


With the growth of a great diversity of devices, develop-

ment of multi-platform applications has become a com-

mon goal for developers. The Web is de-facto a univer-

sal platform to unify the development and execution of

applications. However, challenges arise since applica-

tions must be optimized in order to be useful as well as

on high as on low-performance devices.

The development of parallel computing hardware for all

the different devices is increasing and the development

of applications and computer-based procedures are tak-

ing in advance this capability. The contribution of this

paper is a new methodology to calculate point trajecto-

ries of a highly dense grid of points over n-dimensional

vector fields, in which the trajectories are forced to pass

over the grid points (Figure 1). This allows to imple-

ment a hierarchical integration procedure ([HSW11]),

which takes advance of previously calculated data in

order to avoid repetitive and unnecessary calculations,

and reduces the complexity of the algorithm from lin-

ear to logarithmic. The procedure is suitable to be im-

plemented over highly parallel computing architectures

due to independent calculations and the number of com-

putations to be performed. We employ WebGL as the

parallel computing engine to calculate the iterations, us-

ing the inherently parallel rendering procedure, and im-

ages are used to store the data through the iterations.

Different from other procedures, in which the calcula-

tion of the trajectories is performed for each point in

particular, our methodology allows to merge its calcu-

lation for all the points in which the field is discretized.

Therefore, the number of unnecessary computations is

critically reduced.

This paper is organized as follows: Section 2 presents

the related work. Section 3 exposes the methodology in

which the contribution of this work is explained. Sec-

tion 4 presents a case of study in oceanic currents and

finally section 5 concludes the article.

2 LITERATURE REVIEW

2.1 Flow Visualization

A great amount of methodologies to visualize vector

fields (flow fields) has been developed among the last

decades. Geometric-based approaches draw icons

on the screen whose characteristics represent the

behavior of the flow (as velocity magnitude, vorticity,

etc). Examples of these methodologies are arrow

grids ([KH91]), streamlines ([KM92]) and streaklines

([Lan94]). However, as these are discrete approaches,

the placement of each object is critical to detect the

flow’s anomalies (such as vortexes or eddies), and

therefore, data preprocessing is needed to perform an

illustrative flow visualization. An up-to-date survey on

geometric-based approaches is presented by [MLP10].

However, in terms of calculating those trajectories for

determined points in the field, the procedures usually

compute for each point the integrals, and, as a result, the

procedures are computationally expensive for highly

dense data sets.

On the other hand, texture-based approaches represent

both a more dense and a more accurate visualization,

which can easily deal with the flow’s feature represen-

tation as a dense and semi-continuous (instead of sparse

and discrete) flow visualization is produced. A deep

survey in the topic on texture-based flow visualization

techniques is presented by [LHD04].

An animated flow visualization technique in which a

noise image is bended out by the vector field, and then

blended with a number of background images is pre-

sented by [VW02]. Then, in [VW03] the images are

mapped to a curved surface, in which the transformed

image visualizes the superficial flow.

Line Integral Convolution (LIC), presented by [CL93],

is a widely implemented texture-based flow visualiza-

tion procedure. It convolves the associated texture-

pixels (texels) with some noise field (usually a white

noise image) over the trajectory of each texel in some

vector field. This methodology has been extended to

represent animated ([FC95]), 3D ([LMI04]) and time

varying ([LM05, LMI04]) flow fields.

An acceleration scheme for integration-based flow vi-

sualization techniques is presented by [HSW11]. The

optimization relies on the fact that the integral curves

(such as LIC) are hierarchically constructed using pre-

viously calculated data, and, therefore, avoid unneces-

sary calculations. As a result, the computational effort

is reduced, compared to serial integration techniques,

from O(N) to O(logN), where N refers to the number

of steps to calculate the integrals. Its implementation

is performed on Compute Unified Device Architecture

(CUDA), which allows a parallel computing scheme

performed in the Graphics Processing Unit (GPU), and

therefore the computation time is critically reduced.

However, it requires, additionally to the graphic Appli-

cation Programming Interface (API), the CUDA API in

order to reuse data, and hence, execute the procedure.

2.2 WebGL literature review

The Khronos Group released the WebGL 1.0 Specifi-

cation in 2011. It is a JavaScript binding of OpenGL

ES 2.0 API and allows a direct access to GPU graphical

parallel computation from a web-page. Calls to the API

are relatively simple and its implementation does not

require the installation of external plug-ins, allowing

an easy deployment of multi-platform and multi-device

applications. However, only images can be transfered

between rendering procedures using framebuffer ob-

jects (FBOs).

Several WebGL implementations of different applica-

tions have been done such as volume rendering, pre-

sented by [CSK11] or visualization of biological data,
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presented by [CADB10]. A methodology to implement

LIC flow visualization with hierarchical integration, us-

ing only WebGL, was presented by [ACS12], in which

FBOs are used to transfer data between different ren-

dering procedures, and therefore allowing to take in ad-

vance the parallel computing capabilities of the render-

ing hardware, in order to perform the different calcula-

tions. However, for the best of our knowledge, no other

implementation that regards to streamline flow visual-

ization on WebGL has been found in the literature or in

the Web.

2.3 Conclusion of the Literature Review

WebGL implementations allow to perform appli-

cations for heterogeneous architectures in a wide

range of devices from low-capacity smart phones to

high-performance workstations, without any external

requirement of plug-ins or applets. As a result, opti-

mized applications must be developed. In response

to that, this work optimizes the calculation of point

trajectories in n-dimensional vector fields over highly

dense set of points, forcing the trajectories to lie over

the points in the set. As a consequence, previously

calculated data can be reused using hierarchical

integration, avoiding unnecessary calculations and

reducing the complexity of the algorithm.

3 METHODOLOGY

The problem that we address is stated as: given a set

of points and a vector field that exists for all of these

points, the goal is to find the finite trajectory that each

point will reproduce for a certain period of time.

Normal calculation of point trajectories in n-

dimensional vector fields, requires to perform

numerical integration for each particular point in order

to reproduce the paths. In the case of a dense set of

points, the procedures suffer from unnecessary step

calculations of the integrals, since several points in

the field might lie over the same trajectory of others.

Hence, some portions of the paths might be shared.

Figure 2 illustrates this situation.

s
yj=xj(0)

xj(1)
xj(2)

f(xj(0))
f(xj(1)) f(xj(2))

Figure 2: Trajectory overlapping in several point paths.

In order to avoid repeated computations, we propose a

methodology to calculate trajectories of highly dense

grid of points, in which the paths are forced to lie over

the points in the grid, i.e., the paths are generated as a

Piecewise Linear (PL) topological connection between

a set of points that approximates the trajectory. With

this, hierarchical integration [HSW11] is employed to

iteratively compute the paths and reuse data through the

iterations.

3.1 Hierarchical Integration

Since line integration over n-dimensional vector fields

suffers from repeated calculations, hierarchical integra-

tion [HSW11] only calculates the necessary steps and

then iteratively grows the integrals reusing the data.

This reduces the computational complexity of the algo-

rithm from O(N), using serial integration, to O(logN).
The procedure is summarized as follows.

For an arbitrary point in the field y ∈ Y with Y ⊆ R
n,

let us define f : Y → R
m, as an arbitrary line integral

bounded by its trajectory cy. Consider its discrete ap-

proximation as described in equation 1.

f (y) =
∫

cy

w(x(s))ds ≈
t

∑
i=1

w(x(i∗∆s))∆s (1)

where t is the maximum number of steps required to

reproduce cy with ∆s the step size. x(0) = y is the start-

ing point of the trajectory to be evaluated and w is the

function to be integrated. The integration procedure is

performed for all points y ∈ Y in parallel.

We assume that ∆s = 1 , ∀y ∈ Y and therefore f (y) ≈
t

∑
i=1

w(x(i)). The algorithm starts with the calculation of

the first integration step for all the points in the field.

Namely,

f0(y) = w(x(1)) (2)

It is required to store the last evaluated point x(1) over

the growing trajectory and the partial value of the in-

tegral for all the points y in order to reuse them in the

following steps to build the integral. With this, the next

action is to update the value of the integral, using the

sum of the previously calculated step at y and the step

evaluated at its end point (x(1)). Namely,

f1(y) = f0(x(0))+ f0(x(1)) (3)

In this case, the end point of f1(x(0)) is x(2) as the

calculation evaluates f0(x(1)). Therefore, the next iter-

ation must evaluate f1 at x(0) and x(2) in order to grow

the integral. In general, the k’th iteration of the proce-

dure is calculated as follows:

fk(y) = fk−1(x(0))+ fk−1(x(end)) (4)

It is important to remark that each iteration of this pro-

cedure evaluates two times the integration steps eval-

uated in the previous iteration. As a result, the to-

tal number of integration steps t is a power of two,
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and the hierarchical iterations required to achieve this

evaluations is reduced by a logarithmic scale, i.e., k =
log2 t. Also notice that the evaluation of the vector

field is performed only once, in the calculation of the

first step, which avoids unnecessary evaluations of the

vector field, which are computationally demanding for

complex vector fields. Figure 3 illustrates the procedure

up to four hierarchical steps.

Step 0

Step 1

Step 2

Step 3

Step 4

f0(y)

f1(y)

f3(y)

f3(y)

f4(y)

Figure 3: Exponential growth of hierarchical integra-

tion methodology. At step 3, the procedure evaluates 8

serial integration steps, meanwhile at step 4 it evaluates

16 serial integration steps.

3.2 Stream Path Calculation

In order to perform the visualization of a vector field us-

ing trajectory paths, lets assume a homogeneously dis-

tributed set of points

Y = {y, z ∈ R
n|y− z = ∆y,

∆y is constant ∀z adjacent to y} (5)

and a n-dimensional vector field F : Rn →R
n. The goal

is to calculate for each point y ∈ Y , the PL approxi-

mation of the trajectory that the point will describe ac-

cording to F , defined by the topological connection of

a particular set of points Ay ⊂Y . Figure 4 illustrates the

approximation.

y

Figure 4: PL approximation of the trajectory by the pro-

cedure.

The trajectory cy of an arbitrary point y in the field is

defined as

cy = xy(s) =
∫

l
F(xy(s))ds (6)

where l represents a determined length of integration.

Using hierarchical integration, for each point in the field

the first step of the PL trajectory is calculated, this is,

the corresponding end point of the first step of the in-

tegral is computed using a local approximation of the

point in the set of points.

xy(0) = y (7)

y′ = xy(0)+ γF(xy(0)) (8)

xy(1) = arg
xy

min(Y − y′) (9)

where y′ is the first iteration result of the Euler inte-

gration procedure, γ is a transformation parameter to

adjust the step given by the vector field to the local sep-

aration of the set of points and xy(1) is defined as the

closest point in Y that approximates y′. The value of

xy(1) is then associated (and stored) to y. The set Ay

contains the reference to the points of the trajectory that

describes y, and therefore for equation 8, Ay is defined

as:

A0
y = {xy(1)} (10)

Similarly to the hierarchical integration procedure, the

next steps are performed to join the calculated steps in

order to grow the trajectories. Therefore, for each point

y, its computed trajectory is joint with its last point’s

trajectory, this is, for the step in equation 8.

A1
y = A0

y ∪A0
xy(1)

= {xy(1),xy(2)} (11)

Note that each iteration of the procedure will increase

the number of points in the trajectory by a power of

two. Therefore, the growth of the paths is exponential.

In general, the k’th iteration is calculated as

Ak
y = Ak−1

y ∪Ak−1

xy(2k)
= {xy(1),xy(2), . . . ,xy(2

(k+1))}

(12)

The accuracy of the procedure is strongly determined

by the discretization (density) of Y , since it is directly

related to the step size in the integration procedure, i.e.,

the approximation of the first step end-point is deter-

minant. In order to increase the accuracy of the proce-

dure, the computation of the first step can be calculated

with e.g., a 4th order Runge Kutta numerical integra-

tion, however, it might significantly increase the com-

putation time of the procedure if the computation time

of the vector field function is relevantly high.

3.3 Time-Varying Data

In terms of unsteady flow fields, i.e., time-varying vec-

tor fields, the generation of the trajectories might seem

difficult. In that case, as proposed in [HSW11], time

is considered another dimension of the vector field.
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Therefore, the set of points is formed with the posi-

tion coordinates of the points and discretized time steps,

producing an n+1-dimensional grid of points.

It is also determinant for the accuracy of the procedure

that the density of the discretization set is high, in order

to increase the precision of the approximated trajecto-

ries.

3.4 Animation

Dynamic scenes are demanding in most of the visu-

alization procedures. We consider in this section two

kinds of dynamic scenes. A first kind of procedures

refers to when the vector field is steady, i.e., it remains

constant through the time. In this case, the goal is to

visualize the motion of the particle all across the field.

Since the paths for all the points in the field are cal-

culated, the representation of the particle’s trajectory

through the frames is simple. Consider a point y and its

approximated trajectory given by the set of points Ay.

Notice, as described in section 3.2, that the first point

of the set Ay [1], i.e., xy(1), represents the next point

in which y will lie in a determined period of time. As

a result, at a posterior frame, the displayed trajectory

should be Axy(1).

The second type of procedure refers when vector field

is varying with the time. Complementary to the ani-

mation stated before, a second kind of dynamic scene

is comprised since it is also important to visualize the

changes that a trajectory suffers in the time. In the case

of time varying data, as in the steady case, all the points

have an associated trajectory. In order to animate the

change of one trajectory, from one frame to another, the

trajectory that will be represented refers to the one of

the point with the same point coordinate, but the next

time coordinate. i.e., Ay,t+∆t .

4 CASE STUDY

In this section the visualization of 2D oceanic currents

using the proposed methodology is performed. The im-

plementation has been done in WebGL, so the method-

ology’s parallel computing capabilities are fully used.

WebGL offers the possibility to use the rendering pro-

cedure to calculate images (textures) through Frame-

buffer Objects, and then use those rendered textures as

input images for other rendering procedures. As a con-

sequence, for this implementation we associate the pix-

els of an image to the points in the field, and therefore,

the rendering procedure is used to compute the different

hierarchical iterations, which are stored in the color val-

ues of the pixels. Finally, the trajectories are hierarchi-

cally constructed. The implementation was performed

on an Intel Core2Quad 2.33 GHz with 4 GB of RAM

and with a nVidia GeForce 480.

4.1 Implementation

For a w×h grid of points (w and h being its width and

height respectively in number of elements), images of

size w×h in pixels are used, in which a particular pixel

(i, j) is associated with the point (i, j) in the grid. Since

for each particular pixel, a four component vector is

associated, i.e., a vector of red, green, blue and alpha

values, each value can be associated as a particular po-

sition of another pixel. This is, if the value of a pixel is

r, then its associated pixel coordinates are given by

i = r mod w (13)

j =
r− i

w
(14)

where mod represents the remainder of the division of

r by w. As a result, if for each hierarchical integration,

only the last point of the trajectory is to be stored, then

one image can store four hierarchical iterations.

For the zero’th hierarchical iteration, and the image I to

store its calculation, the value of a pixel (i, j) is given

by

i0 = i+ kFi(i, j) (15)

j0 = j+ kFj(i, j) (16)

(17)

where the parameter ’0’ refers to the hierarchical step

0, k represents the scaling factor of the vector field, and

Fi(i, j) represents the component of the vector field over

the direction of i, evaluated at the point (i, j). The vec-

tor field used in this case study is shown in figures 5(a)

for the direction of i and 5(b) for the direction of j.

In general, the k’th step is calculated as follows,

inext = I(i, j,k−1) mod w (18)

jnext =
I(i, j,k−1)− inext

w
(19)

I(i, j,k) = I(inext , jnext ,k−1) (20)

In the case that k is greater than four, then more images

are used to store the values of the hierarchical iterations.

With that, all the desired steps are stored in the neces-

sary images. In order to build the trajectories from those

images, a generic line, formed by k2 points, is required.

Each point in the trajectory needs to have an associated

value, that refers to its order in the trajectory, i.e., the

first point in the trajectory has an index 0, the second

point the value 1 and so on. With this index associ-

ated to each point of the trajectory of the point y, the

position of each point is calculated as described in Al-

gorithm 1, where HL is the hierarchical level that needs

to be evaluated and the function evalHL() returns the

new position of the point y, for a particular hierarchical

level.
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Ongoing research focuses on the adaptation of this

methodology to require less computational effort

(processing and memory effort), so that extremely

low-performance devices such as smart-phones and

tablets might be able to perform an accurate and

complete flow visualization using streamlines. Related

future work includes the adjustment of the grid point

positions along the iterations and the increase in the

accuracy of the calculated trajectories.
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