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ABSTRACT

Simultaneous localization and mapping (SLAM) algorithms are of vital importance in mobile robotics. This paper

presents novel Augmented Reality (AR) visualization techniques for SLAM algorithms, with the purpose of assist-

ing algorithm development. We identify important algorithm invariants and parameters and combine research in

uncertainty visualization and AR, to develop novel AR visualizations, which offer an effective perceptual and cog-

nitive overlap for the observation of SLAM systems. A usability evaluation compares the new techniques with the

state-of-the-art inferred from the SLAM literature. Results indicate that the novel correlation and color-mapping

visualization techniques are preferred by users and more effective for algorithm observation. Furthermore the

AR view is preferred over the non-AR view, while being at least similarly effective. Since the visualizations are

based on general algorithm properties, the results can be transferred to other applications using the same class of

algorithms, such as Particle Filters.

Keywords
Algorithm visualisation, augmented reality, robot programming, human-robot interfaces

1 INTRODUCTION

Simultaneous Localization and Mapping (SLAM)

[SSC90, LDW91] is a popular and important class

of estimation algorithms, addressing the challenge

of autonomous map-building for mobile robots. A

robot must have a model, or a map, of the physical

environment in order to carry out useful navigation

tasks. The robot must additionally localize itself within

the environment. In SLAM the robot autonomously

explores and maps its environment with its sensors

while localizing itself at the same time. Despite

considerable research, open challenges in SLAM

include implementations in unstructured, difficult,

and large scale environments [BFMG07], multi-robot

SLAM [NTC03] as well as SLAM consistency and

convergence [MCDFC07].

SLAM development is made more difficult by its prob-

abilistic nature. In SLAM, neither the robot location

nor the environment map are known in advance. How-

ever, in order to map the environment the robot location

needs to be known with accuracy, and in order to local-

ize the robot the environment map needs to be known
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with accuracy. Visualizations aid the development and

testing of SLAM algorithms by revealing relationships

between robot and algorithm states and environmental

parameters. Existing SLAM visualization techniques

are purely virtual and limited to basic state information,

thus lacking perceptual and cognitive overlap between

the robot and the human developer [BEFS01].

Augmented Reality (AR) involves spatially registering

virtual objects in real time within a view of a real scene

[BR05, Azu97]. AR has been used in robotics to en-

hance the human-robot interface, but has never been ap-

plied to SLAM visualization. This paper presents and

evaluates novel AR visualization techniques for SLAM

with the purpose of assisting algorithm development

and debugging. The introduced concepts and lessons

learned are applicable to other estimation algorithms in

robotics and related fields.

Section 2 outlines the SLAM algorithms for which the

visualizations have been developed. Section 3 presents

a review of fields we draw on. Section 4 summarizes

the visualization requirements. Section 5 explains the

visualization techniques. Section 6 presents the evalu-

ation of the visualizations, and section 7 concludes our

paper.

2 SLAM BACKGROUND

The two most popular SLAM algorithm archetypes,

the Extended Kalman Filter (EKF) SLAM

[GL06, DWB06] and FastSLAM [MTKW03, Mon03],

are both based on recursive Bayesian estimation. These
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algorithms were targeted for visualization because they

are the two most important and prevalent SLAM solu-

tion methods [DWB06]. The visualizations presented

in this paper would also be relevant for any modified

Kalman Filter or Particle Filter based algorithm.

2.1 EKF SLAM

In feature-based EKF SLAM the state is represented by

a multivariate Gaussian distribution with mean x and

covariance P:
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xr is the estimated robot pose and x fi , i = 1, . . . ,n is the

estimated position of an environment feature fi. The

main diagonal elements Pr,Pf1 , . . . ,Pfn are error covari-

ance matrices of the robot pose and the landmark loca-

tions. The off-diagonal elements are cross-covariance

matrices between the robot and feature positions. The

recursive estimation steps of the algorithm are motion

prediction, data association, observation update and

feature initialization.

2.2 FastSLAM

In FastSLAM, which is based on Rao-Blackwellized

Particle Filters, the state is represented by a set of N

particles:
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where for particle i, w(i) is the particle weight, X
(i)
r is

the sampled robot path, and each map feature f j is rep-

resented independently by a Gaussian distribution with

mean µ
(i)
f j

and covariance Σ
(i)
f j

. The recursive estimation

steps of the algorithm are motion prediction, weight up-

date, resampling and map update.

3 LITERATURE REVIEW

A number of Robotics Development Environments

(RDEs) are available for use in robotics programming,

but none offers visualizations for SLAM. Examples

include Player [GVS+01], CARMEN (Carnegie

Mellon robot navigation toolkit) [MRT] and Pyro

(Python Robotics) [BKMY03]. These offer purely

virtual sensor data visualizations. Possibly the most

flexible support for visualizations is offered by ROS

(Robot Operating System) [QGC+09], which includes

a variety of data-types such as point clouds, geometric

primitives, robot poses and trajectories.

No formal studies have been done for visualization

techniques in SLAM. The SLAM visualization state

of the art is inferred from the visual representa-

tions of SLAM systems and data in the literature.

The current “conventional” method of visualizing

EKF-style SLAM is by showing the mean estimates

for the robot and features, along with the covari-

ance ellipsoids showing the individual uncertainties

(e.g. [BNG+07, NCMCT07]). For Particle Fil-

ter type SLAM, all current robot poses and mean

feature locations are shown for all particles (e.g.

[MTKW03, Mon03]). Perhaps the most interesting

example of an existing SLAM visualization is the 3D

graphical representation of the robot in relation to the

mapped obstacles, with the uncertainties shown by

dotted lines around the objects [NLTN02]. Martinez-

Cantin et al. visualized a constructed 3D map from the

robot’s point of view [MW03].

None of the basic SLAM visualizations suggested so

far employs an AR environment. However, AR sys-

tems have been developed and used in robotics. An

example is ARDev [CM06, CM09]. It provides per-

ceptual overlap between the human and the robot by

visualizing sensor data within the robot’s real world en-

vironment. Nunez et al. use AR for supervision of

semi-autonomous robot navigation tasks [NBPLS06].

A topological map is generated online and visualized

with AR. Daily et al. use AR to supervise a swarm of 20

robots for search and rescue scenarios [DCMP03]. Vir-

tual arrows above every swarm member in view convey

the intention and direction of travel. AR has also seen

considerable application in mobile robot tele-operation

[BOGH+03] and manipulator robotics [NCE+07].

4 VISUALIZATION REQUIREMENTS

The underlying requirement for all of the visualiza-

tions is to embed information within the context of the

real world environment the mobile robot operates in.

This provides a qualitative comparison between the es-

timates and the ground truth, and shows sources of po-

tential errors within the real environment.

4.1 EKF SLAM Requirements

The fundamental EKF SLAM requirement is to visual-

ize the state and the individual uncertainty covariances.

The state consists of 2D robot and feature locations, and

the robot orientation in the ground plane. The 2 by 2

covariance matrices for the robot and each feature indi-

cate the positional uncertainty, together with the robot

orientation variance.
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Figure 1: Conventional AR EKF Visualization: EKF-SLAM state and covariance visualization in AR, showing progression

over time. The AR view provides a direct comparison of the estimates against the ground truth in the real world environment;

this shows the discrepancies between the truth and the estimates.

Correlations between features are well known to be im-

portant for correct SLAM operation [DWRN96]. In

[DNC+01] feature correlations are defined as follows.

Let di j be the relative position between any two feature

estimates fi and f j. Let Pdi j
be the covariance of di j as

follows:

di j = x fi − x f j
(4)

Pdi j
= Pfi +Pf j

−Pfi, f j
−PT

fi, f j
(5)

Pdi j
is a measure of relative error between the two

features, and is therefore also a measure of their cor-

relation. The expected convergence property [HD07,

DNC+01] is that correlations strengthen as observa-

tions are made over time, i.e. the volume of uncertainty

in Pdi j
is non-increasing. Visualization of the correla-

tion behaviour is essential. Violations of this behaviour

(i.e. weakening correlations) indicate problems in the

SLAM system, and therefore must be detected by the

user. Specifically, the 2 by 2 covariance matrix Pdi j

must be visualized for all feature pairs, together with

its non-increasing volume of uncertainty trend. Viola-

tions must be exemplified.

4.2 FastSLAM Requirements

The fundamental FastSLAM requirement is to visualize

the state represented by the set of particles. This means

visualizing 2D points for the robot and Gaussian mean

feature locations, for all particles. Additionally robot

orientations for all particles must be visualized.

Due to the Rao-Blackwellized structure of FastSLAM,

sampling is only done on the robot path. The error in

the map estimation for a given particle is dependent

on the accuracy of the robot path. For this reason, it

is important to visualize the relationship between the

robot path and map estimates within particles, or intra-

particle associations. Specifically, this refers to visu-

ally linking estimates from the same particle, and dis-

tinguishing these from other particles. Visualization of

the individual weight for each particle is also important

in order to gain insight into the resampling phase of the

algorithm.

Lastly, a more qualitative and more intuitive representa-

tion of the SLAM solution produced by the filter would

be useful. This needs to show a better overall picture of

the solution, possibly at the cost of lower information

content or being less exact.

5 AR VISUALIZATION TECHNIQUES

5.1 EKF SLAM Visualizations

5.1.1 Conventional EKF SLAM Visualization

Fig. 1 presents the state-of-the-art conventional EKF

visualization implemented in AR. The underlying real

world images present an overhead view of the robot

and its environment. The robot is a PIONEER 3-DX

[Rob08]. The map the robot is building consists of two

dimensional points in the ground plane represented by

white cardboard cylinders. The cylinders are the only

physical objects being mapped and are extracted from

raw laser rangefinder data. The robot drives around and

performs SLAM in a small 1 by 1 meter loop. The

graphical icons augmenting the video frames represent

SLAM information:

• Cyan Marker - The cyan downward pointed cone

represents the estimated robot position. The cyan el-

lipsoid underneath is the robot position covariance.

The cyan line is the robot path.

• Green Marker - The green downward pointed cone

represents the estimated feature position. The green

ellipsoid underneath is the feature position covari-

ance.

• Yellow Marker - The yellow triangular pointer rep-

resents the robot orientation estimate. A semitrans-

parent yellow circular wedge represents the orienta-

tion variance.
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Figure 2: EKF SLAM Correlations Clustering. (a) shows all inter-cluster correlations, (b) shows only the maximum, mean,

and minimum inter-cluster correlations. Green wireframe circles represent spatial clusters.

The markers represent the SLAM estimates for qual-

itative real-time visual comparison against the ground

truth presented in the real image, i.e. the green mark-

ers correspond to the white cardboard cylinders and the

blue marker to the physical robot. For the orientation an

“arrow” type marker was chosen, as commonly used in

SLAM and robotics visualizations. For the covariance,

the common tensor ellipsoid glyph was used, which is

superior to line or arrow type ellipsoid glyphs. Colour

was used to define specifically what the estimate refers

to, i.e. robot or features. The design follows the “Natu-

ral Scene Paradigm”, which is based on humans’ ability

to immediately perceive complex information in a nat-

ural scene [WL01].

5.1.2 Correlations Visualization

In previous work [KMW09] we presented the novel fea-

ture correlation visualization shown in Fig. 2a. It sat-

isfies the requirements discussed earlier. For every pair

of features { fi, f j} the visualization contains:

• A line linking the feature estimates fi and f j

• A yellow tensor “correlation ellipsoid” for Pdi j
ren-

dered at the half-way point on the line

As Pdi j
is a two-dimensional covariance, it produces a

2D tensor ellipsoid. However, the problem of visual

cluttering becomes evident when many such ellipsoids

grow in size and overlap. It becomes difficult to discern

any individual ellipsoids. To mitigate this issue the el-

lipsoids were inflated to a shaded 3D shape. The sec-

ond eigenvalue is used for the length of the axis into

the third dimension. Giving a 3D shaded volume to

the correlation ellipsoids provides better visual distinc-

tion to overlapping ellipsoids, however a limitation of

this method is that it occludes more of the background

world image.

Strengthening correlations show up as decreasing vol-

umes of the correlation ellipsoids. If the volume of

the correlation ellipsoid increases (i.e. the correlation

weakens), this is considered a violation of the expected

behaviour. This occurrence is exemplified in the visu-

alization by changing the colour of the ellipsoid to red.

Thus, the visualization allows the observation of the ex-

pected correlations trend, and the detection of its viola-

tions.

The problem of visual cluttering is resolved by spatial

clustering using the standard single-linkage hierarchi-

cal clustering method [LL98]. Features are divided into

spatial clusters, and only the correlations between fea-

tures in different clusters are shown. The green wire-

frame circles exemplify the clusters computed by the

algorithm. This image demonstrates a pure virtual sim-

ulation of the SLAM algorithm, and hence no physical

robot and environment is shown.

In order to further reduce the number of correlations

in view the user can select to only see the minimum

(yellow), mean (orange), and maximum (yellow) inter-

cluster correlations (Fig 2b). The expected correla-

tion convergence can be observed through the non-

increasing size of the minimum correlation ellipsoid

[Koz11].

5.2 FastSLAM Visualizations

5.2.1 Conventional FastSLAM Visualization

Fig. 3 presents the conventional state-of-the-art Fast-

SLAM visualization implemented for the first time in

AR. The underlying real world images present an over-

head view of the robot and the environment the robot is

working in. The graphical icons augmenting the video

frames represent SLAM information:
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Figure 3: Conventional FastSLAM AR Visualization: particle representation for the robot pose and features, showing the

joint SLAM posterior distribution computed by the particle filter and its progression over time.

• Cyan Marker - The cyan downward pointed cone

represents the sampled robot location for a given

particle.

• Yellow Marker - The yellow arrow-type marker

represents the sampled robot orientation for a given

particle.

• Green Marker - The green downward pointed cone

represents a Gaussian mean feature location for a

given particle.

The visualization shows the joint SLAM posterior

probability distribution of the robot pose and the

feature map. As for the EKF, the markers represent

the SLAM state for qualitative visual comparison

against the ground truth presented in the real image, i.e.

the green markers correspond to the white cardboard

cylinders and the blue marker to the physical robot.

5.2.2 Colour Mapping Visualizations

Fig. 4 presents a colour-mapping visualization tech-

nique addressing the requirements of intra-particle as-

sociations and particle weights, as discussed earlier.

First the centroid and maximum distance from the cen-

troid are computed for the current robot positions in the

particles. This creates a local polar coordinate frame for

the robot positions (and thus the particles they belong

to), originating at the centroid. Then each particle’s po-

lar coordinates are mapped directly onto the Hue and

Saturation parameters in the HSV colour model. Thus,

each particle which has a unique robot position is as-

signed a unique colour. This colour is used to encode

members of the same particle (intra-particle associa-

tions), e.g. a red feature and a red robot pose belong

to the same particle. This shows the important rela-

tionship between the map and robot path estimations.

In the final step, the particle weight is encoded into

the Value (brightness) parameter of the HSV model.

Lighter coloured markers indicate higher weights, and

darker colours indicate lower weights. Fig. 5 shows the

Figure 4: The colour-mapping technique.

colour-mapping visualization applied in SLAM. The

colour-coded relationship between the robot position

and feature errors is clearly visible.

5.2.3 Surface Density Visualization

Fig. 6 presents a novel surface density visualization

technique developed for FastSLAM. The purpose of

this visualization is to present a better overall qualita-

tive picture of the SLAM solution produced by the filter.

Here the joint SLAM posterior probability of the robot

and the features is represented by a smooth, shaded 3D

surface. The mapping area is divided into an uniform

(customizable) grid, where the density of a given cell is

given by the number of particle members (robot pose or

features) within that cell. Then the surface is interpo-

lated over the grid using a Radial Basis Function (RBF)

[Buh03], with the density giving the surface height. If

colour-mapping is enabled, the colour for each cell is

the average of the particle colours within it. Other-

wise, the cyan surface represents the robot pose and the

green surfaces the features. In addition, a single arrow

is drawn above each cell of the robot pose surface. This

is the average robot orientation within the cell.
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Figure 5: Intra-particle Associations Visualization: colour-mapping used to show members belonging to the same given

particle, showing progression over time. Brightness indicates particle weights.

Figure 6: The surface colour-mapping technique.

Fig. 7 shows the surface density visualization with-

out the colour mapping. Intuitively the height of the

surface indicates the SLAM posterior probability. The

shape of the surface provides a good qualitative picture

of the uncertainty spread of the distribution, as com-

pared to rendering each individual marker. Fig. 8 shows

the colour-mapped surface density visualization. This

offers the benefits of both the surface and the colour-

mapping techniques. The visualization shows both the

shape of the uncertainty spread and the colour-mapped

intra-particle associations.

6 EVALUATION

6.1 Experimental Setup

The visualization system was implemented with a ceil-

ing mounted Prosilica EC 1350C Firewire camera for

image capture. Registration was done using ARToolK-

itPlus and a fiducial marker mounted on the robot. The

robot’s initial position is registered in the AR coordi-

nate frame as the origin of the SLAM map. This allows

the registration of the SLAM data in the AR coordinate

frame. Videos were taken of the robots SLAM per-

formance using different visualization techniques for

correctly implemented SLAM algorithms and versions

with typical errors we inferred from the literature and a

previous user survey [Koz11].

6.2 Methodology

We performed five experiments summarised in table 1

in order to investigate the effectiveness of the visual-

Fault Detection Experiments

Experiment Vis 1 Vis 2

EKF Exp 1 Conventional

AR

Conventional

non-AR

EKF Exp 2 Correlations AR Conventional

AR

FastSLAM

Exp 1

Conventional

AR

Conventional

non-AR

FastSLAM

Exp 2

Colour-mapping

AR

Conventional

AR

FastSLAM

Exp 3

Surface density

AR

Conventional

AR

Table 1: Fault detection experiments summary. Each experi-

ment compared Vis 1 with Vis 2.

izations for assisting SLAM development. In partic-

ular we evaluated AR-based visualisation techniques

versus non-AR visualisation techniques and novel AR

visualisation versus AR-implementations of techniques

considered current state-of-the-art. The purpose of the

study was to compare the effectiveness of the visualiza-

tion techniques for SLAM algorithm development, i.e.

fault detection and fault correction.

The experiments were performed as a web-based

survey questionnaire. Participants were invited over

email, through the major international robotics mailing

lists. These included Robotics Worldwide, Australian

Robotics and Automation Association (ARAA) and

European Robotics Research Network (EURON).

Ideally the desired population of the participants would

be SLAM developers; but in practice to obtain suffi-

cient participants the population scope was widened to

robotics developers. The experiments involved partici-

pants watching online videos of the visualizations and

answering questions about the visualizations.

Within the questionnaire document, the concepts of

SLAM and AR were first explained, along with in-
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Figure 7: Surface Density Visualization: the surface density visualization without the colour-mapping, showing progression

over time. The shape and height of the surface conveys the joint SLAM posterior distribution computed by the particle filter.

(a) (b) (c)

Figure 8: Colour Mapped Surface Visualization: the surface density visualization with the colour-mapping, showing pro-

gression over time. The visualization shows both the shape of the joint SLAM posterior distribution and the associations within

particles.

troductory videos and explanations about the visual-

izations. Each AR visualization was presented with a

video of it being used for SLAM with a real robot and

cylindrical point features, along with a written explana-

tion. To present the non-AR visualization, two videos

were used. One was the virtual SLAM visualization,

and the other was the video of the physical robot per-

forming SLAM corresponding to the SLAM visualiza-

tion.

After showing correct operation, artificial faults were

introduced into the SLAM systems. Within each exper-

iment the same fault was used to compare the visual-

izations, however the visualizations showed the fault in

different ways. For each visualization, the participants

were asked as a multi choice question what SLAM fault

is present in the visualization (if any). For each pair

of visualizations compared, the participants were also

asked in a short answer question which visualization

they felt was more effective (Vis 1, Vis 2, or neither)

and why. Details of the study are found in [Koz11].

6.3 Results

There were 24 participants in the EKF evaluation, and

14 participants in the FastSLAM evaluation.

In EKF Exp 1 users detected 75% of errors with the AR

visualization and 70% of errors with the non-AR visual-

ization. Users liked that the AR visualization combined

a view of the real environment with the SLAM infor-

mation. Reasons for prefering non-AR were perception

difficulties in AR due to the 3D camera perspective,

deformation, depth and projection, and the real-world

camera image. In FastSLAM Exp 1 all of the partic-

ipants preferred the AR visualization. In terms of ef-

fectivness both visualisations resulted in 57% of errors

being detected.

In EKF Exp 2 our new correlation visualization allowed

users to detect 79% of errors, whereas the traditional

visualization only allowed detection of 50% of errors.

Users liked in the correlation visualization the explicit

representation of correlation faults enabling a faster de-

tection. Reasons for prefering the conventional AR vi-

sualization were clearer, more intuitive representation

of robot pose/landmarks and faults therein, the correla-

tion ellipsoids being hard to understand and occluding

the landmark/robot markers, and robot/landmark co-

variances being more representative of the estimation

process.
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In FastSLAM Exp 2 users were able to detect 64% of

errors using colour mapped particles and 35% of er-

rors using the conventional visualization. Users liked

about colour-mapping the clear representation of par-

ticle weighting and the resampling process, and that

colour mapping offers more information in a compact

representation allowing for better fault detection.

In FastSLAM Exp 3 users identified 42% of errors us-

ing the surface density visualization and 71% of errors

using the conventional visualization. Users liked the

compact and effective representation of the particle set

distribution in the surface density AR visualization, and

that the peak of the surface indicates the most likely es-

timate position whereas the spread shows the amount

of divergence in the estimates. However, users com-

plained that the surface representation is too opaque and

obscures the true landmarks, and that the surface view

does not show the robot orientation clearly. Users stated

that the conventional AR visualization is easier to ana-

lyze in order to detect errors.

7 CONCLUSIONS

This paper presented novel AR visualization techniques

for SLAM algorithms. The visualization requirements

were challenging because SLAM algorithms are de-

tailed, complex, and must address real world uncertain-

ties. To address the requirements, visualizations were

developed in AR to target the most important aspects of

the SLAM algorithms, including feature correlations,

particle weights and relationships.

Our Evaluation shows that AR visualizations are pre-

ferred over non-AR visualizations, and that the novel

techniques for feature correlations is more effective

than the existing state of the art for SLAM fault de-

tection. The visualizations are effective because they

target specific aspects of the algorithm and because

AR enables visualization of the real world and asso-

ciated uncertainties. The correlation visualization can

be adapted to any application requiring representation

of correlations between physical entities. Care must be

taken that visualization icons do not obscure relevant

real-world information in the camera view and that vi-

sual complexity does not put undue stress on the user.

Hence small point based icons are preferable over more

complex and information rich surface representations.

The presented visualizations perform differently well

for different types of errors. Ideally the user should be

able to swap interactively between all of the presented

techniques.
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