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ABSTRACT
Vanishing points can provide information about the 3D world and hence are of great interest for machine vision
applications. In this paper, we present a single point perspectivity based method for robust and accurate estimation
of Vanishing Points (VPs). It utilizes location of 3 collinear points in image space and their distance ratio in the
world frame for VP estimation. We present an algebraic derivation for the proposed 3-Point (3-P) method. It
provides us a non-iterative, closed-form solution. The 3-P results are compared with ground truth of VP and it is
shown to be accurate. Its robustness to point selection and image noise is proved through extensive simulations.
Computational time requirement for 3-P method is shown to be much less than least squares based method. The
3-P method is extremely useful for accurate VP estimation in structured and well-defined environments.
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1 INTRODUCTION

A family of parallel lines projected on a plane un-
der the pin-hole camera model will ideally intersect in
a common point. This point is known as the Vanish-
ing Point. VP’s formed by families of coplanar parallel
lines are collinear and the line is known as the Vanish-
ing Line. VPs and Vanishing Lines for an image of a
cube are shown in Fig. 1.
Development of computational techniques and ever-
growing requirement of extracting information from
image have led to a spurt in the field of image analysis
in recent years. Vanishing points have myriad applica-
tions including camera calibration, robotic navigation,
3D reconstruction, pose estimation, augmented reality
etc. VP’s have been extensively used for camera cali-
bration. [7], [9], [10], [11] and [12] use VPs for cam-
era calibration. Image reconstruction probelm in [13]
and [14] use VP’s for extraction of 3D coordinates of
points. [15] uses parallel lines in the environment and
corresponding VP’s for steering a robot. [16] uses van-
ishing points and vanishing lines for pose estimation of
UAV’s in indoor flights.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Several methods have been proposed to estimate VP’s.
[3] uses J linkage based algorithm for vanishing point
estimation in man-made environments. [4] proposes a
new framework for line based geometric analysis and
VP estimation of Manhattan scenes. [5] uses accurately
localised edges that are obtained through edge pixels
and does not require fitting of lines. It uses fewer but
more accurate lines for estimating VPs. [8] relies line
extraction using Hough transform and then on voting
in the vanishing point space to estimate VP. All of the
above mentioned methods claim to be accurate for VP
estimation in architectural environments e.g. Manhat-
tan scenes.

Vanishing points are extremely important in computer
vision and the accuracy of VP estimation directly influ-
ences the performance of the said application. Addi-
tionally, since there may be a need to compute vanish-
ing points multiple times, a computationally efficient
method is the need of the day. Camera calibration ef-
forts require accurate VP estimates Calibration targets
are well defined structured objects and this information
about them can be exploited to suit our needs. Fig. 2
shows few calibration patterns used in different algo-
rithms. [1] proposes two length ratio based methods.
First requires evaluation of 1D projective transforma-
tion and the direction of lines to compute VP. Second
detects VP using geometric construction. Here we pro-
pose a length-ratio based fast and accurate VP estima-
tion method. We use three collinear points and their
distance ratio in world frame to compute VP location.
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Figure 1: Vanishing Points and Vanishing Line Figure 2: Patterns used to get VPs

Section 2 discusses camera calibration preliminaries
and least squares vanishing point detection method.
Section 3 talks about the 3-P method and its formal
derivation. Simulation and experimental results are dis-
cussed in section 4.

2 PRELIMINARIES
2.1 Camera Model

Pin-hole model is based on the principle of collinear-
ity, where each point in the world space can be mapped
by a straight line to the image plane through the cam-
era center. This kind of central projective transform is
called “Perspective". Fig. 3 shows projection of a line
on image plane. A Pin-hole camera model has been
used here ([1], [2]). Any point P (coordinates given by
X) can be mapped to a point p (coordinates given by
x) in the image plane . The overall transform can be
expressed as,

x = PX (1)

The overall transformation matrix, P is obtained by
multiplying the extrinsic calibration matrix by intrinsic
calibration matrix. P can be expressed as,

x =K R[I | −C̃]X =KM X = P X (2)

Parameters that are solely dependent on camera are
called Intrinsic parameters. Principal point, skew, as-
pect ratio and focal length together form the intrinsic
camera calibration matrix (K). Extrinsic parameters of
a camera include the rotation and translation of camera
with respect to the world frame. Rotation matrix (R)
and translation vectors (C̃) together form the extrinsic
camera calibration matrix (M).

2.2 Least Squares VP estimation

Let us consider a set of n parallel lines in 3D. Ide-
ally their mappings in the image plane will intersect at
a point (the VP). Due to noise and other errors they will
intersect at different points. The maximum number of

intersections that can be found out are nC2. The aim is
to estimate a point that has least perpendicular distance
from the n lines. The methodology can be divided into
two sub-tasks,

1. Extracting Lines from the image.

2. Finding Least Squares solution.

Extracting Lines Lines can be extracted from the im-
age using various image processing techniques. In our
approach we extract control point locations from the
image (see Figure 8). A least squares fit straight line is
drawn to minimize perpendicular distance of m points
from the line. If (xi,yi) are the locations of the m points
that lie on a straight line, the slope (slope) and intercept
(c) of the line are given by,[

c
slope

]
=

[
m ∑

m
i=1 xi

∑
m
i=1 xi ∑

m
i=1 x2

i

]−1 [
∑

m
i=1 yi

∑
m
i=1 xiyi

]
(3)

Least Squares solution Once the line information is
extracted from the image, the only hurdle in estimating
the vanishing point using least-squares is finding the in-
tersection of lines. For any two points vi and v j, the line
passing through them can be expressed as,

Li j = vi× v j

If m lines given by Li (i=1,2,...,m) intersect in a point V ,
then the coordinates of V are given by,LT

1
..

LT
m

Vx
Vy
Vz

= 0 (4)

3 THE 3-POINT METHOD

Parallel lines appear to intersect at a point in perspec-
tive view. In an image this perspectivity is introduced
due the camera parameters and its orientation. Sev-
eral methods have been proposed in literature to mea-
sure perspectivity. In [1] this perspectivity is measured

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 152 ISBN 978-80-86943-75-6



Figure 3: Pin-hole camera model Figure 4: Length Ratio for 3-P method

through the evaluation of 1D projective transformation.
The main idea behind or method is that we can get
a sense of this camera perspectivity through the three
collinear points from the image and their length ratio in
the world frame.

Let us consider a family of parallel lines represented
by F . These lines are projected onto an image plane
through a pin-hole camera model. Let this set be called
as F. Now, if we select two points lying on any line
f ( f ∈ F) ; we can write the equation of that line f
in image space. Equation of line f and the length ratio
(given by three collinear points) in the world frame will
provide information about perspectivity along f. This
will enable us to map any point on line f (f∈F ) onto its
image f (f ∈ F). Any point on line f at infinite distance
when mapped under pin-hole camera model will map
onto VP.

The advantage of this method over the length ratio
method is that it does not require us to compute ho-
mography (projective transform) and perform intensive
computations. It provides us with a closed-form so-
lution and is computationally efficient. Line detection
and clustering is not required in this method. This re-
duces computational load significantly and altogether
eliminates line detection and clustering errors. Also this
method can be made to utilize information from a small
region in the image, thereby reducing errors due to de-
focusing of certain parts of image.

3.1 Derivation

Let us consider three collinear points A(x1,y1,z1),
B(x2,y2,z2) and C(x3,y3,z3). Let, the line that passes
through them be called L1 as shown in Fig. 3.
Distance Ratio: The distance ratio for three collinear
points is given by (see Fig. 4),

Γ =
dAC

dAB
=

√
(x1− x3)2 +(y1− y3)2 +(z1− z3)2√
(x1− x2)2 +(y1− y2)2 +(z1− z2)2

(5)

Camera Model: We use a pin-hole camera model with
projection matrix P. Let the images of A, B and C

be called A’(u1,v1,1), B’(u2,v2,1) and C’(u3,v3,1) re-
spectively.

A′ = PA, B′ = PB, and C′ = PC (6)

Line L1: Equation of line L1 (see Fig. 3) can be written
in the two point form (using points A and B) as follows,

x− x1

x2− x1
=

y− y1

y2− y1
=

z− z1

z2− z1
= λ (7)

or
x = x1 +λ (x2− x1)
y = y1 +λ (y2− y1)
z = z1 +λ (z2− z1)

(8)

Now, if we substitute coordinates of point C in Eq. (8)
and use the expression in Eq. (5) we can easily con-
clude that Γ and λ are equal.
Coordinates of C′, for a known distance ratio, can be
expressed as,

 w3u3
w3v3

w3

 = P


x1 + λ (x2 − x1)
y1 + λ (y2 − y1)
z1 + λ (z2 − z1)

1



= P


x1
y1
z1
1

+ λP


x2 − x1
y2 − y1
z2 − z1

0


=

 w1u1
w1v1
w1

+ λ

 w2u2 − w1u1
w2v2 − w1v1

w2 − w1


(9)

Simplifying the above equation we get C’ as,

(u3,v3) =
(

u1+λ (αu2−u1)
1+λ (α−1) , v1+λ (αv2−v1)

1+λ (α−1)

)
(10)

where, α is defined as w2
w1

.

For any point D(x,y,z) lying on line L1, and the image
D’(u,v,1) are related by D′ = PD. The coordinates of
D’ are obtained by Eq. 10, and expressed as,

(u,v) =
(

u1+λ ′(αu2−u1)
1+λ ′(α−1) , v1+λ ′(αv2−v1)

1+λ ′(α−1)

)
(11)
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In homogenous coordinates, (wu,wv,w) and (u,v,1)
represent the same point. The factor w is merely a
scaling quantity. The parameter α is defined as the
ratio of scaling factors for two different points. It
thereby provides wisdom about perspectivity. α can be
evaluated from Eq. 10.

α =
w2

w1
=

(u3−u1)(λ −1)
(u3−u2)λ

(12)

The vanishing point is the image of a point lying at in-
finity on line L1. This point (let us say is D) in the
world frame will have a distance ratio, (λ ′ = dA,D

dA,B)
) of

∞. To get the VP, we substitute this value of λ ′ in Eq.
11. Through algebraic manipulation, we get,

(V Px,V Py) =
(

αu2−u1
α−1 , αv2−v1

α−1

)
(13)

An interesting phenomenon can be observed if we con-
sider an image with zero perspective. For such an image
α is equal to 1 since the scaling factors will be same for
both the points. VP for such an image will be located at
∞ (Eq. 13). This is to be expected, since VPs arise only
due to perspective in the image.

3.2 Proof by Invariance
Property: The cross ratio (χ) is invariant under projec-
tive transformation. χ is expressed as,

χ =
d13d24

d12d34
(14)

where di, j represents distance between points i, j as
shown in Fig. 5.

In our current formulation let us assume that a fourth
point V is lying on line L1 at an infinite distance along
with A, B and C. V’ projected on the image plane from
V, will represent the vanishing point. Using Eq. 5, cross
ratio in world frame is given by,

χ = lim
V→∞

dABdCV

dACdBV
=

1
λ

lim
V→∞

(1+
dCB

dBV
) =

1
λ

(15)

In the image frame, let the coordinates of V’ be given
by Eq. 13, We write the cross ratio as,

χ
′ =

√
(u1 − u2)2 + (v1 − v2)2√
(u1 − u3)2 + (v1 − v3)2

×

√
( u3−u3α−u1+u2α

1−α
)2 + ( v3−v3α−v1+v2α

1−α
)2√

( u2−u1
1−α

)2 + ( v2−v1
1−α

)2

(16)

Substituting the value of α from Eq. 12 and simplifying
algebraically, we get χ = χ ′. This shows that the cross
ratio of four points is invariant under projection and our
VP estimates are accurate.

3.3 Tackling Noise

In the presence of noise, the performance of image
processing techniques may get degraded. If the location
of those three collinear points is not known precisely,
errors will creep in to the VP estimates. To reduce this
sensitivity we incorporate a least squares based opti-
mization method. The idea behind this method is to
draw a least square fit line from the selected three points
to find the direction. Then orthogonally project these
points on this line. These new points are used in place
of earlier noisy data see Fig. 6.

4 RESULTS

Experiments were performed to validate the 3-Point
(3-PVP) method. Robustness of the method and its
computational efficiency are investigated through sim-
ulations. All simulations are performed in MATLAB R©
environment. Simulations were performed on a PC with
i5 processor (3.2 GHz, 64 bit) and 4 Gb RAM.

[4] and [3] focus on vp estimation in urban/man-made
environment where determining distance ratio will
be difficult and will have to be separately estimated.
Hence, we compare our results with LSVP method
described in Section 2.
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Figure 7: Simulated Pattern of 10×10 control points Figure 8: Metal fixture with 10×10 control points

4.1 Simulation

We here simulate perspectivity transform and gen-
erate synthetic images. A target pattern with 10× 10
evenly distributed points is simulated as shown in Fig.
7. Two sets of parallel lines can be drawn in X and
Y direction. This pattern is projected on the synthetic
image-plane using a simulated camera. Properties are
tabulated in Table 1.
Absolute ground truth can be found out for simulated
images and hence it can be a great tool to validate es-
timation method. Since, we are simulating perspective,
the camera matrix P is known to us and homogenous
coordinates (of infinity point along the line) are known
to be [1,0,0,0].
Synthetic images provide us with an unique opportunity
to add Gaussian noise and analyse robustness. Gaussian
noise N (0,0.1px) is added to each projected point on
the pattern. This new noisy image is given as input to
the VP estimation algorithm. Two vanishing points are
estimated in each image, represented by VP1 and VP2.
We perform 100 Monte-Carlo runs for both methods.

Accuracy and Robustness
We compare our results with least square approach. 3-
PVP provides accurate VP estimates. This is seen from
the fact that 3-PVP estimates are closer to the ground
truth. The mean error and standard deviation of error
are also lower for 3-PVP as compared to LSVP. The
mean errors are negligibly small as compared to VP es-
timate for both methods. Standard deviation of error is
approximately one third the value of LSVP. Results are
tabulated in Table 4.
Noise with std of 0.1 px was used to study robustness.
3-PVP method is shown to be robust to image noise.
Euclidean norm of error is much higher for LSVP as
compared to 3-PVP. Error norm for LSVP is approxi-
mately three times that of 3-PVP. Error values are tabu-
lated in Table 3

Parameter Value
Focal Length 50 mm

Principal Point (360,240) px
Skew Factor 0
Scale Factor 1

Orientation Vector [00 400 300]
Translation Vector [800,−1200,300] mm
Image Resolution 720 × 480

Table 1: Simulated camera parameters

Fig. 9 and Fig. 10 shows the ground truth location
of VP and the spread of estimated VPs using both
methods. The VPs estimated by LSVP have more
deviation from the true value. Fig. 11 represents the
error in x and y direction along with error norm for the
Monte-Caro runs. 3-PVP method shows lesser error as
compared to LSVP.

Computational Cost
Monte-Carlo runs also can indicate the computational
cost of the algorithm. The time taken by both meth-
ods are tabulated in Table 2 for 100, 1000 and 10000
runs. We can observe that the speed of 3-PVP is ap-
proximately ten times faster. LSVP method involves
firstly forming least square lines and secondly finding
their intersection. 3PVP on the contrary employs an al-
gebraic relation and is hence fast. These simulations
validate our method’s accuracy, robustness and speed.

Number of Runs 3-PVP (s) LSVP (s)
100 0.230184 1.27458

1000 1.5083 13.09765
10000 14.9408 132.65978

Table 2: Simulation Time

4.2 Experimental Results
The target used for validating the 3-P VP method is

shown in Fig. 8. The coordinates of the center of cir-
cles are known with high degree of accuracy. These
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points are planer in nature and form two sets of paral-
lel lines. The image is captured using a Cannon EOS
1100 D camera with fixed effective focal length of 50
mm. Median filter has been used to remove noise from
the image. A well-focused image of the target is pro-
cessed in MATLAB to obtain centroids of the circular
control points. Two vanishing points are obtained from
each image. The vanishing points obtained by the 3-p
strategy are compared with results from LSVP method.

3-PVP and LSVP are used on three images and their
VPs are estimated. The results show that both the meth-
ods work effectively with the current image. The dis-
tance between results from both methods is shown to
be of the order of 10−08 or lower. This also shows that
in the absense of noise both methods will converge to
the same estimate. VP estimates for those three images
are tabulated in Table 5.

The advantages of our method are,

• Tackling of radial distortion: Our algorithm gives
us the freedom to select the three points, which can
be selected such that they lie in the middle of the
image. Radial distortion effects are negligible near
the center.

• Handling defocused images: Partial defocusing in
images can lead to large erros in feature extraction.
We can select required three points in such a way
that you avoid defocused parts of the image.

• Independent of Parallel Lines: Errors also creep in
when the given set of lines is not perfectly paral-
lel. We do not need parallel lines and hence are not
prone to errors.

• Fast and Robust
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VP True VP (px) 3-PVP Error Norm LSVP Error Norm
Mean (px) STD (px) Mean (px) STD (px)

VP1 (2310.1, 240) 15.59 11.81 50.36 38.09
VP2 (-1013.1, -3467.3) 52.37 37.75 166.2 146.8
Table 3: Comparison of mean and std of error norm in VP estimation using 3-PVP and LSVP

VP True VP (px) 3-PVP Error LSVP Error
Mean (px) STD (px) Mean (px) STD (px)

VP1,x 2310.1 15.5410 11.8248 50.3179 38.073
VP1,y 240 0.6822 0.5821 1.9273 1.4071
VP2,x -1013.1 16.8240 12.1201 52.6534 46.5807
VP2,y -3467.3 49.5547 35.8124 157.5836 139.2167

Table 4: Comparison of 3-PVP and LSVP estimates and error analysis

Image VP 3-PVP (px) LSVP (px) ‖ ε ‖(distance)

Image 1 VP1 (279.45, -1179.07) (279.45, -1179.07) 6 E -11
VP2 (-36027.08, 4453.91) (-36027.08, 4453.91) 1 E -08

Image 2 VP1 (2601.13, -1539.28) (2601.13, -1539.28) 2 E -10
VP2 (-1778.97, -859.70) (-1778.97, -859.70) 1 E -10

Image 3 VP1 (1301.67, -1121.90) (1301.67, -1121.90) 1 E -10
VP2 (-4198.81, -644.39) (-4198.81, -644.39) 1 E -10

Table 5: Vanishing Points of real images using 3-PVP and LSVP

5 CONCLUSION

The 3-PVP method is based on single point perspec-
tivity. Three collinear points and their distance ratio
in the world frame characterize perspectivity in the di-
rection of that line. It provides us with a non-iterative,
closed-form solution. It is proved to be accurate and
robust. VP estimation was performed on simulated
images with a gaussian noise N (0,0.1). It provides
VPs with approximately one third the error norm and
a smaller standard deviation as compared to LSVP. 3-
PVP method is shown to be computationally cheap. Ex-
perimental results show that in the absence of noise,
3-PVP method and LSVP converge to the same value
(accurate estimation) albeit with much lesser compu-
tational time. It has promising future in applications
which require high accuracy VP estimation.
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