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Fairy Forest irregular scene rendering complexity
The regular grid spatial subdivision on the left provides a less well balanced triangle distribution per
cell than the rectilinear grid structure on the right. Both spatial partitioning grids feature a similar
resolution.

ABSTRACT

Regular grid spatial subdivision is frequently used for fast ray tracing of scanned models. Scanned models
feature regular sized primitives, with a regular spatial distribution. Grids have worse performance, than
other subdivision techniques, for irregular models without these characteristics. We propose a method
to improve the performance of grids for rendering irregular scenes by allowing the individual placement
of grid split planes: the rectilinear grid. We describe how to construct and traverse a rectilinear grid.
To exploit cache memory in modern processors compression is used for the split plane and grid cell data.
We demonstrate in a series of tests that the method has faster ray tracing rendering performance than a

compressed regular grid of similar dimensions.
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1. INTRODUCTION

Whitted ray tracing [Whi80] is a technique which
is experiencing a renaissance in the graphics re-
search community, since it is a simple, elegant al-
gorithm which can accurately render not just local
illumination, but also shadows, reflections, and re-
fractions.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
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The algorithm is also amenable for implementa-
tion into parallel architectures, because of its in-
herent per ray parallelism. In addition it can accu-
rately render higher order object primitives such
as spheres, cylinders, cones, or other quadrics.
Not just triangles.

The recent improvements in graphics hardware
and GPGPU programming languages have been
empowering software developers everywhere to re-
place the rendering pipeline partially or even in its
entirety. In order to be able to compete with ras-
terization, ray tracing must have good enough per-
formance. It should be able to render the scenes
which users expect to visualize today. It is the



(a) Regular

(b) Rectilinear

Figure 1. Grid spatial subdivision types

author’s opinion that is desirable to use ray trac-
ing across the whole rendering pipeline as a re-
placement for rasterization. Barring the render-
ing performance reasons, which this work aims
to address, using ray tracing across the whole
pipeline would enable a more seamless experience
for artists and application developers. One exam-
ple is the application of shadows on a scene, where
ray tracing does not suffer from the artifacts and
difficult parametrization issues of current rasteri-
zation algorithms. The implementation issues of
these algorithms are described by Kuehl et al. in
[KBBOT].

2. BACKGROUND

In order to have real-time ray tracing perfor-
mance, for complex scenes, it is necessary to em-
ploy so called acceleration techniques. These tech-
niques employ a divide-and-conquer strategy to
solve the ray tracing problem. The most popu-
lar acceleration techniques are spatial subdivision
techniques: bounding volume hierarchies (BVHs),
kd-trees, and grids [WMG™07].

Grids are a 3D space subdivision method, intro-
duced by Fujimoto in [FTI86], where space is sub-
divided into same sized cubically shaped cells.
These cells also known in the literature as voxels.
Grids have several interesting traits. They feature
linear O(NN) construction time, constant O(1) up-
date time, and have fast traversal times for ren-
dering. Best case traversal complexity is O(1) and
3

worse case traversal complexity is O(VN). N is
the number of objects in a scene.

The main issues with regular grids have been high
memory consumption and poor adaptation to ir-
regular scenes. Irregular scenes can feature differ-
ent sized, irregularly distributed, geometry. One
example of such troublesome geometry would be
a highly detailed object inside a low detail box.
This is known in the literature as the teapot in a
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stadium problem. In contrast grids are very effi-
cient at rendering scanned scenes.

Both of these issues are due to the way the split-
ting planes are positioned in a regular grid. All
the cells must have the same size, so regular grids
are a poor fit for irregular scenes. The heuristic
used to compute the number of split planes for
each axis of the 3D grid is usually some variation

of:
Vpx N (1)

Where p is a user defined parameter which de-
scribes the density of the scene. Most implemen-
tations use a default p value of 4. This heuristic
ensures the memory consumption is proportional
to the number of primitives in the scene.

One approach to solve the issue is Jevans and
Wyvill’s recursive grid [JW89]. In this approach
grids are recursively applied to subdivide the scene
in a shallow grid hierarchy. This technique places
grids inside grids to enable variable subdivision
cell sizes across the scene. This technique im-
proves rendering performance substantially. The
main issues with this approach are that it fur-
ther increases memory consumption, makes it im-
possible to do O(1) partial scene updates, and
the method still has some issues adapting to ir-
regular scenes compared to other techniques such
as kd-trees and BVHs which employ surface area
heuristics (SAH) to more accurately place the split
planes [WH06, Wal07]. Much of the traversal time
in the grids is still spent skipping empty cells with
no geometry in them. Memory and time efficient
methods to construct and traverse such recursive
grids were described by Costa et al. [CPJ10].

Several researchers have tried in the past to im-
prove regular grid heuristics with a limited de-
gree of success. One approach, followed by Kli-
maszewski in [KS97], was to build a grid hier-
archy overlaid on a previously constructed SAH
bounding volume hierarchy. Cazals and Puech in



[CP97] analyzed the scene geometry by clustering
geometry into groups and attempting to place the
regions of regular geometry in the scene into sep-
arate grids. These techniques have not been very
popular because of their implementation complex-
ity, and a performance which is not globally bet-
ter than that of the simpler to implement recur-
sive grid. Havran did an interesting performance
analysis in [HS99] of these grid spatial subdivision
techniques. Ize provides in [ISP07] an in depth
analysis of grid heuristics. There he describes how
to build a good performing grid for several kinds of
scenes. Ize also described an heuristic for recur-
sive grids which maintains total space consump-
tion proportional to the number of primitives in
the scene. This recursive grid heuristic is included
in the Manta interactive raytracer [BSP06].

3. RECTILINEAR GRIDS

We propose to relax the grid split plane position-
ing using a rectilinear grid (see Figure 1). This
should enable a better balancing of the scene ge-
ometry among the grid cells resulting in faster ray
tracing performance. Rectilinear grids have previ-
ously been used in the field of volume ray tracing
[PPL*05]. In this work we describe how to effi-
ciently construct and traverse a rectilinear grid for
general ray tracing purposes.

Construction

First we compute the scene’s bounding box. Next
we finely sample the scene along each major axis
z,y,z. The number of samples taken per axis is
described by the following equation:

/4 x N
1%

Where N is the number of primitives, V is the
volume of the scene, and S; contains the bound-
ing box dimensions in that axis. Each sample con-
tains a count of the number of primitives in that
particular subvolume.

sample; = 100 x S; x

i€x,y,z (2)

Then we compute the sum of these primitive
counts for each axis:

sample;

sum; = E count;
Jj=0

(3)

1E€ET,Y, 2

The scene is partitioned into ncells, X ncells, x
ncells, voxels. The split planes for each cell are
placed in order to divide the scene into regions
with a similar number of primitive counts per axis
where:

3/4xX N
neells; = S; X y/ >‘</ i€xy,z  (4)
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Algorithm 1 : Rectilinear grid traversal

function NEAREST-AXIS(int)
if int; < int, then
if int, < int, then
return x
else
return z
end if
if inty < int. then
return y
else
return z
end if
end if
end function

function TRAVERSE(ori, dir, planes, cells, ncells)
test if the ray hits the bounding box of the scene
find the nearest ray/box intersection point p
id < FIND-FIRST-CELL(p, planes)
for all i € x, y, z do
if dir; < 0 then
step;, incr;, stop; < 0,—1, —1
else
step;, incr;, stop; < 1,41, ncells;
end if
int; < (planes;[id; + step;] — ori;)/dir;
end for
t < 400
loop
if cells[idg,idy,id.] # 0 then
traverse cell
find the nearest ray/object intersection ¢
end if
repeat
i < NEAREST-AXIS(int)
if int; > t then
return t
end if
id; < id; + incr;
if id; = stop; then
return ¢
end if
int; < (planes;[id; + step;] — ori;)/dir;
until cells[idy, idy,id.] # 0
end loop
end function

> skip empty cells

This rectilinear grid has a similar number of cells
compared to a regular grid because we use the
same heuristic to compute the number of split
points. Contrary to a regular grid, the split planes
are not equidistant; but divide regions with sim-
ilar amounts of geometry. Non empty cells in a
rectilinear grid will thus contain a smaller amount
of primitives on average than a regular grid of the
same dimensions. This will be explored in greater
detail in Section 4. This construction method has
a computation time complexity of O(N). Space
complexity is also O(N).

Traversal

We employ a generalization of the voxel traversal
method described by Cleary and Wyvill [CW8&8].



hash map

Figure 2. Row displacement compression

This method is described in Algorithm 1. Since
we have variable positions for the split planes, it
is not so worthwhile to precompute many of the
traversal variables. If we cached these values we
would spend many computing cycles performing
slow memory loads just to save a couple of fast
arithmetic operations. Profiling results showed
that one of the main bottlenecks of this rectilin-
ear grid traversal method consists in loading the
split plane data from cache. Another large bot-
tleneck is the branch mispredictions which occur
while searching the next non empty cell. This rec-
tilinear grid traversal method spends more time
doing cell traversals than a regular grid traver-
sal method because of these loads and the extra
arithmetic operations. However, since each cell
contains less primitives, less time is spent perform-
ing ray/primitive intersections. The end result is
a net increase in rendering performance for many
scenes.

Finding the First Cell

We have the split plane data for each axis in the
rectilinear grid. The most expedient way to im-

Algorithm 2 : Finding the first cell in a rectilinear
grid in O(1) time with a stored compressed bit array

function UNPACK(axis, )
diff + 0
for all j such that 0 < j < msblazis] do
dif f < dif f X 2+ storageaxis][i X msb[axis] + j]
end for
return dif f
end function

function LOOKUP(axis, 1)
predict < i X ncellsgzis/nsamplesgzis
dif f < UNPACK(axis, 1)
return mingq.;s + predict + dif f

end function

function FIND-FIRST-CELL(p, planes)
for all axis € x, y, z do
idgzis < LOOKUP(7)
end for
return id
end function

,0,nsamplesqgis — 1)
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plement an algorithm to find a point in this grid,
without by using any extra memory, is by doing
a binary search in the ordered list of the split
points. This approach has O(log N) time com-
plexity. This is clearly worse performing than the
method employed for finding the first point in a
regular grid which has O(1) time complexity.

We speeded up this part of the algorithm by em-
ploying a lookup table which maps the quantized
fine regular grid coordinates used in the sampling
step during construction to the actual rectilinear
grid coordinates. This lookup table, if uncom-
pressed, would not easily fit in the caches com-
promising the rendering performance of the algo-
rithm.

To fit the lookup table into the processor cache
we compressed the data using arithmetic encod-
ing (see Algorithm 2). The unpacking function,
which loads a bit array from memory into an in-
teger register, can be further optimized using as-
sembly instructions. The prediction function we
employed assumes most split planes will be regu-
larly separated at constant intervals. If the dis-
tance between all the split planes is the same,
which is common for scanned scenes, we have a
perfect prediction. This means for such scenes no
additional memory would be required to store the
table. This prediction function also behaves well
for other more irregular scenes. This can be seen
in the results for the Fairy Forest scene. Time
complexity with the lookup table is O(1).

Cell Compression

We minimized the memory required to store the
grid by employing the row displacement com-
pression algorithm [LDO08] described by Lagae
and Dutré. This algorithm works by compress-
ing empty grid cells via row hashing (see Fig-
ure 2). Frequently grid acceleration structures fea-
ture 90% or more empty cells. This compression
scheme reduces the memory required to store a
grid up to 20 : 1.

The main issue with this scheme is that it makes
it harder to perform partial grid updates. How-



§

N 1 4 S

AEK-24-cell Fairy Forest Buddha Thai Statue
scene
num triangles 122.88 K 17411 K 1.09 M 10.00 M
memory 2.14 MB 4.22 MB 18.67 MB 171.66 MB
regular grid
grid res 79x78x79 140x36x140 121x295x121 302x508x261
% empty cells 93.58% 79.12% 94.86% 98.44%
avg objects / n-empt cell 14.06 6.70 13.02 29.25
avg cells / object 3.58 5.67 2.66 1.83
mem cells 249.39 KB 800.85 KB 1.88 MB 8.97 MB
mem object lists 1.68 MB 3.76 MB 11.03 MB 69.78 MB
memory 1.92 MB 4.55 MB 12.91 MB 78.75 MB
build time 0.03 s 0.06 s 0.29 s 2.38 s
render time 2.54's 4.95 s 0.70 s 1.63 s

rectilinear grid

sample res 7944,7829,7903 | 13968,3570,13968 | 12130,29537,12144 | 30187,50824,26072
grid res 79x78x79 139x36x139 121x294x121 300x506x259
% empty cells 91.02% 78.40% 92.82% 96.52%
avg objects / n-empt cell 1.13 1.59 0.77 0.61

avg cells / object 4.49 6.37 3.06 241
mem cells 319.09 KB 929.48 KB 2.42 MB 13.64 MB
mem object lists 2.11 MB 4.23 MB 12.69 MB 92.08 MB
mem planes 960 B 1.24 KB 2.11 KB 4.18 KB
memory 2.42 MB 5.14 MB 15.12 MB 105.72 MB
build time 0.09 s 0.14 s 0.85 s 7.35 s
render time 2.23 s 2.76 s 0.71 s 1.38 s

Table 1. Performance results for several scenes.

All scenes were rendered at 1024 x 1024

resolution with one ray sample per pixel. Only one thread was employed.

ever it is quick to rebuild such a grid, most of
the steps performed in the construction algorithm
can be parallelized, interactive frame rates can be
achieved for many scenes.

4. RESULTS

A prototype implementation was written in or-
der to test the viability of this algorithm for ray
tracing complex scenes. The implementation was
coded in ANSI C++ with use of the Boost li-
braries. This implementation does not use intrin-
sics or assembly instructions. The implementation
was run on an Intel Core 2 CPU at 3.0 GHz with
2 GB of RAM under the Linux operating system.

All test scenes were rendered at 1024 x 1024 res-
olution with one ray sample per pixel and dif-
fuse shading. Only one rendering thread was em-
ployed. Ray tracing performance scales linearly
with the number of processor cores in the system.

Triangles are stored in memory using indexed ver-
tex arrays. Ray/triangle intersection is done using
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the Moller-Trumbore algorithm [MTO05].

The performance comparison baseline is the
compressed regular grid algorithm described in
[LDO8]. Our rectilinear grid algorithm uses a sim-
ilar grid resolution as can be seen at Table 1. Both
of these algorithms were implemented by us on our
ray tracing system.

We selected four scenes for testing purposes:
AEK-24-cell, Fairy Forest, Buddha, Thai Statue.
These scenes are representative for many kinds of
applications. AEK-24-cell contains a scene with
data similar to that used for scientific visualiza-
tion, Fairy Forest is an irregularly distributed
scene similar to what we could find in a game
application, the Buddha and Thai Statue are
scanned scenes with heavy geometry.

Several things can be noted by examining the test
results. As expected our rectilinear grid imple-
mentation has much improved render time per-
formance (79% faster) for the irregular Fairy For-
est scene. It also provides a performance speedup
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Figure 3. Render time in seconds. Lower

values are better.
Thai Statue
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Figure 4. Build time in seconds. Lower

values are better.

for the AEK-24-cell (14%) and Thai Statue (18%)
scenes. In contrast the rectilinear grid has slightly
worse rendering performance (-1%) for the Bud-
dha scene.

We decided to examine these results in more
depth. The rectilinear grids contain less triangles
in each cell than a regular grid would. This was
expectable due to the way we compute the split
plane positions. However each triangle in the rec-
tilinear grid overlaps more cells. This may make
it worthwhile to employ mailboxing in our render-
ing system. Our implementation does not have
this feature.

The split plane data easily fits into the L1 cache
minimizing the amount of memory fetches re-
quired. Both grid implementations feature a 3D
bitmap. Each bit in the bitmap states if a grid
cell is empty or not. This allows us to reduce the
amount of memory bandwidth required to traverse
empty cells.

The build times for the rectilinear grid (see Fig-
ure 4) are 2-3x slower. This is mostly due to the
sampling step during preprocessing. The sampling
is done at a 100x higher resolution, per axis, than
that of the grid itself.

Increasing the sampling resolution further does
not improve the rendering performance for the
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Buddha

Fairy Forest

AEK-24-cell

T T T T T

0 20 40 60 80 100

M Regular Grid ~ ® Rectilinear Grid
Figure 5. Memory consumption in
megabytes. Lower values are better.

tested scenes. It would be interesting to fur-
ther investigate different heuristics for selecting
the amount of samples. In particular it would be
possible to have quite different heuristics for se-
lecting the sample size, and the grid size, rather
than the simple multiple we use now.

Memory consumption (see Figure 5) is also higher
for the rectilinear grid. This is due to the greater
number of occupied cells, and large cell triangle
lists.

Figures 6, 7, 8, 9 display the number of traversal
steps required to render a given test scene. Pixels
with a lighter tone of blue have more cell traver-
sals. Pixels with a lighter tone of red have more
triangle intersections. In this way it is easier to
visualize the pros and cons of each acceleration
structure.

5. CONCLUSIONS

We have proposed and implemented a rectilinear
grid ray tracing algorithm. This algorithm has up
to 79% better performance compared to a regu-
lar grid on the tested scenes using a similar grid
resolution. It is especially well suited to render ir-
regular scenes, which have typically been an issue
with grid ray tracing.

Now that we can individually control the split
plane positions, it should be easier to devise more
sophisticated surface area grid heuristics based on
previous work on BVHs and kd-trees.

It should also be interesting to apply the scene
sampling information generated during the con-
struction stage to further construct a hierarchi-
cal data structure to speed up empty cell traver-
sal. There are many other techniques to speed up
empty cell traversal such as macro-regions [Dev89]
and proximity clouds [CS94] which could prove
useful for this purpose.

120
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(a) regular grid (b) rectilinear grid (c) rendered image

Figure 6. AEK-24-cell (122.88 ktri)

(a) regular grid (b) rectilinear grid (c) rendered image

Figure 7. Fairy Forest (174.11 ktri)

(a) regular grid (b) rectilinear grid
Figure 8. Buddha (1.09 Mtri)

(a) regular grid (b) rectilinear grid (c) rendered image

Figure 9. Thai Statue (10.00 Mtri)
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