
New path planning method for computation of constrained
dynamic channels in proteins

Petr Beneš
Faculty of Informatics
Masaryk University

Botanická 68a
602 00 Brno

Czech Republic
xbenes2@fi.muni.cz

Ondřej Strnad
Faculty of Informatics
Masaryk University

Botanická 68a
602 00 Brno

Czech Republic
xstrnad2@fi.muni.cz

Jiří Sochor
Faculty of Informatics
Masaryk University

Botanická 68a
602 00 Brno

Czech Republic
sochor@fi.muni.cz

ABSTRACT

Collision-free paths in the geometric model of a protein molecule reveal various dependencies between the structure of the
molecule and its function. The paths which connect a biochemically important part of the protein molecule with the surface of
the molecule can serve as egression or access paths for small molecules which react in the active site. The geometric method
introduced in this paper is designed to compute such paths in the dynamic models of protein molecules. The paths have to
satisfy additional constraints such as valid flow of time which allows us to distinguish between access and egression paths,
minimum width and others. Possibly, the method may be used not only for protein molecules but also for similar environments
with high density of spherical obstacles. The method was tested on real protein data and the results indicate that if there is a
path present, it is detected by our method.

Keywords: protein, path planning, collision-free path, constrained dynamic channel

1 INTRODUCTION
Investigating the behaviour of protein molecules is one
of the main tasks that help biochemists fully understand
how the real micro-world works. One of the real ap-
plications is the development of new and the improve-
ment of existing drugs. These days, we can utilize the
computational power and perform simulations instead
of wasting time in the laboratory.

With the increase in computational power the
molecular dynamics simulation which simulates the
behaviour of the protein molecule is capable of captur-
ing longer time intervals. The resulting vast amount
of data has to be processed and for chemists, it is
desired to reveal the dependency between structure
and function of a protein molecule. One of the crucial
analyses is to find the collision-free paths connecting
the active site of the protein molecule with its surface.
These paths are called channels and may be used by
a small molecule as access paths to or egression paths
from the active site. Chemists need to focus on these
paths to assess whether the active site is well or poorly
accessible.

In the protein molecule, each atom is represented ge-
ometrically as a sphere on given three-dimensional co-
ordinates with appropriate Van der Waals radius. To

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

reflect the real situation, we have to consider the move-
ment of atoms in the molecule. This movement cer-
tainly influences channels and their properties. The
movement is typically obtained by a molecular dynam-
ics simulation and is stored as a set of snapshots – states
of the molecule over time. The simulation may generate
thousands of snapshots. The set of snapshots is denoted
by chemists as a trajectory.

Previous approaches to channel computation were
able to compute channels in a single snapshot only.
Even if the approach was applied to each snapshot,
the solution did not exactly reflect the real situation in
which the small molecule (substrate or product) passes
into or leaves the active site. The ongoing research de-
manded that collision-free paths which satisfy certain
constraints and connect the active site with the surface
of the molecule are determined. Although other possi-
bilities exist, in this paper, the surface of the molecule
is understood as the convex hull boundary.

In this paper, we introduce new method, which joins
the information about an empty space in different
snapshots into one large graph and finds collision-free
paths connecting the active site with the surface of the
molecule. These paths are called dynamic channels.
Applying additional constraints on these paths allows
us for instance to consider the flow of time and distin-
guish between access and egression paths. These paths
are referred to as constrained dynamic channels.

The method we propose is based on computational
geometry principles and could be used to find collision-
free paths for a spherical robot in an environment with
high density of moving obstacles. We expect these ob-

WSCG 2011 Full Papers 81



stacles to be spherical too. Our specific implementation
is used for solving the issue of finding dynamic chan-
nels in a protein molecule.

2 BASIC DEFINITIONS
A channel in a protein molecule is defined by the cen-
terline and the volume [MBS07]. The centerline is a
three-dimensional continuous curve and the volume is
formed by the union of spheres with centers on this cen-
terline and with appropriate radii so that none of the
spheres intersects any atom in the molecule. The bot-
tleneck radius of the channel (i.e. the minimum sphere
inserted) limits the size of a molecule which is able to
pass through a channel. In addition to previous defini-
tion, a dynamic channel contains for each point on the
centerline the reference to a particular snapshot in the
trajectory.

Definition 1: Let M = {m1, ...,mn} be a time-ordered
set of snapshots. Dynamic channel T is defined as T =⋃

x∈aT
s(x,r, i) where aT is the centerline of T (a three-

dimensional curve) and s(x,r, i) is a sphere with center x
and radius r which does not intersect nor contains inside
any atom in the reference snapshot mi.

The definition of a dynamic channel is general. For
the purposes of this paper there is a need to apply var-
ious constraints. The constraints may be geometrical
(such as minimal width) or time (such as the order of
snapshots). For each dynamic channel we are able to
determine if it satisfies the given constraints. For exam-
ple, if a dynamic channel with the centerline aT , con-
necting an active site with the surface is to be an egres-
sion path, the basic constraint which should be satis-
fied is that the reference snapshot numbers should be
increasing from the active site. More formally, for each
a,b∈ aT such that a is closer in aT to the active site than
b, if the reference snapshot number for a is smaller than
reference snapshot number for b, then the path satisfies
the egression path constraint. Otherwise, the constraint
is not satisfied.

3 RELATED WORK
3.1 Motion planning methods
In the environments with static obstacles, there are var-
ious approaches that can be used to find a collision-free
path from a starting position to a destination position.
Possible methods are cell decomposition [Lin04], vis-
ibility graphs [JLK95], Minkowski sum [Gho90] and
potential fields [HA92]. The issue of path planning gets
more complicated when considering environments with
moving obstacles.

In the dynamic environments, there are approaches
which are designed for the two dimensional case. As
an example, spatial indexing [FS88], velocity obstacles
method [FS98] and hierarchical strategies [FS89] can
be mentioned.

The methods designed for three-dimensional en-
vironments with moving obstacles are much rarer.
As an example the following methods introduced
in [YJSHJ06], [BKZ+07] and [HKcLR00] can be
mentioned.

Our solution of path planning is done in an environ-
ment with different settings. Firstly, obstacles in our
environment are always spherical and all of them are
moving. Secondly, all obstacles are of similar size and
their movement is known a priori. In this environment,
our method tries to find paths connecting the starting
position with a destination position which satisfy user-
defined constraints. For each path the maximum size of
the spherical robot which is able to pass through can be
determined.

The proposed solution utilizes computational geom-
etry principles Voronoi diagram and Delaunay triangu-
lation [SU00] and is based on the breadth first search
algorithm (BFS) [CLRS01].

3.2 Channels
The issue of computation of channels in one snapshot
of the molecule was described in [POB+06] and the
improved approach based on computational geometry
was proposed in [MBS07]. Other approaches which ap-
peared later [PKKO07, YFW+08] are based on similar
concepts.

The extension to dynamics where channels are
computed separately in each snapshot was proposed in
[BMS09]. It should be stressed that the cluster analysis
which was utilized in this issue is not directed to find
a dynamic channel as defined above since there is no
explicit notion of continuous movement through the set
of channels clustered together.

4 PROPOSED METHOD
The input data for the proposed method include the ge-
ometric model of the molecule which is composed of a
set of spheres in three dimensions. The molecule con-
tains thousands of atoms; each atom corresponds to a
sphere in the model. Additionally, the movement of
atoms is sampled with a fixed frequency, producing a
set of snapshots (a trajectory). Each snapshot repre-
sents the positions of atoms in a certain instance of time
and in fact is a static model. The capture of snapshots is
dense enough so that no important movements of atoms
are missed. This implies that there is a certain limit for
the translation of each atom between consecutive snap-
shots.

In addition, it is necessary to specify the starting point
and the set of destination points. For protein analysis,
starting point should be located in the active site cavity
and destination points may be automatically determined
as points lying on the surface of the molecule.

It should be noted that the trajectory typically de-
scribes local movement of atoms only, while the global

WSCG 2011 Full Papers 82



Figure 1: Construction of a graph from the Delaunay triangulations. (a) Graph after processing of the first
snapshot. (b) In the next snapshot, the movement of atoms caused changes in the Delaunay triangulation.
New edges (dashed green) and nodes (green) were added into a graph after processing this snapshot.

movement of the molecule is not present. Various align-
ment tools can be used in case the data do not satisfy
this condition.

The proposed method is purely geometrical. It pro-
cesses the geometric model of the molecule which con-
sists of a set of spheres in three dimensions; each atom
corresponds to one sphere. No biochemical properties
are considered. This makes the method general and ap-
plicable in similar situations and similar dense environ-
ments in which feasible paths are to be computed. For
protein analysis, the method can be adjusted so that bio-
chemical properties are taken into account to find the
most prospective and biochemically relevant paths.

The method is composed of two main phases – the
graph creation phase and the graph processing phase.
In the first phase, the Voronoi diagrams (or dual Delau-
nay triangulations) are merged into a large graph. This
graph captures the behaviour of the geometric model
over time. In the second phase the graph is processed
searching for feasible paths which satisfy defined con-
straints.

4.1 Phase 1: create graph
Recall that M = {m1, ...,mn} be a time-ordered set of
snapshots. For each snapshot mi, we compute the De-
launay triangulation DTi that maintains the space par-
titioning of the molecule. The Delaunay triangulation
is computed using the QuickHull algorithm [BDH96].
It should be stressed that each tetrahedron in the tri-
angulation contains the indices of four atoms in the
molecule. In general, all triangulations DTi for M are
merged into one multi-edge graph G.

Due to the fact that there is a fixed number of differ-
ent atom radii and that the radii do not vary greatly, the
Delaunay triangulation for atom centers can be used.
For general situations in which the size of spheres (ob-
stacles) would differ more, the additively weighted De-
launay triangulation would have to be computed.

The algorithm starts with an empty graph G. For
each snapshot mi and for each tetrahedron t ∈ DTi, a

new node N containing a reference to t, is created,
Re f (N) = t. Two nodes are considered equal if the
atom indices of their reference tetrahedra are equal. If
G does not contain an equal node, then N is inserted
into G. This ensures that the associated tetrahedra for
nodes are unique.

Moreover, for each node N a set IN of indices of snap-
shots is maintained. If i ∈ IN , then Re f (N) was a tetra-
hedron in the Delaunay triangulation in the snapshot mi.

Let N1 and N2 be the two nodes in G. For each
snapshot mi in which tetrahedra Re f (N1) and Re f (N2)
share a face, a new edge e connecting N1 and N2 is in-
serted into G, then e = (N1,N2, i,v) where i is the snap-
shot number and v is the representation of width. For
short, let Snap(e) denote the snapshot number of e, i.e.
Snap(e) = i. The process of computing the width rep-
resentation follows.

For each edge e = (N1,N2, i,v) in G, a Voronoi edge
exists which is dual to the shared face between two
tetrahedra Re f (N1) and Re f (N2) in DTi. The value of
v can be computed as the distance between the corre-
sponding Voronoi edge associated with e and the sur-
face of the nearest atom in i-th snapshot. The issue
of computation of the values on edges for a Delaunay
triangulation from only one snapshot was addressed in
[MBS07]. The referred value v represents the maxi-
mum possible radius of a spherical probe which is able
to pass along the corresponding Voronoi edge without
colliding with any of the atoms. As a result, a multi-
edge graph G is created. Note that there may be more
than one edge between two nodes in G if associated
tetrahedra for these nodes were present in the Delau-
nay triangulation in more than one snapshot or even no
edge if both associated tetrahedra did not share a face
in any of the triangulations DTi. The example of such a
graph is shown in Fig. 1.

To keep the number of edges in G reasonable, it is
convenient to filter the edges in G by their value. If
the computed value v for an edge is less or equal to

WSCG 2011 Full Papers 83



Figure 2: Modified BFS. Starting node (S), destination nodes (D). (a) First step of the algorithm in which
paths of length one are created. (b) Extension of a path p = (e2) with edges emanating from the last node
of p. (c) Extension of path p = (e2,e5) during which a path between starting and destination node pnew =
(e2,e5,e11) is found.

user-defined limit, the edge is not added to G. Without
filtering, all edges are used regardless of their value.

Once the multi-edge graph is computed, it can be
stored for further processing. This graph represents the
discrete evolution of the proximity information about
the geometric scene over time.

The starting node in G from which the search for
paths begins is selected by its associated reference tetra-
hedron. For the purposes of protein analysis, a node
whose tetrahedron encloses three-dimensional coordi-
nates of the active site is selected. In other applications,
an arbitrary node may be selected.

For the purposes of protein analysis, the paths which
end on the convex boundary of the molecule are im-
portant. Each node in G whose associated tetrahedron
appeared on such boundary of the molecule in at least
one snapshot is marked as a destination node. In other
applications, a set of destination nodes may be selected
according different criteria.

4.2 Phase 2: process the graph and find
constrained paths

Given multi-edge graph G and starting node and a set of
all destination nodes we search for paths satisfying a set
of constraints. The straightforward solution in which no
path is excluded is to generate all possible paths which
emit from a starting node. To find such paths, G is pro-
cessed using the modified breadth-first search (BFS) al-
gorithm.

A path p consists of edges from G, p = (e1, ...,em)
where ei ∈ G. The length of a path is denoted as the
number of edges in p. The modified BFS generates
paths in steps; in each step, paths of length increased
by one are created.

The paths which consist of consecutive edges in G
and connect the starting node with one of the destina-
tion nodes can be mapped to a centerline of a dynamic
channel. The mapping is described later.

The modified BFS search algorithm works as fol-
lows. In the first step, paths of length one (containing
a single edge which originates from the starting node)
are created. In the next step, all paths from previous
step are extended with edges emanating from the last
node in the path being extended. To prevent cycles, a
path is extended with edges whose end node is not al-
ready present in the path. With this approach the set
of all feasible paths of variable length from the starting
node to all other nodes are computed.

The generation of new paths may terminate once a
path connecting the starting node with any of the desti-
nation nodes is found. Alternatively, the generation of
paths may continue to find more than one path. Also,
if multiple destination nodes were selected, it may be
crucial to find all suitable paths ending in some of these
nodes. Otherwise, the computation terminates after
paths to all reachable nodes are checked.

The described generation of feasible paths produces
a vast number of paths. If there was an unlimited com-
putational power and storage, it would be possible to
search the whole graph for all paths connecting starting
and destination nodes. Currently, this is not possible
and various restrictions have to be applied to keep the
number of paths reasonable. The description of various
techniques which help us to cope with the number of
paths follows, including the concept of constraints.

As mentioned above, paths are generated in steps. In
the first step, the set of paths P1 of length one is cre-
ated; each of these paths has exactly one edge which
emanates from the starting node. Then, in (i + 1)-th
step, each path p = (e1, ...,ei) from Pi is extended with
every edge enew which emanates from the last node in
the path p (except for cases when p already contains the
end node of enew to prevent cycles) resulting in a new
path pnew = (e1, ...,ei,enew) which is inserted into Pi+1.
Finally, the set Pi is discarded and no longer maintained.

WSCG 2011 Full Papers 84



The example progress of the algorithm is shown in Fig.
2.

To keep the number of paths reasonable, it is conve-
nient to filter non-prospective paths during the exten-
sion process. More precisely, in the i-th step, each path
of length i can be extended by many edges to form paths
of length i+1. The concept of constraints is utilized to
decide whether an extension is appropriate instead of
blindly creating extended paths and filtering them af-
terwards.

Let us now explain various constraints and their
application in the process of extending a path
p = (e1, ...,em) with an edge enew, resulting in a
new path pnew = (e1, ...,em,enew). The following list
describes important constraints which take into account
the minimum clearance of the path, proper flow of
time, maximum speed of a robot, waiting of a robot
and a limited curvature of the path. The list, however,
is not exhaustive and one can design other constraints
that can be applied. The selection of constraints
below is motivated by the computation of the widest
straight-leading paths which are safe to pass along over
time.

• Minimum radius of a path. If the width of enew is
lower than the minimum value specified, the exten-
sion does not happen and pnew is not created. See
Fig. 3 (b).

• Increasing snapshot number. For paths, which
should serve as egression paths from the active site,
the snapshot numbers for edges in the path have to
be increasing. If Snap(enew) < Snap(em), the exten-
sion does not happen since the extended path would
not satisfy the constraint. Additionally, for the ac-
cess paths, the decreasing order of snapshot numbers
has to be used. This constraint is the most important
for the validity of the path over time. See Fig. 3 (c).

• Speed of the robot. If there is more than a certain
number of edges having the equal snapshot number
in the path, it would be impossible for a robot to
pass through in such a short time. Let time be the
time between the each two consecutive snapshots in
the trajectory. If there is a certain number of edges
having the equal snapshot number in the path, the
sum of lengths of these edges divided by the speed
of the robot cannot exceed time. In case all edges
in the multi-edge graph are of approximately the
same length, the constraint can be formulated in the
following simpler form. If the extension of a path
causes that a last certain number (experimentally de-
rived) of edges have equal snapshot number, the ex-
tension does not happen. See Fig. 3 (d).

• Waiting of a robot in a graph node. For this con-
straint, the additional information stored for each

node in IN is utilized. Note that IN contains snap-
shot numbers in which it was safe for the robot to
wait in node N (Fig. 1). Let N be the node shared
by em and enew. If IN contains all integer numbers
from interval < Snap(em),Snap(enew) > and the ra-
dius of the inscribed sphere to a tetrahedron Re f (N)
is larger than the size of the robot, the transition be-
tween em and enew is safe and the robot is able to
wait in N. See Fig. 3 (e).

• Curvature of the path. For every new edge enew
to be added we are able to compute an angle α be-
tween enew and em. If α is above a user specified
value the extension does not happen. If desired, this
allows us to exclude paths exceeding a user-defined
curvature threshold. See Fig. 3 (f). Note that this
definition limits the angle between each pair of con-
sequent edges in the path only. For our purposes this
definition is sufficient. However, other definitions
which consider the whole path can be used.

For the practical case, the number of paths may be ex-
tremely large for huge multi-edge graphs even if pre-
viously mentioned constraints are applied. One of the
other possibilities to reduce the number of paths is
adding new constraints. There are also other techniques
which do not belong to the category of constraints but
still help us to reduce the number of paths so that the
computation is feasible when only a limited amount of
memory is available. The techniques typically result in
the loss of paths.

In i-th step, when paths are created, we can stop the
extension and proceed to the next step if the number
of generated paths of length i is larger than a user de-
fined value. It is obvious, that this approach prefers
such paths which are to be found earlier in the process
of generating paths.

The alternative approach we propose is to leave only
one path for each node in G. This way, a number of
paths is limited by the number of nodes in G. It is cru-
cial that the best candidate path is kept for each node
to reduce the number of lost paths. Let P(N) be a
set of paths whose last node is N. The selected can-
didate path p∈ P(N) for a certain node N is such a path
p = (e1, ...,em) for which Snap(em) is minimal. This
is the safest way which ensures that if there exists a
path satisfying the most important time flow constraint
(increasing / decreasing order of snapshots) it will be
generated.

Our algorithm is general enough that the output of
paths can also be done during the extension process. If
the ending node of enew is marked as destination, it is
clear that a path which connects the starting node with
the destination node exists. The path is stored and is no
longer extended. However, the process of generating
paths may continue to find other different paths con-
necting the starting node with a destination node.

WSCG 2011 Full Papers 85



Figure 3: Extension of a path p = (e1,e2,e3) with e4, e5, e6, e7, e8, e9 and applying constraints. Crossed
dashed lines denote the edges which do not satisfy given constraints. (a) Extension without constraints. (b)
Minimum-width constraint with value of 1.7. Edge e5 does not meet the minimum width requirement. (c)
Time-flow constraint. The path is treated as egression and the numbering of snapshots should be increasing.
Newly added edge e7 does not satisfy the constraint. (d). Speed of the robot. In this case, we do not allow two
consecutive edges to have the same snapshot number. Edge e6 does not satisfy the constraint. (e) Waiting
of the robot. Edge e9 does not satisfy the constraint as some of the snapshot numbers between 8 and 12 is
missing in IN . (f) Angle constraint. Edge e4 does not satisfy the constraint of maximum angle of 90 degrees
shared by e3 and e4. The angle α which satisfies the constraint is emphasized.

5 BIOCHEMICAL APPLICATION:
MAPPING A PATH TO A DYNAMIC
CHANNEL

A path connecting the starting node with a destination
node is mapped to a dynamic channel in the following
way. The centerline of a dynamic channel consists of
the Voronoi edges dual to the faces shared by tetrahedra
associated with the nodes in G and new edges are added
to ensure that the resulting centerline is continuous to
meet the definition of a dynamic channel.

More precisely, each edge e1 = (N1,N2,s1,w1) ∈ G
after which follows e2 = (N2,N3,s2,w2) ∈G is mapped
to a centerline as a Voronoi edge ve1 dual to the face
shared by Re f (N1) and Re f (N2) in snapshot s1. If both
e1 and e2 originate from different snapshots, additional
edges have to be mapped to the centerline. For each pair
of successive i1, i2 in the ordered set of integer num-
bers from IN2 = {s1, ...,s2}, a new edge gei is added
to the centerline which connects Voronoi vertex dual to
Re f (N2) in snapshot i1 and the Voronoi vertex dual to
Re f (N2) in snapshot i2. The whole process is demon-
strated in Fig. 4

6 RESULTS
The method was tested on trajectories which were
computed using a computer simulation of a protein

molecule. In the visualization of these data, it can be
clearly visible that a small molecule (a ligand) leaves
the active site defining an egression path. In addition,
the molecule does not remain open during the egression
which means that recent approaches which compute
channels separately in each snapshot fail to detect such
a path.

For the analysed trajectories, the ligand was naturally
excluded from the computation. The above mentioned
constraints were used searching for egression paths;
their settings were identical for all analysed trajectories.
After constrained dynamic channels were found, these
channels were compared against the egression path of
a ligand. Table 1 shows the results of the comparison.
We have inspected the bottleneck radius (in Angstrom,
Å, 1 Å= 10−10 m) of the dynamic channel and the dis-
tance between dynamic channel and the ligand position
in the appropriate snapshot. Average value of this dis-
tance is shown in the table. In the trajectories 1-3, the
egression path was computed by our method which was
almost identical with the egression path of the ligand.
For trajectory 4, our method has detected wider possible
egression path which exists, whereas the ligand in the
simulation chose different path. In this case, the size of
the ligand (Table 1) is smaller and more possible paths
exist. In all cases, the bottleneck radius of computed
dynamic channel was the same or slightly smaller than

WSCG 2011 Full Papers 86



Figure 4: The example mapping of an edge e1 in a
path (upper part) to the part of a dynamic chan-
nel centerline (lower part). For the edge e1, the
Voronoi edge ve1 is added to the centerline together
with edges ge1, ge2 and ge3. The ge edges show the
waiting of the robot and ensure that the resulting
centerline is continuous.

the radius of a ligand bounding sphere. This was caused
by the non-spherical shape of the ligand which can pass
through a channel only when properly oriented. It can
be noticed that for trajectory 4, the number of computed
paths was significantly larger than for other trajectories.
Since all these paths satisfied the used constraints, ad-
ditional filtering is convenient to select the most impor-
tant of them.

The example visualization of a dynamic channel in
selected snapshots using pyMol visualization software
[Del02] is shown in Fig. 5. In each snapshot, only a part
of the dynamic channel which is valid in this particular
snapshot is visualized. Standard visualization method
of insertion of empty spheres on the centerline is used.
Notice that the path is blocked by atoms in the second
and fourth selected snapshot – this is exactly the case in
which methods that compute channels in each snapshot
independently fail to detect the channel.

It should be stressed that in the testing data the be-
haviour of the molecule over time is sampled densely
enough so that the translation of each atom in the two
consecutive snapshots is kept within a reasonable limit
and no crucial movement is omitted. This ensures that it
would be feasible for a small molecule to pass through
a computed path without any collision.

The time required to find paths satisfying the con-
straints depends on the number of edges in G and on
the constraints applied. However, in the worst case the
modified BFS algorithm may process all paths which
may require vast amount of time and memory. More

precisely, let c be the number of nodes in G and k be the
number of snapshots. Then, the maximum number of
edges between a pair of nodes is k. In the worst case, the
number of all paths of length d is ∏

d
i=1 k(c− i). With

the constraints and the cutting of paths applied after
each step, the number of paths generated is significantly
smaller. For protein trajectories, the time required to
find paths with all mentioned constraints was hours on
a common desktop computer (single core 2GHz, 2GB
of memory). With the reduction of paths in each step
to the number of nodes in G, the time even decreased
rapidly to approx. 20 minutes still generating reason-
able paths. It should be noted that the processing time
is not crucial since the molecular dynamics simulation
takes days to compute.

7 CONCLUSION
We have presented a new geometric method, which is
capable of finding constrained paths in a three dimen-
sional space with a huge number of moving spherical
obstacles. These obstacles may not only move arbitrar-
ily, but also may overlap. Various constraints were de-
signed which can be applied to filter non-prospective
paths. We have presented the modified breadth-first
search algorithm which generates feasible paths with
the constraints applied during the generation process.

We have also demonstrated the application of the
method to an interesting biochemical problem of find-
ing a dynamic channel in a trajectory. Due to limited
computing resources currently available, trajectories do
not cover large period of protein life and that egression
may not happen in the short interval of simulation. De-
spites this, we expect the method to have a great poten-
tial once the data is available. We have also shown that
for the available data with egression paths confirmed
by other means, these collision-free paths were found
by our method.

8 FUTURE WORK
In the future, we would like to focus on the validation
of biochemical relevance of computed paths on large
protein trajectories. Moreover, in cooperation with bio-
chemists it would be necessary to include various addi-
tional biochemical constraints to improve the relevance
of the results if still a large number of paths exists.

So far, the method assumes that the radii of obstacles
do not vary greatly. The modification of the method
for environments with variable-size spherical obstacles
could be accomplished using the additively weighted
Voronoi diagram and the corresponding triangulation.

9 ACKNOWLEDGMENTS
This work was supported by The Ministry of Education
of The Czech Republic, Contract No. LC06008 and
by The Grant Agency of The Czech Republic, Contract

WSCG 2011 Full Papers 87



Figure 5: Example visualization. Side view of a protein molecule, cut with a cutting plane perpendicular to
the view. The resulting egression path is visualized using yellow spheres defining the safe collision-free posi-
tions of a spherical robot inside the molecule over time (example for six selected snapshots). The molecule is
visualized using two basic visualization methods (upper panel – sphere model, lower panel – surface model).

id molecule ligand dynamic channel number of average distance between ligand egression
(codename) egression bottleneck radius paths found and one of the paths computed

1 LinB WT cyclohexanol (OCX) 2.7 Å 59 0.8 Å
2 LinB L177W cyclohexanol (OCX) 1.4 Å 43 3.8 Å
3 LinB L177W 2-bromoethanol (BEO) 1.3 Å 1 2.01 Å
4 LinB L177W bromide ion (Br-) 1.4 Å 1588 7.7 Å

Table 1: The properties of computed constrained dynamic channels for selected trajectories.

No. P202/10/1435. We would also like to acknowl-
edge Lada Biedermannova from Heidelberger Institut
for Theoretical Studies for the supplied trajectories.

REFERENCES
[BDH96] C. Bradford Barber, David P. Dobkin, and Hannu Huh-

danpaa. The quickhull algorithm for convex hulls. ACM
Trans. Math. Softw., 22(4):469–483, 1996.

[BKZ+07] P. Broz, I. Kolingerova, P. Zitka, R. Apu, and
M. Gavrilova. Path planning in dynamic environment
using an adaptive mesh. Spring Conference on Com-
puter Graphics, ACM proceedings, pages 172–178,
2007.

[BMS09] P. Beneš, P. Medek, and J. Sochor. Computation
of channels in protein dynamics. In Proceedings of
the IADIS International Conference Applied Comput-
ing 2009, 2:251–258, 2009.

[CLRS01] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms. MIT Press, 2001.

[Del02] W. L. Delano. The pymol molecular graphics system,
2002.

[FS88] K. Fujimura and H. Samet. Path planning among mov-
ing obstacles using spatial indexing. Robotics and Au-
tomation, 1988. Proceedings., 1988 IEEE International
Conference on, pages 1662 –1667 vol.3, apr. 1988.

[FS89] K. Fujimura and H. Samet. A hierarchical strategy
for path planning among moving obstacles [mobile
robot]. Robotics and Automation, IEEE Transactions
on, 5(1):61 –69, feb. 1989.

[FS98] Paolo Fiorini and Zvi Shillert. Motion planning in dy-
namic environments using velocity obstacles. Interna-
tional Journal of Robotics Research, 17:760–772, 1998.

[Gho90] Pijush K. Ghosh. A solution of polygon contain-
ment, spatial planning, and other related problems using
minkowski operations. Comput. Vision Graph. Image
Process., 49(1):1–35, 1990.

[HA92] Y.K. Hwang and N. Ahuja. A potential field approach to
path planning. Robotics and Automation, IEEE Trans-
actions on, 8(1):23 –32, feb. 1992.

[HKcLR00] David Hsu, Robert Kindel, Jean claude Latombe, and
Stephen Rock. Randomized kinodynamic motion plan-
ning with moving obstacles, 2000.

[JLK95] J.A. Janet, R.C. Luo, and M.G. Kay. The essential vis-
ibility graph: an approach to global motion planning
for autonomous mobile robots. volume 2, pages 1958
–1963 vol.2, may. 1995.

[Lin04] F. Lingelbach. Path planning using probabilistic cell
decomposition. volume 1, pages 467 – 472 Vol.1, apr.
2004.

[MBS07] P. Medek, P. Beneš, and J. Sochor. Computation of tun-
nels in protein molecules using delaunay triangulation.
Journal of WSCG, 15(1-3):107–114, 2007.

[PKKO07] Martin Petřek, Pavlína Košinová, Jaroslav Koča, and
Michal Otyepka. Mole: A voronoi diagram-based ex-
plorer of molecular channels, pores, and tunnels. Struc-
ture, 15(11):1357–1363, November 2007.

[POB+06] Martin Petřek, Michal Otyepka, Pavel Banáš, Pavlína
Košinová, Jaroslav Koča, and Jiří Damborský. Caver:
a new tool to explore routes from protein clefts, pock-
ets and cavities. BMC Bioinformatics, 7(1):316+, June
2006.

[SU00] J.-R. Sack and J. Urrutia. Handbook of computational
geometry. North-Holland Publishing Co., Amsterdam,
The Netherlands, The Netherlands, 2000.

[YFW+08] Eitan Yaffe, Dan Fishelovitch, Haim J. Wolfson, Dan
Halperin, and Ruth Nussinov. Molaxis: Efficient and
accurate identification of channels in macromolecules.
Proteins: Structure, Function, and Bioinformatics,
73(1):72–86, 2008.

[YJSHJ06] Kwon Kyoung Youb, Cho Jeongmok, Kwon Sung-Ha,
and Joh Joongseon. Collision avoidance of moving ob-
stacles for underwater robots. Journal of Systemics, Cy-
bernetics and Informatics, 4(5):86–91, 2006.

WSCG 2011 Full Papers 88


	K37-full.pdf

