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ABSTRACT

Radiation dose reduction is a very topical problem in medical X-ray CT imaging and plenty of strategies have

been introduced recently. Hybrid iterative reconstruction algorithms are one of them enabling dose reduction up to

70 %. The paper describes data preprocessing and feature extraction from iteratively reconstructed images in order

to assess their quality in terms of image noise and compare it with quality of images reconstructed from the same

data by the conventional filtered back projection. The preprocessing stage consists in correction of a stair-step

artifact and in fast, precise bone and soft tissue segmentation. Noise patterns of differently reconstructed images

can therefore be examined separately in these tissue types. In order to remove anatomical structures and to obtain

the pure noise, subtraction of images reconstructed by the iterative iDose algorithm from images reconstructed by

the filtered back projection is performed. The results of these subtractions called here residual noise images and

are the used to further extract parameters of the noise. The noise parameters, which are intended to serve as input

data for consequent multidimensional statistical analysis, are the standard deviation and power spectrum of the

residual noise. This approach enables evaluation of noise properties in the whole volume of real patient data, in

contrast to noise analysis performed in small regions of interest or in images of phantoms.

Keywords
X-ray computed tomography, dose reduction, skull segmentation, noise power spectrum.

1 INTRODUCTION

Multidetector X-ray computed tomography (MDCT)

imaging is very important for medical diagnostics and

quantity of pathological states diagnosed by a MDCT

is steadily increasing. This fact causes, in conjunction

with rising accessibility of MDCT examinations,

increase of the average population radiation exposure

which, in spite of unexceptionable diagnostics out-

come, constitutes certain health risk especially for

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for profit

or commercial advantage and that copies bear this notice and

the full citation on the first page. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee.

pediatrics patients. Effective dose introduced by each

MDCT scan depends on many factors and nowadays

usually falls within range from 1 to 14 mSv which can

be considered as a high value in comparison with the

annual dose received from natural sources in the Czech

Republic (2.5 mSv).

In order to be compliant with the ALARA principle

each of the major MDCT manufacturers have focused

their research on as large radiation dose reduction as

possible. As a result of this increased effort there have

been introduced new strategies for reducing radiation

dose, for example tube current modulation (in both an-

gular and longitudinal directions), elimination of over-

ranging effect, dual energy scanning, bowtie filtering

and replacement of a filtered back projection (FBP) by

iterative reconstruction algorithm [MPB+09], [Goo12].

Among a range of mentioned methods the iterative re-
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(a) (b) (c)

Figure 1: Saggital slice of brain image (with magnified sections): (a) original slice, (b) slice after registration by

phase correlation, (c) slice after registration by gradient descent optimization.

construction one takes exceptional position by produc-

ing quality images, even when drastic radiation dose re-

duction (up to 70%) is applied [FB11]. Such a dose

reduction is alowed by inclusion of photon counting

statistics and models of acquisition process into re-

construction. So far, each of the available iterative

reconstructions are vendor specific and further details

about used algorithms are unknown. General descrip-

tion of iterative reconstruction methods can be found in

[BKK12] and references therein.

Many studies dealing with problem of quality evalua-

tion of iteratively reconstructed images have been pro-

posed recently. These studies are targeted either to as-

sessment of image quality in small regions of interest in

real patient data [MNS+10] or to evaluation of images

acquired by scanning of phantoms [MGB+12]. Former

approach utilizes information only from spatially lim-

ited range and thus can not affect whole complexity of

image noise, e.g. differences between noise in anatom-

ical structures. The phantom approach analyzes noise

properties in homogeneous regions of artificial images

and there is difficulty to relate results obtained by this

approach to clinical practice. In order to overcome pre-

viously mentioned drawbacks a new way of extraction

of noise parameters from whole volume of real patient

data is presented in this paper.

2 DATA ACQUISITION

Our study is targeted to head MDCT images, acquired

by the Philips Brilliance CT 64-channel scanner and

reconstructed by a prototype of the Philips iterative

reconstruction method called iDose during ordinary

operation of radiological center in Children’s hospital

in Brno. Acquired raw data were once reconstructed by

the conventional filtered back projection and four times

using the iDose algorithm, every time with differently

adjusted parameters. The parameters adjusted before

each reconstruction are inclusion level of iDose recon-

struction expressed in percents (chosen to be 30 %,

50 % and 70 % and in this paper labeled as an ID30,

ID50 and ID70), and Multi Resolution which was

turned on only together with the iDose level ID70 (in

this paper labeled as an ID70MR). Meaning of iDose

levels is folowing, images reconstructed by FBP have

equal standard deviation of noise as images acquired

with 30 % less dose and reconstructed by ID30.

A statistical data set contains forty patients uniformly

divided into male and female, aged in range from three

months to sixty years. A certain group of patients was

scanned with regular dose according to a scanning pro-

tocol, other group also with regular dose but in a high

quality imaging mode (HQ) and the last group in a high

quality mode with radiation dose reduced about 30 %

(30HQ). Note that dose reduction was obtained by a

uniform reduction of tube current.

3 CORRECTION OF A STAIR-STEP

ARTIFACT

Acquired images suffer from the very severe stair-step

artifact especially after three-dimensional reformatting

to a sagittal plane as can be clearly seen in Fig. 1a.

In general a stair-step artifact is caused by using wide

collimation and a non-overlapping reconstruction in-

terval especially using multisection scanning [BK04].

Artifact introduces translational shift into sub-volumes

located identically according to sections acquired in

one gantry rotation during multisection scanning. Such

a shift cause many artificial edges in a sagittal plane

which are able to harm further noise power spectra anal-

ysis by introducing artificial high frequencies.
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Figure 2: Euclidean distance between consecutive slices (EDCS): (a) original image, (b) difference of EDCS with

detected marginal slices (red stars) and threshold (green line), (c) difference of EDCS after registration using phase

correlation, (d) EDCS of finally corrected image

Positional detection of translated sub-

volumes margins

The first step in correction of the stair-step artifact is po-

sitional detection of margins of displaced sub-volumes.

Positions of marginal slices are detected by evaluation

of the Euclidean distance similarity function (1), com-

puted between consecutive slices. Variables a and b

in this equation means pixel intensities rearranged to a

vector and N is a number of pixels in images.

CE(a,b) =

√

N

∑
i=0

(ai −bi)2 (1)

Resulting vector of Euclidean distances as a function of

slice positions can be seen in Fig. 2a. Despite of clearly

visible peaks in the similarity function there is also

a slow and strong trend which can possibly preclude

the detection, and is removed by differentiation of this

curve. Resulting difference of the similarity function

can be seen in Fig. 2b and a peaks detection algorithm

is applied (note that as a peak is labeled each position

in the vector with a bigger value than their neighbors).

Detected peaks are thresholded, threshold is determined

as the mean of absolute values of the vector (depicted

as a green line in Fig. 2b), thereby the most signifi-

cant peaks, representing positions of the most dissim-

ilar consecutive slices, are obtained. The last step is a

determination of a patient table translational increment

after one rotation of a gantry which corresponds with

sizes of mutually translated sub-volumes. Translational

incerement of patient table is computed as the median

of vector containing distances between the neighbor-

ing detected peaks. Finally detected margins of sub-

volumes are plotted on Fig. 2b as red stars.

Registration of displaced sub-volumes

Once positions of mutually translated sub-volumes

margins are known registration of sub-volumes is

performed. Taking into account a character of the

stair-step artifact (a simple translation of sub-volumes)

phase correlation technique, originally proposed in

[KH75], is chosen as a basis for registration. This

method is based on a Fourier shift property stating that

a planar shift between two functions is expressed in

a Fourier domain as a linear phase difference. Let us

take two functions f1(x,y), f2(x,y) and suppose that

they vary only by a translation about ∆x and ∆y

f2(x,y) = f1(x−∆x,y−∆y). (2)

Using Fourier shift property equation (2) can be re-

stated to

F2(u,v) = F1(u,v).e
(−i(u.∆x+v.∆y)) (3)

where

Fi(u,v) = DFT2D( fi(x,y)). (4)

According to equation (3) shifting of image does not

influence its amplitude spectrum. Phase correlation can
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be calculated as a inverse Fourier transform of a nor-

malized cross power spectrum

p(x,y) = DFT−1
2D

[

F2(u,v).F1(u,v)
∗

|F2(u,v).F1(u,v)|

]

. (5)

This phase correlation matrix contains a strong impulse

in position [∆x,∆y] which is detected as the strongest

peak. Vector of translation parameters [∆x,∆y]′ for each

sub-volume is known and alignment can be performed

in a very simple manner as [x,y]′+[∆x,∆y]′. Phase cor-

relation, in its basic form, cannot determine sub-pixel

shifts and registration therefore cannot be sufficient, see

Fig. 1b. After registration of sub-volumes by phase cor-

relation, difference of Euclidean distance between con-

secutive slices is computed and thresholded again, see

Fig. 2c. Euclidean distances between sub-volumes mar-

gins (labeled as red stars) above threshold are then min-

imized by gradient descent optimization method, pro-

viding final correction of stair-step artifact, see Fig. 1c

and Fig. 2d.

4 SEGMENTATION OF SKULL AND

SOFT TISSUE

Very interesting findings may be done if noise prop-

erties of differently reconstructed images are exam-

ined separately for hyperdense and hypodense struc-

tures (i.e. bones and soft tissue). An automatic, reliable

and fast segmentation algorithm is therefore needed

which should be capable to distinguish between bones

and soft tissue even in a complex structure of a basis

cranii and segment not only cortical however also tra-

becular parts of bones. Distinction between soft tissue

and bones is carried out in the following manner:
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Figure 3: Brightness histogram of the whole brain vol-

ume (blue bar graph). Initial Gaussian curve (red plot)

is fitted on soft tissue peak (green plot) and final thresh-

olds are depicted as the black lines

• Segmentation of cortical bones.

• Adding trabecular bones parts into segmentation.

• Segmentation of surrounding air and sinuses.

• Segmentation of soft tissue by calculating a comple-

ment to segmented bones and surrounding air.

Only the first and the second steps deserves closer atten-

tion and are in detail discussed in next two subsections,

on the other hand the third step is very similar to the

first and the fourth is simple computation of a comple-

ment to two binary images (bones and surrounding air

segmentations).

Segmentation of cortical bones

The simplest and fastest method for segmenting corti-

cal bones parts is the intensity thresholding. A thresh-

old is needed for this operation and probably the best

way for its automatic determination is evaluation of the

image histogram. A typical brightness histogram of the

whole brain volume comprises only two distinct peaks,

and can be seen in Fig. 3 plotted as a blue bar graph,

note that pixel intensities are normalized to be in in-

terval 〈0,1〉. The peak situated at lower intensities be-

longs to representation of surrounding air and sinuses,

while second significant peak belongs to a representa-

tion of soft tissue. Intensities belonging to bones are

spread over a wide range hence there is no distinct de-

tectable peak. Threshold for cortical bones segmenta-

tion is therefore derived from a position of soft tissue

peak which is detected in similar way as peaks in chap-

ter 3. Peak with the second highest value is considered

to be representation of soft tissue. Detected position of

the soft tissue peak serves as a mean µ and magnitude

as parameter a of initial Gaussian function (6) used to

approximate properties of soft tissue lobe (variance σ

is initially selected as 0.01).

f (x) = a.e

(

−0.5( x−µ

σ )
2
)

(6)

The initial Gaussian curve is depicted in Fig. 3 (please

notice detailed plot) as a red curve and is optimized

by a least-squares curve fitting algorithm in order

to find optimal parameters µ and σ (green curve in

Fig. 3). Thresholds for segmentation are empirically

determined as µ − 25.σ for surrounding air and

µ + 20.σ for bones (black lines in Fig. 3). In this way

thresholds for bones and surrounding air segmentation

are determined automatically and independently on the

input data.

Classification of trabecular bones

Intensities (i.e. Hounsfield units or tissue density) in

trabecular parts of bones are partially overlapped with

intensities of soft tissue, therefore simple thresholding

is only capable to segment cortical parts of bones as can

be seen in Fig. 4b (note that resulting binary masks 4b,
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(a) Original slice (b) After intensity thresholding (c) Final bones segmentation (d) Soft tissue segmentation

Figure 4: Example of skull and soft tissue segmentation
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Figure 5: Typical histograms of holes manually classi-

fied as soft tissue and trabecular bone

4c and 4d are in this view multiplied with the original

slice 4a) and because of that areas being zero fully sur-

rounded by values of one (in this paper called "holes")

appears instead trabecular parts of bones. Separation

of holes by a boundary tracking technique is therefore

next step followed by decision if particular hole repre-

sents soft tissue or trabecular bone. As stated before

intensities of soft tissue and trabecular bones are par-

tially overlapping, nevertheless their histograms differ

in shapes, typical histograms of soft tissue hole and tra-

becular bone are depicted in Fig. 5. Histograms of tra-

becular bones parts are, in comparison with soft tissue

ones, more compact (histogram counts are smoother)

and skewed towards higher intensities. Shape of a par-

ticular histogram is objectified by five parameters: en-

tropy (7), compactness (8), relative position of the his-

togram mean according to position of soft tissue peak in

histogram of whole volume (9), skewness (10) and kur-

tosis (11). In each of the following equations N means

sum of all counts in bins (i.e. number of pixels in hole),

i is a bin mark and xi means counts in the bin marked

as i.

S =−
1

N

n−1

∑
i=0

xi log(xi). (7)

C =
1

N

n−1

∑
i=0

xi

max(x)
(8)

Prel =
Ppos

µ
; µ =

1

N

n−1

∑
i=0

xii. (9)

γ1 =

1
N

n−1

∑
i=0

(i−µ)3

[

1
N

n−1

∑
i=0

(xii)2 −µ2

]
3
2

. (10)

γ2 =

1
N

n−1

∑
i=0

(i−µ)4

[

1
N

n−1

∑
i=0

(xii)2 −µ2

]2
−3. (11)

Classification of the holes is done by a simple neural

network, trained by set of 300 exemplary vectors, each

vector is composed of histogram parameters resulting

from equations 7 - 11. Each exemplary vector is man-

ually classified and this classification is verified by an

experienced radiologist. Final segmentation of bones in

complex structure of basis cranii can be seen in Fig. 4c.

5 EXTRACTION OF PARAMETERS

FOR STATISTICAL ANALYSIS

By means of the segmentation algorithm proposed in

section 4 two binary masks is obtained representing

bones and soft tissue. In order to compare noise proper-

ties of images reconstructed by the iDose with respect

to the conventional FBP technique, anatomical struc-

tures must be removed. Removing of anatomical struc-

tures is done by subtraction of image reconstructed by

the FBP from images reconstructed by the iDose (i.e.

images marked by ID30, ID50, ID70 and ID70MR) us-

ing binary masks for bones and soft tissue. Results

of these subtractions are called residual noise images

which can be seen in Fig. 6.

Standard deviation of residual noise

First group of parameters extracted from residual noise

images are standard deviations computed from a whole

image volume (results can be seen in Fig. 6). Mean-

ing of this parameter is explained considering follow-

ing thought. A region of interest (ROI) is selected from

each reconstructed image (before subtraction) in order
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ID30 minus FBP; STD =  2.6349 HU ID50 minus FBP; STD =  4.5007 HU ID70 minus FBP; STD =  6.639 HU ID70MR minus FBP; STD =  6.0105 HU

ID30 minus FBP; STD =  3.0471 HU ID50 minus FBP; STD =  5.394 HU ID70 minus FBP; STD =  8.2288 HU ID70MR minus FBP; STD =  7.8183 HU

Figure 6: Residual noise images depicted separately for bones (upper row) and soft tissue (bottom row)

Figure 7: ROI selected from image reconstructed by

ID70

to select an area of brain, which should be considered

homogeneous. Therefore intensity changes in these

ROIs are considered being only random noise patterns,

see sample in Fig. 7.

Two parameters are computed from each ROI, a cross

covariance with the ROI selected form the FBP recon-

struction (CX ,FBP) and a standard deviation in each ROI

(σ2
X ), see Tab. 1 and note that both parameters decreases

with increasing iDose level. Subtracting of two random

variables FBP and X (X is meant as a particular re-

construction), having variances σ2
FBP and σ2

X and cross-

covariance CX ,FBP, results in new random variable with

a standard deviation equal to equation (12).

σ(X−FBP) =
√

σ2
FBP +σ2

X −2.CX ,FBP (12)

Recon. (X) CX ,FBP σ2
X σ(X−FBP) σE(X−FBP)

FBP 276.64 16.63 0.41 0

ID30 234.09 14.12 2.78 2.77

ID50 200.31 12.19 4.95 4.95

ID70 158.81 9.97 7.64 7.64

ID70MR 155.11 9.46 7.47 7.48

Table 1: Noise parameters of selected ROI

A standard deviation of residual noise in investigated

ROI σE(X−FBP) is computed from real data and com-

pared with value obtained from equation (12), see

Tab. 1. Assuming that anatomical structures are identi-

cal in reconstructed images and completely suppressed

by subtraction, the standard deviation of residual noise,

therefore depends only on a standard deviation of noise

in image X and a cross-covariance function between

noises in images FBP and X . The standard deviation

of residual noise increases with decreasing cross-

covariance CFBP,X and increasing difference between

σ2
FBP and σ2

X and thus can be considered as a valuable

measure indicating improvement of noise properties

in images reconstructed by the iDose according to

images reconstructed by the filtered back projection.

Advantage of this parameter lies in independence on an

imaged object and therefore can be directly applicable

to real patient data not only to phantoms. On the other

hand it provides only relative improvement of noise

properties according to the filtered back projection.
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By means of the segmentation algorithm proposed in

section 4 two binary masks is obtained representing

bones and soft tissue. In order to compare noise proper-

ties of images reconstructed by the iDose with respect

to the conventional FBP technique, anatomical struc-

tures must be removed. Removing of anatomical struc-

tures is done by subtraction of image reconstructed by

the FBP from images reconstructed by the iDose (i.e.

images marked by ID30, ID50, ID70 and ID70MR) us-

ing binary masks for bones and soft tissue. Results

of these subtractions are called residual noise images

which can be seen in Fig. 6

Power spectrum of residual noise

Standard deviation provides information only on noise

magnitude, however no less important is knowledge

about its frequency content. Such an information may

be obtained by a noise power spectrum, routinely

used as quality measure of MDCT imaging systems

[YKH+08], [YKH+08] and [BMG07]. In this study

residual noise images (Fig. 6), both for segmented

bones and soft tissue, serves as input images for a

noise power spectral analysis. Determination of a noise

power spectra (NPS) is carried out by a direct digital

technique as proposed in [SCJ02] and is computed

according to equation (13).

S( fx, fy) =
bxby

LxLy

·

〈

∣

∣DFT2D

{

D(x,y)−D f ilt(x,y)
}∣

∣

2
〉

(13)

Each slice is considered to be the one realization of a

random noise and is denoted as D(x,y). Individual real-

izations must be zero mean detrended before NPS cal-

culation, therefore an image filtered by a lowpass Gaus-

sian filter (D f ilt(x,y)) is subtracted from each slice. Ap-

plying a two-dimensional Fourier transform and squar-

ing an absolute value of a result (|◦|2), individual noise

power spectrum is obtained. Individual noise power

spectra suffer from a very large variance between real-

izations, power spectrum of a stochastic field (i.e. a pro-

cess generating random noise) is therefore calculated as

a mean value of individual power spectra (in equation

(13) outlined by 〈◦〉 operator). Fraction in this equation

is a normalization term consisting of bx by representing

sampling periods and Ly Lx representing sizes in direc-

tions x and y, respectively.

Residual noise power spectra are determined in trans-

verse S( fx, fy), coronal S( fx, fz) and sagittal plane

S( fy, fz) as can be seen in Fig. 8. A set of an annular

sector shaped binary frequency filters, covering in

piecewise sense the whole spectrum, is used to extract

the final parameters from residual noise power spectra.

Filters are used to select a segment of a NPS and the

mean of this segment is the sought noise pattern, 36
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Figure 8: Example of power spectra of residual noise

for transverse (upper), coronal (bottom left) and sagittal

(bottom right) planes

parameters are extracted from each single residual

noise power spectrum.

6 CONCLUSIONS AND FUTURE

WORK

Preprocessing of reconstructed image data and ex-

traction of parameters for further statistical analysis

of noise in MDCT images reconstructed by the iDose

iterative algorithm is proposed in this paper. The

preprocessing includes a correction of the stair-step

artifact, which may harm further noise feature ex-

traction and segmentation of bones and soft tissue.

The proposed algorithm for segmenting bones in head

images is fast and reliable even in complex structure

of basis cranii, however there are certain drawbacks of

this method. Segmentation of cortical bones, especially

the ones with weak borders, may not result in areas

of zeros fully surrounded by ones in locations of tra-

becular bones. Therefore boundary tracking algorithm

can not label them as a "holes" and such a trabecular
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bones remains unsegmented. Another difficulty is

the lack of a trabecular structure in bones, especially

in images of pediatrics patients. Considering that a

trabecular structure in bones causes difference in the

shapes of histograms of holes, the lack of this structure

can negatively influence reliability of the resulting

segmentation.

The parameters used for further statistical analysis are

the standard deviation and noise power spectrum of the

residual noise. The images formed by the residual noise

are obtained by subtracting the images reconstructed

by the filtered back projection from the images recon-

structed by the iDose algorithm. When obtained by this

subtraction, the noise properties can be evaluated in the

whole volume of real patient data, on the other hand, the

obtained parameters do not reflect the absolute level of

the image noise but only the relative improvement with

respect to image reconstructed by the FBP.

In order to assess different nature of noise and prove

different behavior of the iterative reconstruction in soft

tissue and bones the images of residual noise are multi-

plied with the binary masks obtained by segmentation.

According to a convolution property of Fourier trans-

form multiplying of signals results in convolution of

their spectra therefore each of the residual noise power

spectrum is affected by spectrum of the used binary

mask which is moreover varying with respect to the

slice position. Statistical inference of general results

from such modified spectra may be incorrect and our

future goal will be to analyze how strong is this influ-

ence and how to overcome this problem.

Considering the separate evaluation of the noise param-

eters from bones and soft tissue, taking into account

the number of iDose reconstructions and the count of

parameters extracted from three residual noise power

spectra (for transverse, coronal and sagittal plane), we

obtain 392 noise parameters per patient. The vectors of

the parameters for forty patients can be arranged to ma-

trix of size forty rows and 392 columns where each row

can be considered as a single realization of a random

process. Multidimensional statistical analysis such as

principal component analysis or factor analysis can be

used to reveal hidden relations in this matrix. Statisti-

cal analysis of the whole matrix can be rather compli-

cated due to high number of the extracted parameters

in comparison with quantity of scanned patients there-

fore selections of groups of parameters must be done

(for example selection of low frequency noise). Results

of future statistical analysis are expected to clarify re-

lation between dose reduction, iDose level and quantity

of image noise and differences between noise properties

in soft tissue and bones. In future research proposed

algorithms will be adapted to abdominal and thoracic

images and typical noise properties of these body parts

will be analyzed.
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