

Straight Skeleton for Automatic Generation of 3-D
Building Models with General Shaped Roofs

Kenichi Sugihara

Gifu Keizai University

5-50 Kitagata-chou

Ogaki city, Gifu-Pref., 503-8550, Japan

sugihara@gifu-keizai.ac.jp

ABSTRACT
3D urban models are important in several fields, such as urban planning and gaming industries. However,

enormous time and labor has to be consumed to create these 3D models, using a 3D modeling software such as

3ds Max or SketchUp. In order to automate laborious steps, a GIS and CG integrated system is proposed for

automatically generating 3D building models, based on building polygons (building footprints) on digital maps.

Digital maps shows most building polygons' edges meet at right angles (orthogonal polygon). In the digital map,

however, not all building polygons are orthogonal. In either orthogonal or non-orthogonal polygons, the new

system is proposed for automatically generating 3D building models with general shaped roofs by straight

skeleton computation. In this paper, the algorithm for shrinking a polygon and forming a straight skeleton are

clarified and, the new methodology is proposed for constructing roof models by assuming ‘the third event’ and,

at the end of the shrinking process, the shrinking polygon is converged to ‘a line of convergence’.

Keywords
3D urban model, automatic generation, GIS (Geographic Information System), 3D building model, straight

skeleton.

1. INTRODUCTION
3D urban models, such as the one shown in Fig.1

right, are important in urban planning and gaming

industries. Urban planners may draw the maps for

sustainable development. 3D urban models based on

these maps are quite effective in understanding what

if this alternative plan is realized. However,

enormous time and labour has to be consumed to

create these 3D models, using 3D modeling software

such as 3ds Max or SketchUp. For example, when

manually modeling a house with roofs by

Constructive Solid Geometry (CSG), one must use

the following laborious steps:

 (1) Generation of primitives of appropriate size, such

as box, prism or polyhedron that will form parts of a

house (2) Boolean operations are applied to these

primitives to form the shapes of parts of a house such

as making holes in a building body for doors and

windows (3) Rotation of parts of a house (4)

Positioning of parts of a house (5) Texture mapping

onto these parts.

In order to automate these laborious steps, a GIS

(Geographic Information System) and CG integrated

system was proposed for automatically generating

3D building models, based on building polygons or

building footprints on a digital map shown in Fig. 1

left [Sug09]. A complicated orthogonal polygon can

be partitioned into a set of rectangles. The proposed

integrated system partitions orthogonal building

polygons into a set of rectangles and places

rectangular roofs and box-shaped building bodies on

these rectangles. In order to partition an orthogonal

polygon, a useful polygon expression (RL

expression: edges’ Right & Left turns expression)

and a partitioning scheme was proposed for deciding

from which vertex a dividing line (DL) is drawn

[Sug12].

In the digital map, however, not all building

polygons are orthogonal. In either orthogonal or non-

orthogonal polygons, the new system is proposed for

automatically generating 3D building models with

general shaped roofs by the straight skeleton defined

by a continuous shrinking process, which was

introduced and discussed by Aichholzer et al.[Aic95].

However, some roof models are not created by their

Permission to make digital or hard copies of all or part

of this work for personal or classroom use is granted

without fee provided that copies are not made or

distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first

page. To copy otherwise, or republish, to post on

servers or to redistribute to lists, requires prior specific

permission and/or a fee.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 175 ISBN 978-80-86943-75-6

proposed method. In this paper, the new

methodology is proposed for constructing roof

models by assuming ‘the third event’ and, at the end

of the shrinking process, the shrinking polygon is

converged to ‘a line of convergence’.

2. RELATED WORK
Since 3D urban models are important information

infrastructure that can be utilized in several fields, the

researches on creations of 3D urban models are in

full swing. Various types of technologies, ranging

from computer vision, computer graphics,

photogrammetry, and remote sensing, have been

proposed and developed for creating 3D urban

models.

Using photogrammetry, Gruen et al. [Gru98, Gru02]

introduced a semi-automated topology generator for

3D building models: CC-Modeler. Feature

identification and measurement with aerial stereo

images is implemented in manual mode. During

feature measurement, measured 3D points belonging

to a single object should be coded into two different

types according to their functionality and structure:

boundary points and interior points. After these

manual operations, the faces are defined and the

related points are determined. Then the CC-Modeler

fits the faces jointly to the given measurements in

order to form a 3D building model.

Suveg and Vosselman [Suv02] presented a

knowledge-based system for automatic 3D building

reconstruction from aerial images. The reconstruction

process starts with the partitioning of a building into

simple building parts based on the building polygon

provided by 2D GIS map. If the building polygon is

not a rectangle, then it can be divided into rectangles.

A polygon can have multiple partitioning schemes.

To avoid a blind search for optimal partitioning

schemes, the minimum description length principle is

used. This principle provides a means of giving

higher priority to the partitioning schemes with a

smaller number of rectangles. Among these schemes,

optimal partitioning is ‘manually’ selected. Then, the

building primitives of CSG representation are placed

on the rectangles partitioned.

These proposals and systems, using photogrammetry,

will provide us with a primitive 3D building model

with accurate height, length and width, but without

details such as windows, eaves or doors. The

research on 3D reconstruction is concentrated on

reconstructing the rough shape of the buildings,

neglecting details on the façades such as windows,

etc [Zla02].

On the other hand, there are some application areas

such as urban planning and game industries where

the immediate creation and modification of many

detailed building models is requested to present the

alternative 3D urban models. Procedural modeling is

an effective technique to create 3D models from sets

of rules such as L-systems, fractals, and generative

modeling language [Par01].

Müller et al. [Mül06] have created an archaeological

site of Pompeii and a suburbia model of Beverly

Hills by using a shape grammar that provides a

computational approach to the generation of designs.

They import data from a GIS database and try to

classify imported mass models as basic shapes in

their shape vocabulary. If this is not possible, they

use a general extruded footprint together with a

general roof obtained by the straight skeleton

computation defined by a continuous shrinking

process [Aic95]. However, there is no digital map

description and in-depth explanation about how the

skeleton is formed and applied to create roofs in their

paper.

More recently, image-based capturing and rendering

techniques, together with procedural modeling

approaches, have been developed that allow

GIS Application

(ArcGIS)

*Building Polygons on 2D

Digital Map

*Attributes (left below) such as

the number of stories linked to

a building polygon

 Figure 1. Pipeline of Automatic Generation for 3D Building Models

GIS Module
(Visual Basic &

MapObjects)

*Partitioning

orthogonal

polygons into

rectangles

*Contour

Generation

*Filtering out

noise edges,

unnecessary

vertices

CG Module

(MaxScript)

*Generating 3D

models &

Boolean

operation

*Rotating and

positioning 3D

models

*Automatic

texture mapping

onto 3D models

Automatically generated 3D urban model

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 176 ISBN 978-80-86943-75-6

buildings to be quickly generated and rendered

realistically at interactive rates. Bekins et al. [Dan05]

exploit building features taken from real-world

capture scenes. Their interactive system subdivides

and groups the features into feature regions that can

be rearranged to texture a new model in the style of

the original. The redundancy found in architecture is

used to derive procedural rules describing the

organization of the original building, which can then

be used to automate the subdivision and texturing of

a new building. This redundancy can also be used to

automatically fill occluded and poorly sampled areas

of the image set.

Aliaga et al. [Dan07] extend the technique to inverse

procedural modeling of buildings and they describe

how to use an extracted repertoire of building

grammars to facilitate the visualization and

modification of architectural structures. They present

an interactive system that enables both creating new

buildings in the style of others and modifying

existing buildings in a quick manner.

Vanega et al. [Car10] interactively reconstruct 3D

building models with the grammar for representing

changes in building geometry that approximately

follow the Manhattan-world (MW) assumption which

states there is a predominance of three mutually

orthogonal directions in the scene. They say

automatic approaches using laser-scans or LIDAR

data, combined with aerial imagery or ground-level

images, suffering from one or all of low-resolution

sampling, robustness, and missing surfaces. One way

to improve quality or automation is to incorporate

assumptions about the buildings such as MW

assumption. However, there are lots of buildings that

have cylindrical or general curved surfaces, based on

non-orthogonal building polygons.

By these interactive modeling, 3D building models

with plausible detailed façade can be achieved.

However, the limitation of these modeling is the

large amount of user interaction involved [Nia09].

When creating 3D urban models for urban planning

or facilitating public involvement, 3D urban models

should cover lots of citizens’ and stakeholders’

buildings involved. This means that it will take an

enormous time and labour to model a 3D urban

model with hundreds or thousands of building.

Thus, the GIS and CG integrated system that

automatically generates 3D urban models

immediately is proposed, and the generated 3D

building models that constitute 3D urban models are

approximate geometric 3D building models that

citizens and stakeholder can recognize as their future

residence or real-world buildings.

3. PIPELINE OF AUTOMATIC

GENERATION
As the pipeline of automatic generation is shown in

Fig.1, the source of a 3D urban model is a digital

residential map that contains building polygons. The

digital maps are stored and administrated by GIS

application (ArcGIS, ESRI Inc.). The maps are then

preprocessed at the GIS module, and the CG module

finally generates the 3D urban model.

To streamline the building generation process, the

knowledge-based system was proposed for

generating 3D model by linking the building

polygons to information from domain specific

knowledge in GIS maps: attributes data such as the

number of storey and the type of roof.

Preprocessing at the GIS module includes the

procedures as follows: (1) Filter out an unnecessary

vertex whose internal angle is almost 180 degrees.

(2) Partition or separate orthogonal building

polygons into sets of rectangles. (3) Generate inside

contours by straight skeleton computation for placing

doors, windows, fences and shop façades which are

setback from the original building polygon. (4) Form

the straight skeleton for the general shaped roof. (5)

Rectify the shape of the polygons so that there are no

gaps or overlaps between geometric primitives such

as rectangles. (6) Export the coordinates of polygons’

vertices, the length, width and height of the

partitioned rectangle, and attributes of buildings.

The attributes of buildings, shown in Fig.1 left below,

consist of the number of storeys, the image code of

roof, wall and the type of roof (flat, gable roof,

hipped roof, oblong gable roof, gambrel roof,

mansard roof, temple roof and so forth). The GIS

module has been developed using 2D GIS software

components (MapObjects, ESRI).

As shown in Fig.1, the CG module receives the pre-

processed data that the GIS module exports,

generating 3D building models. In GIS module, the

system measures the length and gradient of the edges

of the partitioned rectangle. The CG module

generates a box of the length and width, measured in

GIS module.

In case of modeling a building with roofs, the CG

module follows these steps: (1) Generate primitives

of appropriate size, such as boxes, prisms or

polyhedra that will form the various parts of the

house. (2) Boolean operations applied to these

primitives to form the shapes of parts of the house,

for examples, making holes in a building body for

doors and windows, making trapezoidal roof boards

for a hipped roof and a temple roof. (3) Rotate parts

of the house according to the gradient of the

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 177 ISBN 978-80-86943-75-6

partitioned rectangle. (4) Place parts of the house. (5)

Texture mapping onto these parts according to the

attribute received. (6) Copy the 2nd floor to form the

3rd floor or more in case of building higher than 3

stories.

CG module has been developed using Maxscript that

controls 3D CG software (3ds MAX, Autodesk Inc).

4. STRAIGHT SKELETON

COMPUTATION FOR ROOF

GENERATION
Aichholzer et al. [Aic95] introduced the straight

skeleton defined as the union of the pieces of angular

bisectors traced out by polygon vertices during a

continuous shrinking process in which edges of the

polygon move inward, parallel to themselves at a

constant speed. The straight skeleton is unexpectedly

applied to constructing general shaped roofs based on

any simple building polygon, regardless of their

being rectilinear or not.

As shrinking process shown in Fig.2, each vertex of

the polygon moves along the angular bisector of its

incident edges. This situation continues until the

boundary change topologically. According to

Aichholzer et al. [Aic95], there are two possible

types of changes:

(1) Edge event: An edge shrinks to zero, making its

neighboring edges adjacent now.

(2) Split event: An edge is split, i.e., a reflex vertex

runs into this edge, thus splitting the whole polygon.

New adjacencies occur between the split edge and

each of the two edges incident to the reflex vertex.

A reflex vertex is a vertex whose internal angle is

greater than 180 degrees.

All edge lengths of the polygon do not always

decrease during the shrinking process. Some edge

lengths of a concave polygon will increase. For

example, as shown by ‘ed1’ and ‘ed2’ in Fig.2(a), the

edges incident to a reflex vertex will grow in length.

If the sum of the internal angles of two vertices

incident to an edge is more than 360 degrees, then the

length of the edge increases, otherwise the edge will

be shrunk to a point (node).

Shrinking procedure is uniquely determined by the

distance dshri between the two edges of before & after

shrinking procedure. The distance e_dshri is the dshri

when an edge event happens in the shrinking process.

e_dshri for the edge (edi) is calculated as follows:

Figure 2. Shrinking process and a straight skeleton, a roof model automatically generated

ed2

ed1

(b) Split event happens and the

polygon is split into two

polygons.

(a) Shrinking polygon just

before a split event

(c) Split event happens again and

the polygon is split into two

triangles.

(e) The straight skeleton defined

as the union of the pieces of

angular bisectors traced out by

polygon vertices during the

shrinking process

(f) A roof model automatically

generated: each roof board is based

on an ‘interior monotone polygon’

partitioned by straight skeleton

(d) Polygons shrinking at a

constant interval: nodes by an

edge event: nodes by a split

event: nodes by a collapse of a

triangle to a point.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 178 ISBN 978-80-86943-75-6

e_𝐝shri =
Ｌ

i
 cot 0.5 ∗ θi + cot 0.5 ∗ θi+1

where Li is the length of edi, and θi & θi+1 are internal

angles of vertices incident to edi.

When 0.5*θi＋0.5*θi+1＜180 degrees, i.e., the sum

of the internal angles of two vertices incident to an

edge is less than 360 degrees, an edge event may

happen unless the edge is intersected by an angular

bisector from a reflex vertex and a split event

happens.

Fig.2 from (a) to (c) show a shrinking process for a

non-orthogonal concave polygon: the polygon just

before a split event: the polygon being split into two

polygons after a split event happens. Fig.2(d) shows

a set of polygons shrinking at the constant interval

and nodes by an edge event and a split event, and

nodes by a collapse of a triangle into a point.

Fig.2(e) shows the straight skeleton defined as the

pieces of angular bisectors traced out by polygon

vertices. Fig.2(f) shows the roof model automatically

generated. Since the straight skeleton partitions the

interior of a polygon with n vertices (n-gon) into n

monotone polygons, each roof board that constitutes

the roof model is formed based on these partitioned

‘interior monotone polygons’.

4.1. ALGORITHM for STRAIGHT

SKELETON
Fig.3 shows the overall outline pseudo-code for the

straight skeleton computation by split & edge event

and collapse of a triangle to a node. At first, one

simple polygon (P) is given such as shown in Fig.2.

If there is any reflex vertex in the P, then it can be

divided into two or more polygons.

At four lines from the top of the code, the system

calculates e_dshri for all edges and finds the shortest

of them. Then, the system checks if split event

occurs by increasing dshri by (e_dshri /n_step). In this

way, the shrinking process may proceed until dshri

reaches the shortest e_dshri found. In the process, a

split event may happen and the polygon will be

divided into some polygons: Ps. In the upper half of

the code (split event process), all divided polygons

are checked if they can be divided more. As long as

there is some Ps that can be divided, split event will

continue. After that, the system concentrates on the

edge event procedure.

In the split event process, during shrinking to the

shortest e_dshri, the system checks if a line segment

of an angular bisector from a reflex vertex intersects

another edge of the polygon or not. If an edge is

found intersected, the system calculates the node

position by the split event. However, one edge will

be intersected by several angular bisectors from

several reflex vertices. Among the several reflex

vertices, the reflex vertex that gives the shortest dshri

will be selected for calculating the position.

After any type of event happens and the polygon

changes topologically, there remains one or more

new split polygons which are shrunk recursively if

they have non-zero area. At that moment, the system

recalculates the length of each edge and internal

angles of each vertex in order to find the shortest dshri

for next events.

In the code, the P has members: ‘split event finish flag’

(sp_ev_fin_fl) and ‘edge event finish flag’ (ed_ev_fin_fl)

which indicate whether or not the P can be processed

by ‘split event’ or ‘edge event’ respectively, during

the shrinking process. If ‘sp_ev_fin_fl’ is set for the

P, then the P is finished with split event checking. If

‘sp_ev_fin_fl’ is reset, then the P will be checked

whether split event is happened or not.

In the upper half of the algorithm, if at least one

possibly divided P remains unchecked for ‘split

event’, then ‘SplitEventLoopFinish_flag’ will be

reset and the system cannot get out of the ‘while

loop’. After all Ps have been checked for ‘split event’,

then all Ps are checked only for ‘edge event’ and

then ‘triangle’ procedure for nodes generation as

shown in the lower half of the algorithm.

While (Event procedure is not finished for all split P) {

While (‘SplitEventLoopFinish_flag’ == reset) {

For all one or more split P: { If (P. sp_ev_fin_fl == reset) {

Find the shortest e_dshri of the P.

 Check if Split Event occurs by increasing dshri by (e_dshri

/n_step).

 If (Angular bisector from a reflex vertex intersects

another edge) {
 Calculate the node position by Split Event.

 }

}

 For all one or more split P:{ If (P. sp_ev_fin_fl == reset)

 Reset ‘SplitEventLoopFinish_flag’

 }

 } /* For “ While (‘SplitEventLoopFinish_flag’ == reset){“ */

For all one or more split P:{ If (P. ed_ev_fin_fl == reset) {
Find the shortest e_dshri of the P; Shrink P by e_dshri;

 Calculate the node position by Edge Event.}

 }

For all one or more split P: { If (P is a triangle) {

 Calculate the node position of the triangle.

 Associate the node with the original edge. }

 }

} /* For “While (Event procedure is not finished for all split P) { “ */

Figure 3. Algorithm for forming straight skeleton by

Split & Edge event and Collapse of a triangle to a node

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 179 ISBN 978-80-86943-75-6

The generated nodes will be associated with the

edges of original P (original edge: o-edge), since at

least three original edges sweep to form the node.

Therefore, at each event when the node is generated,

at least three o-edges will be linked to the node.

When a square or a regular hexagon collapses to a

node, four or six o-edges will sweep into a node. This

is the case of degeneration.

The third event as ‘the simultaneous one’ is

processed at ‘edge event’, since the other split

polygon disappears into a node in this event. After

detecting the split event and edge event have

occurred simultaneously, the system deals with the

event and links the generated node to three o-edges.

4.2. HOW MONOTONE POLYGONS

are FORMED
Fig.4(c) shows how these interior monotone

polygons are formed. When a shrinking process starts,

the edges of the polygon sweep inwards from their

original edge (o_edi). Nodes arise from the edge

event or the split event. For example, Node1, arisen

by the edge event, is the convergent point into which

consecutive three original edges (from o_ed3 to

o_ed5) sweep. On the other hand, Node2, arisen by

the split event, is the intersection point between the

angular bisector from the reflex vertex (between

o_ed2 & o_ed3) and the intersected edge (o_ed7).

Since at least three original edges (o_edi) sweep into

a node, the node keeps information about which

o_edi makes up the node itself. In order to form

monotone polygons, following the original edge one

by one, the system searches which node has the same

original edge number. For example, o_ed4 has an

only one node (Node1) that has the same original

edge number, whereas o_ed3 has four nodes that

have the same original edge number including such

as Node1, Node2. The nodes belonging to each o_edi

are sorted according to the coordinate value on the

axis parallel to each original edge (o_edi) vector.

These nodes are coplanar, and will form a roof board

for a 3D building model.

Fig.4(d) shows how a split event happens, and how

the position of the node arisen by the split event is

calculated. The position of the node is given by the

intersection of two angular bisectors: one from the

reflex vertex and the other bisector between the

intersected edge and one of two edges incident to the

reflex vertex.

For some polygons in Fig.5 showing a shrinking

process of an orthogonal polygon, the event different

from the two events mentioned will happen. In this

research, it is proposed to add the third event in

which a reflex vertex runs into the edge, but the other

split polygon is collapsed into a node since an edge

event happens in the split polygon at the same time.

This event happens at an orthogonal part of the

polygon as shown in Fig.5. In the process, as shown

in Fig.5(b) & (c), the system detects ‘the third event’

by checking if ptia (vertex) is on edib (edge) or ptib is

on edia where ptia & ptib are the vertices next to two

vertices coherent by the edge event, and edia & edib

are the edges adjacent to these two coherent vertices.

(a) Shrinking polygon just before

a split event

(b) Split event happens and the

polygon is split into two

(c) The straight skeleton formed as

the union of the pieces of angular

bisectors

(d) The position of the node is given by the intersection of

two angular bisectors: one from the reflex vertex and the

other between the intersected edge and one of two edges

incident to the reflex vertex.

Figure 4. How a split event happens, and how the position of the node is calculated

o_ed2

o_ed1

o_ed4

o_ed3

o_ed5

o_ed6
o_ed7

Node1

Node2

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 180 ISBN 978-80-86943-75-6

Aichholzer et al. [Aic95a] demonstrated three edge

events let a triangle collapse to a point in the last

stage of each split polygon as shown in Fig.2(d). In

this paper, it is proposed to add the case in which two

edge events let a rectangle collapse to a line segment

(‘a line of convergence’) in the last stage, a rectangle

whose opposite sides have the same and the shortest

e_dshri.

Since a line segment does not have area, it is not

shrunk anymore. The central area of an orthogonal

polygon in Fig.5(d) shows a line of convergence to

which the shrinking polygon (rectangle) is converged.

5. APPLICATION AND CONCLUSION
Here are the examples of 3D building models

automatically generated by the integrated system.

Fig.6 shows the examples of 3D building models

automatically generated by the straight skeleton

computation from non-orthogonal building polygons.

To ease the discussion, Aichholzer et al. [Aic95a]

exclude degeneracies caused by special shapes of

polygon, e.g., a regular polygon. In this paper, we

deal with the degenerate cases in which more than

three edges are shrunk to a point. Ideally,

simultaneous n edge events cause a regular n-gon to

collapse to a point but it is difficult to draw such a

perfect regular n-gon. Accordingly, the system

rectifies the shape of the regular n-gon so as to let n

edge events at the same time. Fig.6 center shows the

3D dodecagon building model automatically

generated based on the degeneracy of 12 edges being

shrunk to one node.

Fig.7 shows proposed digital map for the town and

an automatically generated 3D urban model: town

houses with doom roofs created by straight skeleton

computation in the middle of the image.

For everyone, a 3D urban model is quite effective in

understanding what if this alternative plan is realized,

what image of a sustainable city will be.

Traditionally, urban planners design the city layout

for the future by drawing building polygons on a

digital map. Depending on the building polygons, the

integrated system automatically generates a 3D urban

model so instantly that it meets the urgent demand to

realize another alternative urban planning for

sustainable development.

Figure 5. Shrinking process and a straight skeleton for third events

(e) The straight skeleton defined as

the union of the pieces of angular

bisectors traced out by polygon

vertices during the shrinking

process

(f) A roof model automatically

generated: each roof board is based on

an ‘interior monotone polygon’

partitioned by straight skeleton

(d) Polygons shrinking at a

constant interval: nodes by an edge

event & a third event: nodes by a

collapse of a rectangle to a line.

(b) A third event happens and the

polygon is split into one node and

one polygon.

(a) Shrinking polygon just

before a third event

(c) A third event happens again

and the polygon is split into one

node and one polygon

ptia

edib

ptib

edia

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 181 ISBN 978-80-86943-75-6

If given digital maps with attributes being inputted,

as shown in ‘Application’ section, the system

automatically generates two hundreds 3D building

models within less than 30 minutes.

In either orthogonal or non-orthogonal building

polygons, the new system is proposed for

automatically generating general shaped roof models

by the straight skeleton computation. In this paper,

the algorithm for ‘forming straight skeleton by split

& edge event’ is clarified and the new methodology

is proposed for constructing roof models by assuming

the third event in addition to two events and, at the

end of the shrinking process, some rectangles are

converged to a line of convergence. Thus, the

proposed integrated system succeeds in automatically

generating alternative city plans.

The limitation of the system is that automatic

generation is executed based only on ground plans or

top views. There are some complicated shapes of

buildings whose outlines are curved or even crooked.

To create these curved buildings, the system needs

side views and front views for curved outlines

information.

Future work will be directed towards the

development of methods for the automatic generation

algorithm to model curved buildings by using side

views and front views.

6. REFERENCES
[Aic95a] Aichholzer, O., Aurenhammer, F., Alberts,

D., and Gärtner, B.: ‘A novel type of skeleton for

polygons’, Journal of Universal Computer

Science, 1 (12): 752–761 (1995).

[Car10a] Carlos, V. A., Daniel, A. G., and Bedřich,

B.: ‘Building reconstruction using Manhattan-

world grammars’, Computer Vision and Pattern

Recognition (CVPR), 2010 IEEE Conference on:

358 – 365 (2010)

[Dan05a] Daniel, B. R., and Daniel, A. G.: ‘Build-

by-number: rearranging the real world to

visualize novel architectural spaces’,

Visualization, 2005. VIS 05. IEEE, 143 – 150

(2005)

[Dan07a] Daniel, A. G., Paul, R. A., and Daniel, B.

R.: ‘Style Grammars for interactive Visualization

of Architecture’, Visualization and Computer

Graphics, IEEE Transactions on Volume:13, 786

– 797 (2007)

[Gru98a] Gruen, A., Wang, X.: ‘CC-Modeler: A

topology generator for 3-D city models’, ISPRS

Journal of Photogrammetry & Remote Sensing,

Vol.53, No.5, pp.286-295 (1998).

[Gru02a] Gruen, A., and et al.: ‘Generation and

visualization of 3D-city and facility models using

CyberCity Modeler’, MapAsia, 8, CD-ROM

(2002)

[Mül06a] Müller, P., Wonka, P., Haegler, S., Ulmer,

A., and Van Gool, L.: ‘Procedural modeling of

buildings’, ACM Transactions on Graphics, 25, 3,

614–623 (2006)

[Nia09a] Nianjuan, J. P. T., and Loong-Fah, C.:

‘Symmetric architecture modeling with a single

image’, ACM Transactions on Graphics - TOG,

vol. 28, no. 5 (2009)

[Par01a] Parish, I. H. Y., and Müller, P.: ‘Procedural

modeling of cities’, Proceedings of ACM

SIGGRAPH 2001, ACM Press, E. Fiume, Ed.,

New York, 301–308 (2001)

Figure 6. Non-orthogonal building footprints and 3D building models automatically generated by straight

skeleton computation

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 182 ISBN 978-80-86943-75-6

[Sug09a] Kenichi SUGIHARA: “Automatic

Generation of 3D Building Models with Various

Shapes of Roofs”, ACM SIGGRAPH ASIA 2009,

Sketches DOI: 10.1145/1667146.1667181 (2009)

[Sug12a] Sugihara, K. and Kikata, J.: “Automatic

Generation of 3D Building Models from

Complicated Building Polygons”, Journal of

Computing in Civil Engineering, ASCE

(American Society of Civil Engineers), DOI:

10.1061/(ASCE)CP.1943-5487.0000192 (2012)

[Suv02a] Suveg, I., and Vosselman, G.: ‘Automatic

3D Building Reconstruction’, Proceedings of

SPIE, 4661, 59-69 (2002)

[Zla02a] Zlatanova, S., and Heuvel Van Den, F.A.:

‘Knowledge-based automatic 3D line extraction

from close range images’, International Archives

of Photogrammetry and Remote Sensing, 34, 233

– 238 (2002)

Figure 7. Proposed digital map for the town and an automatically generated 3D urban model: town
houses with doom roofs created by straight skeleton computation in the middle of the image

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 183 ISBN 978-80-86943-75-6

	!_2013-WSCG-communitations.pdf
	F29-full.pdf

