Image-based Animation

Biswarup Choudhury Ambareesha Raghothaman Sharat Chandran
Indian Institute of Technology Indian Institute of Technology Indian Institute of Technology
Bombay & ETRI, South Korea Bombay Bombay

biswarup@cse.iith.ac.in ambareesha04@gmail.com sharat@cse.iitb.ac.in
ABSTRACT

Animation has evolved over the years — from the early days of 2D animation to the present technology of using GPU-based
shader programs for providing complex, photorealistic lighting. One thing has, however, remained constant — a geometrical
model has been considered essential in computer animation. In this paper, we propose an alternative.

An image-based framework is presented for creating arbitrary motions of an object using only captured images of the object; no
geometry of the object or the environment is provided by the user. Photorealism is an immediate side effect as a consequence.
Specifically we preprocess a set of images of a static object under a set of carefully chosen lighting configurations. Now given
an arbitrary environment in the form of images again, and any arbitrary three-dimensional path that the object is desired to
move, our algorithm creates a motion sequence of the object — realistically composed in the new environment.

Keywords: Animation, image-based rendering, visual hull, image-based relighting, virtual and augmented reality.

1 INTRODUCTION e Question: Can we reduce the production time and
resources substantially?

Answer: Yes, discounting the preprocessing time
(which is highly dependent on the number and types
of objects), our unoptimized implementation takes
roughly a minute per frame.

Traditionally computer-generated animation requires
knowledge of object geometry, reflectance functions,
lighting configurations, and the desired motion se-
quence. All of these are used in conjunction with
computationally intensive global illumination tech-
niques to render each frame of the desired motion. In o Question: If we had prior footage of an environ-

this paper, we show there is an alternative. We create ment, can we realistically embed in it a shot, where

the same animation with no knowledge of the geometry a Ferrari is yanked, and hurled into the air ?

of the objects from the user, and no surface properties. Answer: Creating such an animation would require

Even the environment that the objects are expected to the use of a Ferrari in a set of a studio (or its

‘live’ in is provided in the form of images. complicated geometric model), but is infeasible due
to commercial production reasons. Our method

1.1 Motivation achieves similar effects (please see the smaller

Behind th ¢) d e th Spaceship video in the supplementary material in
ehind the scenes of any computer animated movie, the which three Spaceships fly in the Uffizi Gallery

“layout crew” choreographs the characters in the set and 7D

uses a virtual camera to create shots. This painstaking '

process of c':hanglng the hghtlng, viewpoint, and charac- 1.2 Contributions

ter motion is repeated several times to capture the emo-

tion of each scene. To get an idea of how long it takes Clearly it is desirable to be able to qulckly create an ani-
to do such rendering, we quote Pixar who use a Render- ~ mation of an object performing an “impossible” motion
farm where each frame takes about six hours to render. ~ in director-mood dependent environments, edit (camera
Pixar claims that some frames have taken as many as position, lighting, and object path), and again quickly
ninety hours [19]. These numbers may represent the re-render it. Animage-based solution is a promising al-
time taken to render a full resolution frame. Nonethe- ternative, which would enable the director to create any
less, the time taken for a lower resolution frame is high, ~ desired animation using only a set of captured images of

and more significantly, the whole process is laborious. the object. This paper describes a method that combines
existing techniques to achieve this framework. Specifi-

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the 1. Motion: Unlike prior 1mage—based methods, our
first page. To copy otherwise, or republish, to post on servers or to static object captured in the studio can move freely

redistribute to lists, requires prior specific permission and/or a fee. . R K
in space at the whims and fancy of the user and live

cally, the novelty in our work is summarized as:

‘V)vag(é ?2(:)1111Coﬂféreﬂceﬂrocgeiiﬂg& 3 2011 in any virtual or camera captured real world. The
Plzen. Czech}e'lej:;',‘;}’j?f - rebruary 5 framework allows any complex motion, and does
Copyright UNION Agency — Science Press not need any object geometry from the user.

WSCG 2011 Full Papers 57

Skala
Obdélník

2. Lighting: Since the object is rendered in a novel
environment, we cannot simply copy the studio ac-
quired images and stick it to a frame of the anima-
tion by applying matting techniques. Worse, since
the ‘static’ object is moving in every frame of the
animation, at every frame, the lighting directions (of
the novel environment) with respect to the object
changes.

3. Visual Hull: Any image-based framework in-
evitably has to balance storage costs with accuracy.
We use a variation of the popular visual hull
technique to create a dense but “lightweight”
intermediate representation.

2 RELATED WORK

Considerable research has been done to create anima-
tion sequences from captured videos. These can be cat-
egorized into video-based rendering (VBR), and video-
based animation (VBA) techniques. The aim of VBR
techniques ([15, 24, 29, 27]) is to render novel views
of dynamic scenes using multiple-view video capture.
These techniques reconstruct (often across the time do-
main) the surface of the moving object, and then use the
video and the reconstructed geometry to create novel
view sequences. Some VBR techniques ([4, 20]) rean-
imate dynamic scenes using model-based reconstruc-
tion techniques, which fit a generic model to obser-
vations from multiple views, but suffer characteristic
limited visual quality. On the other hand, VBA tech-
niques ([21, 22, 2, 1]) provide a representation of dy-
namic scenes captured from videos allowing synthesis
of novel image sequences. These novel sequences are
synthesized by concatenating captured video segments
based on a transition graph. These techniques use sim-
ilarity metrics to identify frames in the video which are
candidate transition points. Some techniques have been
proposed which use the concepts of VBR and VBA
techniques to render novel views of reanimated anima-
tion sequences. For example, techniques such as [9, 25]
focus was on capturing the appearance of a person per-
forming a specified cyclic action (walking or jogging),
and then reproducing the character performing the same
motion under variable viewpoint and illumination.
While the techniques mentioned above use videos as
input, there are techniques which use images to create
novel animation sequences. In [3], the authors create an
illusion of realistic animation of an object from images
captured at different instant of time, by inserting mo-
tion blur between the consecutive images. Most image-
based techniques segment the source image into lay-
ers, and create animations by applying dynamic brush
strokes [11] or displacement maps [11] to each layer.
These layers are then recomposited to form the ani-
mated sequence. A recent work [28] uses a source im-
age of a group of moving animals (or birds) to identify

WSCG 2011 Full Papers

- =0
-1 > S Lights

-
—~ -

7, NN
o 4 .
T Object VA
" LB
- L K
: "s
jl\ QCameras ,/ /
oy \‘.__“//9
(2 (b)
Figure 1: The first schematic is the cross-section

view of our capture space composed of two concen-
tric spheres, one with cameras (blue) and the other with
point light sources (yellow). The novel environment (b)
specified as a cube map, is used to relight each frame of
the desired animation.

the ordered cyclic sequence of poses of any animal in
the group while in motion. This sequence is then used
to create a motion cycle, which can be used to create
novel animation sequences of the animal(s). This tech-
nique assumes that all the “key-poses” of the animal in
motion are present in the source image, or they need
multiple images to identify all the key-poses of the ani-
mal.

In all the techniques mentioned above, reanimating
the object is mostly limited, primarily to the repetitive
cyclic motions (human walking/jogging, animals walk-
ing, birds flying, water flowing) as is present in the input
videos/images. In contrast, we propose a framework to
synthesize arbitrary, complex animation sequences of
the object, without recording any motion of the object.
We require only images of the static object.

Thus, image-based animation as we conceive with all
its variety has not been sufficiently explored.

3 OVERVIEW

The general idea of image-based animation we pro-
pose in this paper can be implemented in various frame-
works. Here we provide the following framework.

Inputs for Preprocessing: The primary input to our
method are images of a single object captured from cal-
ibrated cameras which are distributed on a sphere (Fig-
ure 1(a)). For each acquisition camera, these images
are captured under a set of lighting conditions sampled
(Halton sampling as in [6]) on a concentric sphere.

The position of the (capture) cameras are recorded in
a spherical coordinate system termed Acquisition Coor-
dinate System (ACS), with the origin at the object cen-
troid. The cameras may be assumed to be calibrated at
the moment.

Inputs at Run-time: There are three inputs.

e The animator is presented with a GUI to specify
in another coordinate system, the World Coordinate
System (WCS), an arbitrary three-dimensional path
along which he desires to animate the object. The

(a) One intermediate pose

- -

(d) Shape as seen by the four donor cameras

S S S

(e) Images relit in each of the donor cameras

(b) Shape computation

(c) Finding donor cameras

~
®

(f) Compositing

Figure 2: The method. In (a) we see a typical frame to be generated with the animation camera looking at a
candidate position and pose. Using the specified view, we project a pre-computed visual hull to generate (b) the
correct shape of the object of interest, in this case the MiniCooper car. The background is a novel environment
given as input. In (c) donor cameras (shown in yellow) have been computed. In (d), the visual hull is conceptually
projected on four donor cameras. The points P of the visual hull visible in (b) are also visible in the union (d) of
these donor cameras, but not vice versa. In (e) we see how the MiniCooper would have appeared were pictures
taken, not in the studio, but in the specified novel environment. Using some of these pixels, we see in (f) how the

MiniCooper would look from the animation camera.

path is specified in the form of “key poses,” each of
which is created using mouse-clicks in the viewports
of the GUI. Each 3D point on the path is considered
as a pose of the object, comprising of positional co-
ordinates and orientations.

e The desired vantage point and orientation of observ-
ing the desired animation is also specified in the
WCS. We term it the Animation Camera.

e The novel environment, specified as a cube map in
which the object is bathed (Figure 1(b)).

Once the key poses have been specified by the ani-
mator, we generate the intermediate poses to create the
final (virtually continuous) animation sequence path us-
ing standard B-spline based techniques [10]. Suitable
editing capabilities are also provided to change the path
once specified, the animation camera parameters, and
the number of intermediate poses generated.

Consider, in the WCS, an arbitrary animation cam-
era position X looking at the object centroid position Y
along the specified path. We construct the reverse view
vector from Y to X and map this view vector from the
WCS to the ACS, resulting in a virtual viewpoint in the
ACS. Using an efficient searching algorithm, the clos-
est candidate viewpoints (capture donor cameras) in the

WSCG 2011 Full Papers

ACS are determined. The captured images from these
donor cameras are used to synthesize the “view” as seen
from the virtual viewpoint in the ACS (animation cam-
era in WCS). This process is sketched in Figure 2.

Our method works because of the phenomenon of rel-
ative motion. An object moving in front of a stationary
camera (in our case, the animation camera in the WCS)
produces the same image as that of the camera moving
in the “opposite direction” with respect to the stationary
object (captured as input in the ACS, in the preprocess-
ing phase.) One can therefore compute the correct cam-
era parameters. Then persistence of vision realistically
creates the illusion of motion.

4 THE ALGORITHM

The shape of the object as seen from the animation cam-
era is computed using careful view interpolation tech-
niques (Section 4.1). The color of the object in the
novel environment is computed using the “basis” light-
ing conditions obtained as input (Section 4.2). This is
repeated for all poses (Y) along the path of the object
in the WCS, each generating a frame of the animation.

4.1 Shape

An immediate way of finding the view from the ani-
mation camera would be to interpolate among the im-

(a) Initial point cloud (b) Iteration 1 (c) Iteration 5

A 4

(d) Iteration 9 (e) The final hull (f) Original Mini-

Cooper

Figure 3: Visual Hull creation in progress: We start (Algorithm 1) with an initial point cloud. For each camera,
using an image of the object silhouette, we determine the “relevant” points in the point cloud that needs to be
stored. The remaining points in the point cloud are deleted. We keep iterating this procedure over all the cameras

to produce our visual hull.

ages [5, 18], as viewed from the candidate closest view-
points. However, a variety of rendering problems, in-
cluding aliasing and ghosting artifacts manifest them-
selves. Thus the resulting image would most likely be
unacceptable to the computer graphics community. To
achieve higher visual fidelity, we could turn to tech-
niques such as computing the point correspondences
between the images of neighboring cameras [23, 13], or
computing the optical flow between adjacent cameras
[12]. Both of the above techniques are either highly
time-consuming or are still error-prone. For highly
complex models, visibility relationship from the novel
viewpoint, and the ones taken earlier by the capture
cameras should match.

Since we have the liberty to preprocess, we use the
concept of image-based visual hulls [16, 17] as an in-
termediate step, for computing the view as seen from
the animation camera. Note that in the input acquisi-
tion phase, and for each capture camera, we have the
liberty of acquiring the image by placing a light source
at the back of the object. This helps us to identify a
proper silhouette of the object.

For each pose, the visual hull of the object is posi-

tioned and oriented in the WCS according to the spec-
ified pose parameters. The visual hull is then z-buffer
projected on the animation camera (Figure 2(b)). At
this point the shape of the object as seen from the an-
imation camera is available. In the next section, we
describe our novel visual hull computation algorithm,
which computes a dense yet “lightweight” hull.
Visual Hull Revisited Various approaches [26, 14]
to computing the visual hull of an object, given its sil-
houette data, have been proposed in the past. The idea
behind all these algorithms is that if the camera param-
eters are known, the information from many 2D images
can be used to obtain a good approximation of the shape
of the object. This approximation is an upper bound es-
timate of the shape of the object. Since we get to ar-
range the acquisition setup, we use calibrated cameras;
and for each camera, we capture an additional image of
the object, in which the object can be well segmented
from the background.

For computing the visual hull, we start with an ini-
tial cuboid point cloud (Figure 3(a)) of points. For each

WSCG 2011 Full Papers

60

Algorithm 1 CREATE-VISUAL-HULL (CaptureCam-
List)
1: PointCloud = Create a point cloud

2: for all camera in CaptureCamList do

3: {Segmentedlmage: Image with object seg-
mented from background}

4: for all P in PointCloud do

5: (x,y) = Project P into camera

6: if (x,y) = Background-pixel(SegmentedImage)

then

7: Delete P from PointCloud

8: end if

9: end for

10: end for

11: return SCOOP-OUT (PointCloud,CaptureCamList)

Algorithm 2 SCOOP-OUT(PointCloud, CaptureCam-
List)
1: Delete points from PointCloud that have neighbors
Mark remaining points in PointCloud as unseen
for all camera in CaptureCamlList do

capzbuf «— ZBUFFER(CaptureCam, Visual-

Hull)

for all P in capzbuf do

Mark P as seen

end for
end for
Delete all unseen points from PointCloud
return PointCloud

Bl

R A

acquisition camera, we project each point in the point
cloud into its image plane and check, using the well-
segmented image, whether the corresponding pixel be-
longs to the object or the background. If the pixel be-
longs to the object, we keep it; otherwise we delete it
from the point cloud. As the iteration proceeds (Fig-
ure 3) a conservative estimate of the shape of the object
is obtained.

The novelty in our visual hull algorithm begins here.
The hull, thus created, includes points that are in the sil-
houette but also points invisible to all capture cameras.
We term such a hull as not lightweight. The number of
points ‘inside’ a non-lightweight hull are orders of mag-

nitude larger than those strictly on the bounding surface
(shell), As we shall see later, our algorithm requires fre-
quent projection of points in the visual hull; therefore a
lightweight hull is desirable. On the other hand, the hull
should be dense to capture fine details and avoid holes.

Our solution is to scoop out the hull interior. The first
step is to exploit the fact that the initial point cloud was
populated as a matrix. We therefore delete a point with
six neighbors on the hull. We then z-buffer project the
remaining points in the hull to track ‘true positives,’ i.e.,
points that are visible from at least one camera. Points
which are not visible can be safely deleted. (Bitmaps
are used for efficient implementation.)

In summary, first we start with a sparse point cloud
and use Algorithm 1 to create a hollow, but sparse, vi-
sual hull. This hull is lightweight, but may not be dense
enough. Therefore, for each point in the sparse hull, we
populate a cube of space around it with closely spaced
points. This becomes our new point cloud, on which we
iterate Algorithm 1. In Section 5, we provide qualitative
and quantitative results of our visual hull algorithm.

4.2 Color

The color of the visible points of the visual hull as seen
by the animation camera is obtained from the images
of its k closest capture cameras (donor cameras) in the
ACS, relit with the lighting configuration specified as a
novel environment in the WCS. Note that as the object
moves along the desired path, the relative orientation
of the light sources (corresponding to the novel envi-
ronment) with respect to the object (pose) constantly
changes. Thus, to determine the correct color informa-
tion of the object as it moves along its desired path, one
must incorporate this change of light sources’ orienta-
tion for each pose of the object. For each pose of the
object, we map the novel light sources’ directions (in
the WCS) to the ACS, and then use this mapped set of
light source directions (in the ACS) as the novel illumi-
nation configuration to relight each of the k donor cam-
eras. The relit images thus computed are used for deter-
mining the color of the pixels in the synthesized view
for the virtual viewpoint (animation camera). However,
the following questions need to be answered.

e For a candidate pixel p as seen in the animation cam-
era, which pixel g in the donor camera d is rele-
vant? Should we consider more than one donor for

the same candidate pixel p?
Overall, how many donor cameras are needed?

We answer these questions in an incremental, algo-
rithmic fashion. At the end of shape computation we
have the three dimensional coordinates of each visible
point i in the visual hull. Starting with the closest donor
camera, we determine the points in the visual hull vis-
ible to this donor camera. This procedure is incremen-
tally, performed until all the visible points are tagged

WSCG 2011 Full Papers

61

with at least one donor camera. This is again done us-
ing a z-buffer (Figure 2(b) and 2(d)).

More specifically, consider donor camera d, and a 3D
point P (corresponding to a candidate pixel p) that is
visible in the animation camera. The image correspond-
ing to the donor camera d contains pixels correspond-
ing to a set of points O, of points in the visual hull that
are visible from d. Three cases may arise in increasing
order of complexity:

1. P€ Q4 & P ¢ Q;, Vi # d: We have a clear (pixel)
match for P in d, whose color value (after relighting)
is assigned to pixel p.

Pe[Q4,04,...], forsomed,d’ € [CaptureCamlList]:
We perform a blend of the relit pixel values (as
observed in all relevant donor cameras) to compute
the color of pixel p.

P ¢ Qg,Vd € [CaptureCamList]: We assert a match
for P in d, provided the depth value of a point in Qg
is close to the depth value of P.

Relighting At this stage we know which of the acquired
images are relevant for the animation camera, i.e., the k
donor cameras. We also know which pixels in these
donor cameras map to the animation camera. Given
our third input, the novel lighting environment speci-
fied as a cube map in the WCS, we obtain the lighting
directions (in the WCS) and intensities of the 10 most
significant light sources in the environment map (using
HDRshop’s lightgen plugin [7].) Using these 10 light
sources mapped into the ACS, we perform relighting on
the images corresponding to the k donor cameras using
an algorithm based on the method in [6]. Note that, for
every frame of the animation, since the relative configu-
ration of these 10 light sources changes constantly with
respect to the pose of the object, these 10 light sources’
directions need to be mapped into the ACS for every
frame (pose of the object).

S IMPLEMENTATION AND RESULTS

We now describe some of the features of our implemen-
tation. All our experiments were performed on a Intel
Centrino 1.73GHz Core Duo processor and 1GB RAM.

Preprocessing and Run-time: For proof of our con-
cept, we simulated the capture setup by generating the
input images using POV-Ray. In production, the sys-
tem needs only photographs captured of the object on
an acquisition setup as in [8] — which we do not have
access to. Neither is the geometry of the object needed,
and nor is there a need of a 3D renderer. Thus, our cur-
rent experiments (using only the images of the objects
as input) is indicative of the quality and resource (mem-
ory and computational) requirements of this animation
framework for real world productions.

In our implementation, we use 762 cameras dis-
tributed on the bounding sphere. The number of basis

s 5

(a) Axe

. 4

(b) Spaceship

Figure 4: Visual hull creation results: Each set is composed of two images, the one on the left is the visual hull
computed using our algorithm, while on the right is a snapshot image of the same object. Observe the similarity of

features displayed by our computed hull.

Figure 5: The Axe, in a pose, rendered under four different illumination conditions. Note the distinct change of

color on the blade of the Axe.

lighting conditions (sampled on a concentric sphere
using Halton sampling [6]) are fixed at 100. As a
preprocessing step, we also compute a dense, but
memory efficient visual hull using multiple iterations
of Algorithm 1. We observed from our experiments
that in most cases, two iterations are enough to extract
a good estimate. For a path specified by the animator,
we generated approximately 50-100 intermediate
poses (final output frames). The computation of the
intermediate poses takes a few seconds.

Shape: Once the visual hull is computed, to com-
pute an accurate shape description of the object, devoid
of aliasing effects along its edges and boundaries, we
create, in software, a high resolution z-buffer (upto 4
times the resolution of the frame buffer) for the anima-
tion camera, i.e., for every pixel in the output frame,
there exists four samples in the z-buffer, each corre-
sponding to a 3D point in the visual hull. Thus we get a
supersampled image as an output, which is used to give
antialiased results. Figure 4 shows the qualitative re-
sults of the visual hulls of various objects created using
our visual hull algorithm. Notice the accuracy of the re-
constructed geometries with respect to the the original
object shape. Table 1 provides the quantitative results
of our algorithm, while Table 2 depicts results of com-
parison with a conventional visual hull algorithm.

Color: The location of the capture cameras are stored
in a lightweight k-d tree (k=2) to enable efficient near-
est neighbor search for donor cameras, once a virtual
viewpoint is determined (Section 4.2). For efficiently
determining the color of each pixel in an output frame,
we could compute and store on disk (in the Prepro-
cessing stage) the depth map corresponding to all the
capture cameras. This speeds up the match computa-
tion. However in our current implementation, we chose
to do a real-time computation of the depth map, rather
than an explicit store (with a consequence of an increase

WSCG 2011 Full Papers

in the final rendering time). For each pixel in the out-
put frame, we chose to blend the color corresponding to
the 4 samples in the z-buffer (of the animation camera)
corresponding to it. This produces very realistic light-
ing and color blending effects. Figure 6 demonstrates
screenshots of different animation sequences created
with our algorithm on four objects, Axe, Spaceship,
MiniCooper, and Oak Leaf. Please see supplementary
material for generated animations and details.

Relighting: For our novel environments, we use the
cube maps provided in [7], namely The Uffizi Gallery,
Florence, Glacier, Banff National Forest, Canada, Pisa
courtyard, Italy, and also generated a new environment,
woods. As mentioned, using HDRShop lightgen plugin
[7], we summarize the novel environment in terms of
light sources. Figure 5 demonstrates the beautiful re-
lighting effects faithfully reproduced on our Axe in the
a fixed pose, but in different environments.

The entire run-time pipeline comprising of the con-
tinuous path (intermediate pose) generation, computing
the view vector, shape determination, and color compu-
tation after relighting takes only around 1-2 minutes for
a single output frame. Thus we are able to create the
entire animation sequence within a few minutes.

6 FINAL REMARKS

In this paper, we have shown how to efficiently create
realistic animations using only images as input, instead
of traditional geometry-based input. We have employed
four techniques to provide the alternative of animating
an object on a specified arbitrary path in a novel en-
vironment. These techniques are, B-Spline based in-
terpolation for the motion path specification, classical
coordinate transformations for determining the correct
pose of object, visual hull for view interpolation, and
lighting basis for relighting.

Hull Resolution | Initial Cloud | Before scoop-out | After scoop-out | Time(mins)
16 1.23 x 10° 45463 18832 4
Axe 32 9.6 x 10° 344991 75321 10
64 7.63 x 107 2794872 309013 31
16 2.3x10° 5045 5045 3
Leaf 32 1.8 x 107 39284 38037 4
64 1.4x108 314928 222663 16
Mini 16 6 x 10° 2143574 105098 37
24 2% 107 7220067 313382 120
Spaceship 16 7.4 % 10° 901580 66329 40
32 5.9 x 107 7213929 271692 120

Table 1: Quantitative results (size and preprocessing time) of our visual hull creation algorithm. The second
column represents the sampling resolution of the initial point cloud, i.e., the number of points in a unit length; the
third column depicts the total number of points in the initial cuboidal point cloud (Figure 3(a)); the fourth column
indicates the number of points present (in the “solid” visual hull) in Algo.1 at step 10; the fifth column indicates
the number of remaining points in the final visual hull after scooping the solid visual hull; the last column provides
the total time taken in the studio to generate the visual hull, starting from the initial point cloud.

Hull | Resolution | Naive Ours
Axe 64 1 hour | 10 + 21 minutes
Mini 96 3 days 9 + 6 hours

Table 2: Preprocessing timing comparisons. Naive rep-
resents the time taken to create a visual hull beginning
with a dense cuboidal point-cloud and using a classical
algorithm. Ours represents by initially starting with a
sparse point-cloud (Algorithm 1), and scooping out the
hull interior. We report both times in the last column.

This animation framework could also be used as feed-
back for a final traditional CG animation. The director
could quickly prepare a naive version of the final CG
sequence by specifying a path, a novel lighting envi-
ronment, a model; and later edit any of them to suit the
mood of the story. Note that, not all three inputs need to
be modified simultaneously at run time. For example,
we might change the novel environment (see Figure 5),
not the other two inputs. This would save man-hours
spent by skilled personnel in the pre-production phase.

In future, research is required to incorporate non-
rigid object motion into our animation framework. We
also plan to incorporate special effects (for example,
motion-blur, shadows) into the framework. Since IBR
generates photorealistic outputs, the aesthetics of the
models and the scene would be preserved.

REFERENCES

[1] N. Ahmed, C. Theobalt, C. Rossl, S. Thrun, and H.P. Seidel.
Dense correspondence finding for parametrization-free anima-
tion reconstruction from video. In CVPR ’08, pages 1-8, 2008.

[2] Christoph Bregler, Michele Covell, and Malcolm Slaney. Video
rewrite: driving visual speech with audio. In SIGGRAPH ’97,
pages 353-360, 1997.

[3] Gabriel J. Brostow and Irfan Essa. Image-based motion blur

for stop motion animation. In SIGGRAPH 01, pages 561-566.
ACM, 2001.

[4] Joel Carranza, Christian Theobalt, Marcus A. Magnor, and
Hans-Peter Seidel. Free-viewpoint video of human actors. ACM
Transactions on Graphics, 22(3):569-577, 2003.

WSCG 2011 Full Papers

(51

(6]

(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

Shenchang Eric Chen and Lance Williams. View interpolation
for image synthesis. In SIGGRAPH ’93, pages 279-288, 1993.

Biswarup Choudhury and Sharat Chandran. Data-intensive im-
age based relighting. In GRAPHITE ’07, pages 155-162. ACM,
2007.

Paul Debevec. Light Probe Image Gallery. http://www.
debevec.org/Probes/, 2008. Last visited: May, 2008.

Paul Debevec, Andreas Wenger, Chris Tchou, Andrew Gardner,
Jamie Waese, and Tim Hawkins. A lighting reproduction ap-
proach to live-action compositing. ACM Transaction on Graph-
ics, 21(3):547-556, 2002.

Per Einarsson, Charles F. Chabert, Andrew Jones, Wan C. Ma,
Bruce Lamond, Tim Hawkins, Mark Bolas, Sebastian Sylwan,
and Paul Debevec. Relighting human locomotion with flowed
reflectance fields. In EGSR ’06, pages 183—194, 2006.

Martin Lillholm Erik Dam, Martin Koch. Quaternions, inter-
polation and animation. www.itu.dk/people/erikdam/
DOWNLOAD/98-5.pdf, 2008. Last visited: May 2008.

James Hays and Irfan Essa. Image and video based painterly
animation. In NPAR '04, pages 113-120, 2004.

Price Bibliography Keith. Keith Price Bibliogra-
phy: Surface Reconstruction from Optical Flow.
http://www.visionbib.com/bibliography/
optic—-£753.html#KK4747, 2008. Last visited: August,
2008.

Price Bibliography Keith. Keith Price Bibliography: Vir-
tual view generation, View synthesis, Image based render-
ing, IBR, Morphing. http://www.visionbib.com/
bibliography/describe487.html, 2008. Last visited:
August, 2008.

A. Laurentini. The visual hull concept for silhouette-based im-
age understanding. /EEE Transactions on Pattern Analysis and
Machine Intelligence, 16(2):150-162, 1994.

Marcus Magnor, Marc Pollefeys, German Cheung, Wojciech
Matusik, and Christian Theobalt. Video-based rendering. In
SIGGRAPH 05 Courses, page 1, 2005.

Wojciech Matusik, Chris Buehler, Ramesh Raskar, Steven J.
Gortler, and Leonard McMillan. Image-based visual hulls. In
SIGGRAPH ’00, pages 369-374. ACM Press/Addison-Wesley
Publishing Co., 2000.

Wojciech Matusik, Hanspeter Pfister, Addy Ngan, Paul Beard-
sley, Remo Ziegler, and Leonard McMillan. Image-based 3d
photography using opacity hulls. ACM Transactions on Graph-
ics, 21(3):427-437, 2002.

Figure 6: Images of Axe (row 1), Spaceship (row 2), MiniCooper (row 3) and Oak Leaf (row 4) rendered in differ-
ent poses, i.e., while in motion, each under novel lighting conditions: Glacier, Uffizi, Pisa and Woods respectively.

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

Leonard McMillan and Gary Bishop. Plenoptic modeling: an
image-based rendering system. In SIGGRAPH 95, pages 39—
46, 1995.

Pixar. The Pixar Process. http://www.pixar.com/
howwedoit/index.html, 2008. Last visited: May 2008.
R. Plankers and P. Fua. Articulated soft objects for video-based
body modeling. ICCV ’01, 1:394-401 vol.1, 2001.

Arno Schodl and Irfan A. Essa. Controlled animation of video
sprites. In SCA ’02, pages 121-127, 2002.

Arno Schodl, Richard Szeliski, David H. Salesin, and Irfan
Essa. Video textures. In SSIGGRAPH 00, pages 489-498, 2000.
Steven M. Seitz and Charles R. Dyer. View morphing. In S/G-
GRAPH ’96, pages 21-30. ACM, 1996.

J. Starck and A. Hilton. Virtual view synthesis of people from
multiple view video sequences. Graphical Models, 67(6):600—
620, 2005.

J. Starck, G. Miller, and A. Hilton. Video-based character ani-

WSCG 2011 Full Papers

[26]

[27]

[28]

[29]

mation. In SCA ’05, pages 49-58, 2005.

Marco Tarini, Marco Callieri, Claudio Montani, Claudio Roc-
chini, Karin Olsson, and Therese Persson. "marching intersec-
tions: An efficient approach to shape-from-silhouette". In Pro-
ceedings of the Conference on Vision, Modeling, and Visualiza-
tion (VMV 2002), pages 255-262, 2002.

Sundar Vedula, Simon Baker, and Takeo Kanade. Image-based
spatio-temporal modeling and view interpolation of dynamic
events. ACM Transaction on Graphics, 24(2):240-261, 2005.

Xuemiao Xu, Liang Wan, Xiaopei Liu, Tien-Tsin Wong, Lian-
sheng Wang, and Chi-Sing Leung. Animating animal motion
from still. ACM Transactions on Graphics, 27(5):1-8, 2008.

C. Lawrence Zitnick, Sing Bing Kang, Matthew Uyttendaele,
Simon Winder, and Richard Szeliski. High-quality video view
interpolation using a layered representation. ACM Transaction
on Graphics, 23(3):600-608, 2004.

	K02-full.pdf

