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Abstract
Service robotics applications, such as mobile manipulation in domestic environments, require 3D representations
of the objects of interest to be grasped. Simple object recognition or segmentation cannot provide structural shape
information mandatory for obtaining reliable grasp configurations. In this paper, the Generic Fitted Primitives
(GFP) technique for volumetric reconstruction is introduced. The goal of the method is to build full 3D object
shapes from a single camera perspective. In order to obtain the shape of the 3D primitive, we propose an energy-
minimization algorithm based on the concept of Active Contours applied directly on 3D visual data. Our modeling
approach produces compact closed surfaces (volumes) describing the objects of interest which can be further used
for service robotics tasks, such as grasping or manipulation. The performance of the proposed technique has been
evaluated against two different methods, i.e. generalized active contours and superquadric approximations.
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1 INTRODUCTION
In the last years, the 3D object reconstruction challenge
gained a lot of attention in application fields such as ser-
vice and industrial robotics, or virtual reality. In service
robotics, 3D reconstruction is usually involved in pro-
viding information for path planning and object grasp-
ing in mobile manipulation [Dil09a]. In such cases, one
major inconvenience regarding a service robot is that it
can perceive the scene from only one camera perspec-
tive. This aspect produces large occluded areas alter-
ing the structure of the objects. Thus, an estimation
of the object’s 3D shape must be considered in order
to obtain a full volumetric representation. Some meth-
ods try to reconstruct directly the volume of the ob-
ject by discretizing the 3D space into a series of vox-
els [Bet00a]. Other approaches aim at defining im-
plicit surfaces depicting different volumes through im-
plicit functions [Bar02a]. In this paper, we propose
the Generic Fitted Primitives (GFP) technique for fully
approximating the particular volumetric information of
the objects. The calculated models are intended to be
used for improving the grasping capabilities of service
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robots. The input visual information has been acquired
using structured light sensors, such as the MS Kinect R©,
and classical stereo cameras. An example of full 3D
reconstructed objects from a typical service robotics
scene is illustrated in Fig. 1.

In our GFP approach, the problem of 3D volumetric ap-
proximation has been divided into two phases. Firstly,
a coarse object detection method is used to extract an
initial object cluster for which its volume needs to be
estimated. In the second phase, the cluster is used for
fitting a GFP such that detected object will be fully re-
constructed. The main contributions of the paper may
be summarized as follows:

• the introduction of the GFP technique based on a
modified formulation of the Active Contours princi-
ple; the deformation of the primitive shape is per-
formed based on the normal direction of the so-
called control points of the GFP;

• the usage of a GFP as an initial contour within the
active contours framework; the modeling process
time is thus improved since the number of iterations
required to deform the initial shape is smaller;

• usage of the GFP approach for building full 3D vol-
umetric models of objects of interest in the context
of mobile manipulation.

3D object surface reconstruction is treated in a large
number of publications. Some of the paper found in lit-
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Figure 1: Full 3D volumetric reconstruction of multiple
objects in a mobile manipulation scenario.

erature are based on the implicit representation of mod-
els [Bae02a, Bar02a], whereas other exploit explicit a
priori surfaces (e.g. skeleton primitives) for augment-
ing the existing object structure [Gas01a]. One relevant
implicit approach makes use of generic 3D shapes (e.g.
such as spheres, cuboid, or ellipses) to roughly approx-
imate the global object volume [Bar81a]. These types
of methods are fast, do not need any a priori knowledge
about the reconstructed surface, but lack the accuracy
of the final approximated volume. A more refined vol-
ume can be obtain by partitioning the imaged surface in
more meaningful sub-regions which can be further indi-
vidually approximated using the same implicit principle
as in [Coc12a].

A different approach to 3D modeling is based on 3D
Object Retrieval (3DOR) search engines [Tan08a]. The
main drawback of this technique is that it needs a high
amount of computational power to find the optimal
match between a query representation (e.g. the imaged
object) and a set of targets (predefined models from a
database). In [Hua12a], the combination of RANSAC
and Procrustes analysis is used for recovering the joint
axes of objects. The algorithm does not make use of any
a priori object knowledge, but it requires a large number
of images depicting the object of interest. In [Mar09a],
the authors present a primitive based approach for ap-
proximating simple regulated objects like plates, boxes,
cans, etc. As opposed to our work, in [Mar09a], the
primitives are represented by simple geometric models,
such as cuboids, spheres, or cylinders, and not by prim-
itive shapes that can capture different particularities that
the objects might have. Krainin et al. [Kra11a, Kra11b],
applied the concept of object tracking during manipu-
lation for building online 3D models of objects using
range sensors and 3D data processing techniques. Nev-
ertheless, the model is represented by a Point Distribu-
tion Model (PDM) and not by a full 3D shape.

The rest of the paper is organised as follows. In Sec-
tion 2 the components of the primitive based model-
ing apparatus, along with the involved methodology, is

presented. Performance evaluation results are given in
Section 3, before the conclusions from Section 4.

2 METHODOLOGY
In mobile manipulation, activities of daily living sce-
narios typically involve a large numbers of objects. The
first step in the proposed framework is to segment the
different objects and obstacles in the scene. As a result
of segmentation, different 3D object clusters, or PDMs,
are obtained. Along with the clustering procedure, the
process also returns the object’s class. These PDMs are
used for modeling the GFP in such a way that it captures
the particularities of the object. The block diagram of
the GFP architecture is shown in Fig. 2.

Instead of using a large number of models as a pri-
ori information about a particular object, thus requiring
a large number of shapes to be stored, we propose a
more general approach through the use of GFPs. By
using only one primitive per object class (e.g. mug,
plate, bottle etc.), a considerably smaller sized primi-
tives database is obtained. At the same time, the com-
putation time is improved because the number of dis-
crete items that need to be searched is reduced.

2.1 Initialisation: Cluster Extraction
The extraction of the scene clusters is important for the
accuracy of the final primitive representation. Firstly,
the objects of interest need to be recognised in order
to select the correct GFP. We use a contextual object
recognition approach [Son11a] through a classification
process. Having obtained the object’s class, the cor-
responding 3D cluster of the same object is extracted.
The clusters are extracted as described in [Rus09a].
Namely, plane segmentation is used to divide an or-
ganized point cloud P into smaller meaningful clus-
ters C = [c0,c1, . . .cn] representing different entities. In
Fig. 3 an example of object recognition (labelling) and
object cluster extraction for a table-top scene is pre-
sented.

The output of the detection component is an isolated
PDM representation of the objects of interest. Further,
this representation is used to model the shape primitive
such that in the end it models the particularities of the
object as accurate as possible.

2.2 Generic Primitives
A generic primitive is considered to be an a priori
known shape describing a number of particular objects
from the same class. It is constructed in such a man-
ner that it resembles many similar objects. In this way,
an universal model for a certain class of objects is ob-
tained. For example, different types of bottles can be
roughly approximated by a joint pattern. The most im-
portant attribute of a shape is actually its global struc-
ture (frame) which, in a majority of cases, is similar to a
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Figure 2: Block diagram of the GFP 3D volumetric estimation approach.

large number objects of the same class. In this sense, in-
stead of finding the optimal object (from a considerably
large number of different shapes from the same class)
which best fits the PDM data, a modeling step applied
to a generic primitive M is addressed for estimating its
global object volume.

Depending on the geometric surface complexity, the
generic primitive can be defined by a high density of
3D points. This aspect directly influences the process-
ing time. A down-sampling filter used to reduce the
number of PDM points is not encouraged because the
global point cloud structure is altered. We approach
this issue from the GFP’s point of view. Namely, not
all feature points are relevant for modeling the cluster’s
structure. For example, many of them are used only
for the purpose of creating a volumetric surface. In this
sense, each point in the GFP will receive a special flag
or type. Hence, two point types are defined: control
and regular points. A point which has received the con-
trol flag is considered to be part of the frame and it is
positioned according to the 3D information in the point
cloud, whereas a regular point is used simply to smooth
the global structure of the shape, meaning it is moved
according to the positions of the control points.

  

(a) (b)

Figure 3: Object detection through cluster extraction.
(a) Scene labelling based on object recognition. (b) Eu-
clidean cluster extraction.

The classification of GFP points in different types can
be done either manually or automatically. The first pro-
cedure requires a human to manually select the point’s
type. Having in mind the required human interaction,
the manual labelling of points is time consuming. On
the other hand, the automatic type assignment has a
lower accuracy, but it is usually much more efficient
and does not suffer from subjectivity.

The automatic point selection is governed by a set
of rules used to established the point’s type [Cot95a].
Namely, control points are those obeying the following
statements:

• points describing sharp corners of a boundary, de-
tected as in [Web10];

• points marking the boundaries of M along the widest
axis;

• points located at equal distance around a boundary
between two control points obeying rule one;

• points marking a curvature extreme or the extreme
points of the object [Wat01].

An example GPF of a bottle is illustrated in Fig. 4.

In terms of the GFP definition, the primitive model is
a complex data structure composed of a vector M stor-
ing the 3D coordinates of all the features describing the
generic model, a vector A containing the point type at-
tributes of M, a vector W describing the mesh triangu-
lation indexes used for 3D surface representation and,
in the end, global characteristics such as height, length,
width, rotation R, translation T and the overall number
of features.

The objects are defined in a local coordinate system at-
tached to each considered model. Thus, a common co-
ordinate frame for both the GFP models and the cluster
of the object of interest, must be computed.
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Figure 4: Generic primitive of a bottle. Control points
are marked with red, while regular points are green.
Modelled points are shown in blue.

2.3 Model Registration
In order to correctly transfer the particularities of the
considered object to the GFP model, the involved
shapes must be aligned. For this purpose, the scene
model frame is considered to be the reference frame.
The primitive will be initialy aligned according using
a rigid body transformation. Therefore, the rotation
R, translation T and scale s of the GFP has to be
determined relative to the scene.
The scale factor s between the GFP and the segmented
cluster is determined by approximating each cluster us-
ing a circumscribed sphere. The ratio between the radii
of the shapes will act as a scale factor which will resize
the primitive to the size of the object.
By subtracting the center of mass mM(x,y,z) of the
primitive M from the center of mass mC(x,y,z) of the
object cluster ci, a relative translation T3x1 can be ob-
tained. Finally, the rotation R3x3 is determined by incre-
mentally rotating the primitive along all the three axes
and minimizing a sum of Euclidean distances between
the closest corresponding neighbor points of the two
forms. Further, a fine model fitting is obtained through
the Iterative Closest Point (ICP) algorithm [Zan94]. In
Fig. 5(a), 5(b) and 5(c) the registration of a mug primi-
tive is depicted.
Having computed all the prerequisite information
for the final modeling process, the primitive cloud is
aligned to the scene object using as:

Mnew(i) = s ·R(Mold(i)+T ), i = 0 . . .size(M), (1)

where Mnew(i) are the new coordinates of the primitive
point and Mold(i) are the initial point coordinates.

2.4 Primitive modeling
The purpose of the modeling process is to release the
primitive model from his generality. Through this step,

the primitive will capture the local geometry informa-
tion directly from the scene. Since initially no reliable
information regarding the global structure can be iden-
tified, the modeling procedure occurs at a local level
around each primitive point. If a particular vicinity
lacks sensed information, the GFP will fill up the miss-
ing information with generic data, that is, the stored
volumetric information in its shape. To make the en-
tire process time efficient, the modeling process will oc-
cur only for control points while the regular points will
be repositioned relative to these control points using a
linear motion law. The basic principle underlying the
primitive modeling step is known as Active Contours or
Snakes [Kas1988]. In the initial formulation, a snake
is a 2D curve which moves through an image domain
driven by a set of energies computed based on particu-
lar image features. The behavior of a snake in the 3D
space can be approximated with the weaving of a tex-
tile material. A major drawback of a snake is his in-
flexibility to topological changes. To cope with this is-
sue, in [McI00], topological snakes (T-Snakes) are pre-
sented. Using an affine cell decomposition [All03], the
authors succeded to create in this sense a framework
that significantly extends the abilities of standard snake
model.

The initial snake representation is described by a small
circle in the 2D image domain [Kas1988], while its
analogous in 3D is a sphere. Instead of using a sphere
as the starting closed surface, we address the usage of
a generic primitive, which already stores a rough struc-
ture of the considered object [Coc12b]. In comparison
with [Coc12b], in this paper the movement of a contour
point is constrained to only two directions, given by the
normal direction. Thus, an important computations re-
duction is achieved.

In 3D, a snake structure is harder to control because of
the extra degrees of freedom introduced by the third di-
mension. While for the 2D case there are only 8 possi-
ble moving directions, for 3D the number of candidate
directions reaches 26 (given by the grid representation
of the space). The Active Contours method tries to min-
imize a functional of energies ε(c) in order to incremen-
tally sculpt the initial contour c to an optimal final form
as described in Eq. 2. Two types of energies are for-
mulated for this purpose. The first type, Eint , is used to
constrain the model deformation such that the structure
integrity of the shape is kept at any moment during the
modeling process, while the second one, Eext , drives the
considered modelled point to a its best candidate posi-
tion:

min

(
N

∑
0
(Eint +Eext)

)
, (2)

and
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Eint = α(i) ·Econt(i)+β (i) ·Ecurv(i), (3)

where N is the number of modelled feature points,
α and β are the internal energy weight factors, Econt
represents the energy which ensures that the model
surface is continuous (such that during the modeling
process the newly rearranged points will not produce
large gaps) and Ecurv is the energy responsible for the
smoothness of the surface. The α and β parameters
are constrained by an empirical established threshold
value. Thus, if the respective energy has a value be-
low that particular threshold, then the respective weight
factor (α and β ), will be set 0, otherwise it will be 1.

As in Eq. 3, the internal energy is composed of two en-
ergies: Econt and Ecurv. They are used exclusively to
constrain the movement of the points and at the same
time to keep the model as compact and intuitive as pos-
sible. The internal energies are computed based on the
first and second derivatives of the points which are to be
modelled. The computation of the derivative of a cer-
tain snake point implies a neighborhood knowledge of
the contour points. For example, in 2D the first deriva-
tive of a snake point is computed based on the previous
and current position of the considered point. Similar,
the second derivative is computed using the position of
the previous, current and next point in the snake con-
tour. In the 3D space, the previous respective the next
snake contour points are evaluated as the closest, re-
spective second closest nearest neighbor. Nevertheless,
this approach is not always correct. At sharp corners
this type of selection is erroneous. To avoid that, the
relations between the points of the countour should be
established using the mesh like representation. In this
approach, the points making up the 3D contour will be
the vertices of a mesh. Each face of the mesh describe
a relation between minimium 3 points, thus the correct
previous, respectively next countour points can be easly
established. Considering these aspects, the mathemat-
ical formulation of the internal energy computed in a
certain contour point pi, can be stated as follows:

Econt(i) = |
dc
ds
|2 + |dc

dr
|2

= ||pi(s)− pi−1(s)||2 + ||pi(r)− pi−1(r)||2,
(4)

respectively,

Ecurv(i) = |
d2c
ds2 |

2 + |d
2c

dr2 |
2 + | d2c

dsdr
|2

= ||pi−1(s)−2pi(s)+ pi+1(s)||2+
||pi−1(r)−2pi(r)+ pi+1(r)||2+
||pi−1(s,r)−2pi(s,r)+ pi+1(s,r)||2 (5)

where, s and r are the axis used to represent the 3D
contour (as an topological manifold)

The process of minimizing the functional of energy
ε(c) implies resolving the following Euler-Lagrange
ecuation:

Eext +α(s)|dc
ds
|2 +α(r)|dc

dr
|2−β (s)|d

2c
ds2 |

2−

β (r)|d
2c

dr2 |
2−β (s,v)| d2c

dsdr
|2 = 0. (6)

The equation is true when the energies used in the pro-
cess are in equilibrium. This also means that the con-
tour has touched a relevant characteristic from the space
(corner, edge, etc.).

The most important energy in our context, Eext , is rep-
resented, in the 2D domain by the intensity of the grey-
scale candidate pixel. Similarly, in 3D, the pixel’s
intensity is equivalent to the neighboring density of
points. The amount of neighbors lying in a given area
is determined using the kdtree principle [Ben75a]. To
avoid searching for the optimal candidate trough all 26
possible directions of a control point, given by the grid
based representation of the space, the normal direction
is used to reduce the search space to only 2 candidate
directions. Fig. 5(d) shows the computed normal of
a given generic primitive. Moving a control point ex-
clusively along his normal directions deforms the sur-
face in a natural and intuitively manner. By doing this,
the overall processing time is considerably improved.
Along the normal direction, the best position candidate
for the control point is determined using the next set of
rules:

• if the primitive candidate point mcd is already lying
in a dense region, move mcd along both normal di-
rections and find the first point with the number of
nearest neighbors nncp closest to 0: nncp ≥ 0;

• if mcd has nncp = 0, search along both normal direc-
tion for nncp > 0; if, after searching, nncp = 0, freeze
the control point in its initial position since no reli-
able surface information was found; if nncp 6= 0, set
the position of the control point in the candidate po-
sition (with nncp > 0) closest to mcd .

Based on this set of rules, the best candidate position of
a given modelled point can be determined. In Fig. 5(e),
the movement of a control point towards the local den-
sity information is illustrated. The final model of the
GFP is depicted in Fig. 5(f).

To help create a more smoother surface and reduce the
number of snake iterations, we propose an Euclidean
distance based linear constrained. When a point is
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moved from an initial to a candidate position, all the
neighbors within a vicinity radius equal to the Eu-
clidean distance between the initial and the candidate
position, will be gradually affected by a linear factor
as:

Mnew(i) = Mold(i) ·
(

1+
dcurr

dmax

)
, i = 0 . . .size(M)

(7)

where Mnew(i) and Mold(i) are the new and old coor-
dinates of the points lying inside the affected area of
radius dmax. dcurr is the Euclidean distance between the
current affected point and the control point. dmax is the
Euclidean distance between the farthest point inside the
affected area. Figs. 4 and 5(e) show the behavior of
such Euclidean linear constraint principle, where a sin-
gle point is dragged along the normal direction to find
the correct surface location.

Inside the sphere described by the dmax radius, the
points are modified accordingly to a computed ratio
based on the distance between the neighboring and the
initial primitive points. In this sense, the deforma-
tion is gradually applied, having the greatest effect on
the neighbor points lying closer to the considered con-
trol point. Thus, the neighbor points at the margin of
the sphere are slightly deformed. The proposed algo-
rithm, not only is time efficient, but the movement of
the points occur in a more intuitively way.

3 EXPERIMENTAL RESULTS
3.1 Setup
For evaluation purposes, two types of sensors have
been used: a MS Kinectr RGB-D sensing device,
used mainly for indoor testing, and a Point Grey
Bumblebeer stereo camera for acquiring outdoor
scenes. Both sensors output dense 3D information
from the imaged scene. During tests, a constant
illumination was ensured.

As GFP models, we have used the benchmark database
in [Shi04a]. By using GFPs, the size of the database
has been reduced from 1814 objects to only 142 general
primitives. The GFPs were created as average shapes
of the initial database. The point type assignment of
all the primitives in the database was performed offline
using the automated process, which took, in average,
around 8 minutes for each model. During testing, all
objects were placed on flat surfaces for detection and
segmentation1.

1 The source code of the GFP approach is part of the ROVIS
machine vision system, available at the svn repository http:
//rovis.unitbv.ro/rovis/. Please ask the authors
permission for downloading.

3.2 Metrics
For evaluation purposes, an Euclidean based fitting
measurement has been considered. Because the main
goal of the modeling approach is to create a particular
representation of a GFP, the distance between these
two representations can be considered to be a similarity
measure. Thus, by summing the distances between
each point from the scene’s objects and the nearest
neighboring GFP point, the following fitting metric is
obtained:

f itdist(C,M) =
1
N

n

∑
i=0

1
1+ argmin

f itdist

||C(i)−nni(M)||2 · γ
,

(8)

where f itdist ∈ [0,1] is the fitting error and N the number
of points in the GFP. C and M are the PDMs of the
clustered object and of the modeled GFP, respectively.
C(i) is the closest scene point to a GFP point nni(M),
while γ represents a scale factor. The better the GFP
modeling is, the lower the value of f itdist is.

3.3 Case Study: modeling a Mug
From a total number of 410 primitive points describ-
ing a mug, only 203 (107 control points and 96 reg-
ular points) were moved during the modeling process.
The rest of the points were assessed as optimal positions
since they do not have any 3D data in their vicinity. The
modeling computation time is approx. 680ms. The final
mug model was obtained after only 21 modeling itera-
tions. At each step, the contour was pushed through the
scene with a 1mm offset further along the normal di-
rections. Concerning the original formulation with the
initial contour depicting a sphere, the number of itera-
tions needed to obtain a shape similar to the modelled
primitive is around 38 iterations. A comparative analy-
sis of the energy evolution is illustrated in Fig. 6. The
computation time, for the case of the sphere, reached
9sec.

For a different mug shape (e.g. highly deformed cup),
the automatic point type assignment will generate a
greater number of control points, directly influenc-
ing the computation time. Having a larger number
of points describing the structure, the computation
time increased from 0.6sec. to 0.9sec. for the GFP
modeling.

For objects describing complex surfaces, keeping the
primitive defined trough a low number of 3D points will
cause the binding of some irregularities on the object
surface. An up-sampling filter can be used to augment
the initial primitive representation [Bre05a] and to pro-
duce high accurate models. When using denser repre-
sentations, the fitting metric f itdist is lower than the one
obtained from sparse representations. Particular to the
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Figure 5: GFP modeling of a mug. (a) Initial overlapping between the object’s cluster and the GFP. (b) Euclidean
distance based rotation approximation. (c) Fine alignment using ICP. (d) Primitive points normals described by the
straight blue lines. (e) Searching along the normal directions. (f) Final annotated GFP.

 

Figure 6: Number of iterations required for modeling
using for different initial contours. A comparative anal-
ysis between the GFP approach and 3D active contours.

mug model, the overall volumetric error has been low-
ered to 5% by using the up-sampled representation of
the same shape.

3.4 GFP vs. Superquadrics
Among the existing object volumetric estimation
methods, superquadrics represent a real competitor
for the GFP principle presented in this paper. A su-
perquadric is a parametrized geometric shape obtained
by the spherical product between two curves modelled
through a series of parameters [Bar81a]. It resembles
many geometrical models starting from simple cubes or
cylinders and ending with complex ones such as toroid
or hyperboloid. Because of the roughness provided by
the generic shape, it is not desirable to use only one
superquadric to approximate an object. In this sense,
multiple joined superquadics produces a more precise
and fine object [Coc12a].

By constantly changing the 11 parameters which de-
fines a superquadric and by evaluating the newly ob-
tained shape through an in-out function, the optimal
model, given the point cloud representation of a particu-
lar object, can be obtained. This principle is considered
to be fast because only a few parameters, which actually

      

(a) (b)

Figure 7: Estimated object volume described as a red
point cloud. (a) GFP technique. (b) Multiple su-
perquadrics approach.

deform the output shape, are controlled. The complex
structure of a particular object can be approximated, in
some case, with a very large number of superquadrics.
Indeed, the global object volume will be more precise
if this value is large, while the computation time will
exponentially increased. On the other hand, by using
a small number of superquadric models, only a rough
volume will be obtained in the end. It can be stated that
for simple objects, the superquadric based method is
faster, whereas for complex models, the GFP technique
excels both on precision, as well as on time efficiency.

One major advantage of superquadrics, in contrast to
the GFP technique, is that it does not need pose normal-
ization or any a priori knowledge regarding the class
of the segmented object. This is the compromise that
the GFP method is paying for its precision. In Fig. 7
a shoe modeling example using both methods is pre-
sented. Comparative numerical results are given in Ta-
ble 1.

Method Processing Fitting
time [sec] accuracy [%]

Superquadrics 4.79 0.7689
GFP 1.53 0.9762

Table 1: Comparative results between Superquadric
based volume estimation and the GFP technique for the
case of a shoe.

By using a primitive as an initial contour, the volumet-
ric fit error of the GFP method is the smallest. Us-
ing superquadrics, the final volume is obtained as a re-
union of a series of superelipses which best approxi-
mate the segmented object. Since the superquadric ap-
proach doesn’t need pose normalization, the volumetric
fit error is the only comparison parameter used during
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the comparative evaluation. From the grasping point
of view, both methods output reliable grasp models,
the difference being that the GFP technique, because
of its accuracy, provides more grasping configurations.
The grasping configurations were calculated using the
GraspIt [Mil01a] methodology. A grasping simulation
for a shoe object is depicted in Fig. 8.

     

Figure 8: Grasp candidate configuration for a shoe. The
world frame axes are coloured in yellow whereas the
pressure points intersecting the GFP are marked with
red.

4 CONCLUSIONS
In this paper, the GFP 3D object volumetric estimation
technique has been presented. The goal of the approach
is to estimate as accurately as possible the 3D structure
of objects found in robotic mobile manipulation sce-
narios. As future work the authors consider the time
computation enhancement of the proposed procedure
through parallel computational devices (e.g. Graphic
Processors), as well as the application of the method to
other computer vision related areas, such as 3D medical
imaging.
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