 
obtain the internal forces. Since the meshless FEM 
uses the moving least square approximation, it does 
not require the stiffness matrix assembly, enabling a 
much better execution performance. 

To ascertain that our proposed meshless FEM is able 
to produce the same deformation as that in the 
conventional FEM such as the corotated linear FEM, 
we conducted a computational experiment on a 
horizontal beam as shown in Fig. 2. The two results 
show a horizontal beam having Young's modulus of 
500,000 psi and the Poisson ratio of 0.33. The 
dimensions of the two beams are the same. The beam 
in Fig. 2 (a) contains 450 tetrahedra for the corotated 
linear FEM whereas its equivalent one in Fig. 2 (b) 
contains 176 points for the meshless FEM.  

While the two computations yield the same 
deformation under the given load, our meshless FEM 
has a significantly improved execution performance: 
40 msecs per frame by the corotated linear FEM, 
compared to 1.25 msecs per frame with the meshless 
FEM. These timings include both the deformation as 
well as rendering time. 

 

In a dynamic simulation, we are to solve the 
following system: 

      extffxcxm int
                               (9) 

The first term on the right is the velocity damping 
term with c being the damping coefficient. For an 
infinitesimal element, the mass is approximated using 
density (ρ). This changes Eq. (9) to 

      extffxcx int
                  (10) 

 
(a) 

 
(b) 

Figure 2. Comparison of deformation of a 

horizontal beam using (a) linear FEM and (b) 

meshless FEM 
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The external forces (fext) are due to gravity, wind, 
collision and others. Since our system assumes 
geometric and material linearity, Eq. (10) becomes a 
linear PDE that may be solved by discretizing the 
domain of the input dataset using finite differences 
over finite elements. This system may be solved using 
either explicit or implicit integration schemes. 

Smoothing Kernel 
In the conventional FEM, the volume of the body is 
estimated from the volume of its constituent finite 
elements. Calculation of the element stiffness matrix 
requires the volume of the body which is usually 
represented as the sum of the finite elements volume. 
In the case of the meshless FEM, it is approximated 
from the point's neighborhood. For each point, its 
mass is distributed into its neighborhood by using a 
smoothing kernel (w) 

   



 

else

hrifrh
hhrw

0

)()(
64

313
),(

322

9
                    (11) 

where, r is the distance between the current particle 
and its neighbor, and h is the kernel support radius. 
The density is approximated by summing the product 
of the current point's mass with the kernel. 

We analyzed the effect of varying the smoothing 
kernel [MCG03]. These kernels include the normal 
smoothing kernel (as given in Eq. (11)) the spiky 
kernel given as 
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


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hr

hrrh
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0
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15

),(
3

6                 (12) 

and the blobby kernel given as 
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The deformation results on a horizontal beam 
containing 176 points are shown in Fig.  3. Note that 
for all the beams shown in Fig. 3, the Young’s 
modulus of 500,000 psi and the Poisson ratio of 0.33 
are used. As can be seen, changing the smoothing 
kernel alters the stiffness of the soft body. This is 
because each kernel has a distinct support radius 
which influences the neighboring points. Moreover, 
each of these kernels has a different falloff (or, 
different derivative) which gives a different 
deformation result even though the rest of the 
simulation parameters are the same. 

Propagation of Deformation  
For propagating the stress, strain and body forces in 
the meshless FEM, we compute the gradient of the 
displacement field (U) by a moving least square 
interpolation between the displacement values at the 
current point (ui) and its neighbor (uj) as given by 

 

ij

i

ij wuue
2

)(            (14) 

where, wij is the kernel function given in Eq. (11). 

The displacement values (uj) are given using the 
spatial derivatives approximated at point (i) as 

   ).( ijij xxuuu   

We want to minimize the error (e) in Eq. (14) so we 
differentiate e with respect to X, Y and Z and set the 
derivatives equal to zero. This gives us three 
equations for three unknowns 

   


  
ij

i

ijijx wxxuuAu ))((| 1  

where, A=Σi(xj-xi)(xj-xi)
Twij is the moment matrix that 

can be pre-calculated since it is independent of the 
current position and displacement. Once ∇u is 
obtained, the strain (İ) is obtained using Eq. (2). 
Using this strain, the stress (σ) may be obtained using 
Eq. (3). The internal forces (fint) in Eq. (10) are 
calculated as the divergence of the strain energy 
which is a function of the particle's volume 

   ).(
2

1
iiii vU   

where, vi is the volume of the particle. The force 
acting on neighboring particle (j) due to particle (i) is 
given as 

   
iiiij vUf  .

2

1  

To sum up, the internal forces acting on the particles i 
and j may be given as 

   
jjjj

iiii

dJvf

dJvf




2

2


                  (15) 

 
(a) 

 

 
(b) 

 

 
(c) 

Figure 3. Effects of different smoothing 

kernels on the deformation: (a) the normal 

smoothing kernel (Eq. 11), (b) the spiky kernel 

(Eq.  12) , and (c) the blobby kernel (Eq.  13) 
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if we have a mass point xi, a sphere with a radius r 
and center C, the collision constraint may be given as  

   



 


elsex

rCxif
Cx

rCx
C

x

i

i

i

i

i

).(

1

  

Likewise, other constraints may be integrated directly 
in the proposed pipeline using the vertex or geometry 
shader. 

5. EXPERIMENTAL RESULTS AND 

PERFORMANCE ASSESSMENT 
The coupled deformation and rendering pipeline has 
been implemented on a Dell Precision T7500 desktop 
with an Intel Xeon E5507 @ 2.27 MHz CPU. The 
machine is equipped with an NVIDIA Quadro FX 
5800 graphics card. The viewport size for the 
renderings is 1024×1024 pixels.  

The output results with deformation and rendering are 
shown in Fig. 6. We applied the meshless FEM to 
two volumetric datasets, the spx dataset (containing 
2896 points and 12936 tetrahedra) and the liver 
dataset (1204 points and 3912 tetrahedra). 

For all our experiments, the normal smoothing kernel 
Eq. (11) is used. We allowed the spx dataset to fall 
under gravity while the liver dataset was manipulated 
by the user. The time step value (dt) used for this 
experiment is 1/60. Thanks to the convenience of our 
proposed deformation pipeline, we can integrate our 
deformation pipeline directly into the HAPT 
algorithm. 

 

In the second experiment, to assess the performance 
of the proposed method, we compare our GPU-based 
meshless FEM with an already optimized CPU 
implementation that utilized all available cores of our 
CPU platform. For this experiment, the bar model 
containing varying number of points (from 250 to 
10000) was used with the time step value (dt) of 1/60. 
These timings only include the time for deformation 
using a single iteration and they do not include the 
time for rendering. These results are given in Fig. 7.   
The results clearly show that the performance of the 
meshless FEM scales up well with the large datasets 
and we gain an acceleration of up to 3.3 times 
compared to an optimized CPU implementation. 
From this graph, it is clear that the runtime for CPU 
would be exponentially increased for larger datasets 
and the performance gap between the CPU and the 
GPU would be widened further.  
It is the first time a meshless FEM model is applied to 
unstructured volumetric datasets. Our method uses 
the leap-frog integration which is semi-implicit 
whereas the existing mesh based FEM approaches 
use implicit integration schemes. The amount of time 
required for convergence in the case of implicit 
integration schemes is much more as compared to 
semi-implicit integration.  

Moreover, the simulation system built using such 
formulation requires the stiffness matrix assembly 
which is then solved using an iterative solver such as 
Newton Raphson method or Conjugate Gradients 
(CG) method. Such stiffness assemblies are not 
required in meshless FEM. Therefore, ours converges 
much faster.  

Nevertheless, for completeness, in the third 
experiment, we compared the performance of 
meshless FEM with an implicit tetrahedral FEM 
[ACF11]. These results are presented in Table 1.  
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GPU and CPU 

 
(a) 

 
(b) 

Figure 6. Two frames of deformation of (a) the 

spx dataset falling due to gravity on the floor 

and (b) the liver dataset manipulated by the 

user 
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Dataset Tetrahedra 
Frame rate (frames per second) 
Implicit FEM Meshless FEM 

liver 3912 118.50-78.70 249.50-331.01 
spx 12936 76.70-81.90 124.80-128.23 

raptor 19409 40.30-43.80 71.22-71.71 

Table 1. Comparison of meshless FEM against 

implicit tetrahedral FEM solver [ACF11] 

As expected, the performance of meshless FEM is 
better as compared with the implicit tetrahedral FEM. 
Our meshless FEM is based on a semi-implicit 
integration scheme which does not require an 
iterative solver as is required for the implicit 
tetrahedral FEM. 

6. DISCUSSION AND CONCLUSION 
We have applied meshless FEM to nonrigid 
volumetric deformation. Using the proposed 
approach, interactive visualization of deformation on 
large volumetric dataset is made possible. We are 
confident of the results obtained from our 
experiments and would like to expand the model to 
address specific applications such as biomedical 
modeling [MCZLQS09], [MLQS09]; simulation 
[LSL96], [LSL97], [LSWM07]; fast ubiquitous 
visualization [YLS00], [ML12c]; and confocal 
imaging [TOTMLQS11]. 

We reiterate our main contributions. Firstly, we have 
applied meshless FEM for volumetric deformation. 
Secondly, we have integrated the meshless FEM into 
a novel deformation pipeline exploiting the transform 
feedback mechanism. And finally, we have integrated 
our novel deformation pipeline into the HAPT 
algorithm. There are some considerations on the 
meshless FEM. The deformation result is directly 
dependent on the number of mesh points used. More 
points generally give better approximation and vice 
versa. For better performance, we can think of two 
strategies. Firstly, we can use the image load-store 
extension in OpenGL 4.2 which allows shader 
programs to have access to arbitrary GPU memory. 
Since the hardware used in this study did not support 
OpenGL 4.2, this approach could not be verified. 
Secondly, we may use a CUDA kernel to do scattered 
writes, alongside a GLSL shader. This will possibly 
be a future research direction. 
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