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ABSTRACT

A new approach to automatically segment the solar coronal loop structures from intensity images of the Sun’s corona is de-
scribed. The approach is based on the active contour models (snakes) and exploits the Gaussian-like shape of the coronal
loop cross-sectional intensity profile to refine the snake’s position. The approach utilizes the principal component analysis to
automatically initialize the snake’s position. It then uses a greedy minimization method to attract the snake toward the center
of coronal loop structures in each image. Its effectiveness is evaluated through experiments on synthetic and real images.
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1 INTRODUCTION

Automated feature segmentation techniques have
been used and studied widely in many applications
(e.g., iris recognition [Teo05], fingerprint recogni-
tion [Pan01, Mag09], face recognition [Wis97, Kuk04],
remote sensing [Cao09], etc.). Automated segmenta-
tion techniques can aid understanding of the feature
characteristics. In this paper, we consider the problem
of automatically segmenting the coronal loop structures
from solar imagery.

The corona is the outermost layer of the Sun’s at-
mosphere. Many solar scientists study the corona to
gain insight of the solar activities (e.g., solar storms)
that impact our geo-space environment. One common
way to study the corona is via observation of the loop
structures in the corona. These loop structures are the
traces of the solar magnetic field that ultimately drives
the Sun’s dynamic activities [Lee06]. The typical way
solar scientists observe the coronal loop structures is
by considering them in solar imagery collected by a
satellite. One preferred source of coronal images is
NASA’s TRACE satellite [Sch99]. (Details of TRACE
image acquisition process are also explained in [Sch99]
and omitted here.) A sample TRACE coronal image is
shown in Figure 1 (a). In the figure, the bright arching
structures are the coronal loops.

Automatic segmentation of the coronal loop struc-
tures is challenging as the structures have complex
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Figure 1: (a) TRACE coronal image and (b) Pre-
processed image

shapes and very blurry boundaries. Moreover, they tend
to appear very close to each other or even overlap each
other in the image. In addition, image noises and other
non-loop features (e.g., sponge-like wide white spots)
are present on the coronal images.

In this paper, we present a new method, based
on active contour models (i.e., also known as
snakes) [Kas87], to fully-automatically segment the
coronal loop structures from the TRACE images. The
method uses the principal component analysis-based
loop direction measures to initialize the snake posi-
tion. It also exploits the shape of the coronal loop’s
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cross-sectional intensity profile to refine a greedy
algorithm-based snake.

The paper is organized as follows. Section 2 dis-
cusses related work. In Section 3, the new snake-based
approach for segmenting solar coronal loop structure
is described. The experimental results of applying the
new approach to synthetic and real coronal images are
presented in Section 4. Section 5 concludes this paper.

2 RELATED WORK
In this section, the snake that our approach is based on
and the prior efforts on automated coronal loop segmen-
tation are discussed.

Kass et al. [Kas87] have introduced the snake as an
energy minimizing contour that is represented paramet-
rically asvi(s) = (xi(s),yi(s)), where(xi ,yi) is the ith

point position along the contour. An energy function is
associated with the snake. Snake finds an image fea-
ture of interest (e.g., lines or edges) by minimizing its
energy function. Snake’s energy function (Esnake) is de-
fined as the sum of internal energy term (Eint) and exter-
nal energy term (Eext) of each snake point and is defined
as

Esnake=

1
∫

0

Eint(v(s))+Eext(v(s))ds, (1)

whereEext is the sum of image energy (Eimg) and exter-
nal constraint energy (Econ). Eint can be defined as

Eint =
α(s)|vs(s)|2+β (s)|vss(s)|2

2
, (2)

whereα(s) is the weight of the first-order term (i.e.,
vs(s)) andβ (s) is the weight of the second-order term
(i.e., vss(s)). vs(s) and vss(s) terms prevent gaps and
sharp corners.Eimg can be expressed as a weighted
combination of the line energy (Eline), the edge energy
(Eedge), and the termination energy (Eterm). Eline can
force the snake to move toward high intensity points.
Eedge can force the snake to move toward the image
points with large image gradient.Eterm can force the
snake to move toward the end points of lines or edges.
Econ can be defined asEcon = −k(x1 − x2)

2
, wherek

is the spring constant,x1 is a snake point, andx2 is an
image point.

Kass et al. [Kas87] have minimized the snake energy
function iteratively using Euler equations expressed in a
sparse matrix form. However, using their minimization
method, some snake points tend to congregate in certain
image points and the process can be unstable. Amini
et al. [Ami90] have proposed a dynamic programming-
based minimization process that can avoid some of
Kass et al. [Kas87]’s problems. However, the dy-
namic programming-based snake approach can be slow.
Williams and Shah [Wil92] have proposed a greedy al-
gorithm for the snake’s energy minimization which is

more than an order of magnitude faster than the dy-
namic programming-based approach. In addition, it
tends to be more stable. Here, we note that our new
snake-based approach also uses the greedy algorithm-
based approach.

Next, the prior works on automated coronal loop seg-
mentation are discussed.

Oriented Connectivity Method(OCM) by Lee
et al. [Lee06] is the first automated coronal loop
segmentation method. OCM is a constructive edge
linkage method that utilizes a simplified solar magnetic
field estimate to guide the loop segmentation process.
In particular, the magnetic field estimate is used to
progressively link neighboring loop points together that
have orientations that are consistent with the magnetic
field’s orientation.

Lee et al. [Lee06b] have also introduced another au-
tomated coronal loop segmentation method called the
Dynamic Aperture-based Method(DAM). DAM seg-
ments coronal loops by exploiting the Gaussian-like
shape of loop cross-sectional intensity profiles [Car03].
Specifically, DAM links the image points that have sim-
ilar Gaussian shape parameters (as determined by a
ruled Gaussian surface fitting on image points) and have
similar loop orientation (as determined by the principal
component analysis (PCA) [Dud00]).

Smith [Smi05] has adapted theUnbiased Detection
Method(UDM) by Steger [Ste98] for coronal loop seg-
mentation. UDM segments curvi-linear structures with
different lateral contrast by taking account the geome-
try of the structure surroundings. It utilizes the second
derivatives of image intensities in the direction perpen-
dicular to the structure to find the centroid position of a
curvi-linear structure.

Sellah and Nasraoui [Sel08] have utilized a type
of randomized Hough Transform calledIncremental
Random Hough Transform(I-RHT) to detect coronal
loop structures. (Randomized Hough Transform
(RHT) [Kul90] is a fast Hough Transform approach
that alleviates some of the expensive computational
requirements of the standard Hough Transform
(HT) [Hou62].) I-RHT detects a coronal loop structure
by using a stream clustering algorithm to continuously
update and extract the maximum bin of the HT ac-
cumulator in an incremental fashion. However, their
approach was limited to detection of only one elliptical
coronal loop structure.

Recently, Aschwanden [Asc10] has introduced a
coronal loop tracing technique calledOriented Coronal
CUrved Loop Tracing(OCCULT), which is based
on his earlier method [Asc08]. OCCULT utilizes
the local loop directivity and the curvature radius
constraints in coronal loop tracing. In particular, the
curvature radius constraint enables better loop tracing
by providing estimates of loop direction range based
on previously-traced loop segment.
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Other coronal loop segmentation works in-
clude the solar loop mining system by Durak et
al. [Dur09, Dur10]. Their system includes a block-
by-block loop detection processing to retrieve images
with coronal loops from large number image datasets.
Another recent coronal loop segmentation method
is McAteer et al.’s2D Wavelet-Transform Modulus
Maxima Method[McA10]. Their method uses the
derivative of a 2D Wavelet-based smoothing func-
tion as an edge detector in segmenting coronal loop
structures.

3 NEW APPROACH
Next, the new snake-based approach for automated seg-
mentation of coronal loop structure is introduced.

The approach introduced in this paper exploits the
Gaussian-shape of the coronal loop’s cross-sectional in-
tensity profile in its snake minimization process. In
particular, the new energy terms based on this inten-
sity profile property are considered to enable the snake
to more-accurately lock on the coronal loop structures.
We will call this new snake theGaussian-snake(G-
snake) in this paper. In our approach, a G-snake is po-
sitioned on a part of a coronal loop structure initially
and “grows” along the coronal loop structure until the
entire loop structure is segmented. Then, this process is
repeated until all the coronal loop structures are consid-
ered.

Next, the details of the new approach including the
pre-processing steps to “clean” the image and the ini-
tialization and minimization of the G-snake are dis-
cussed.

3.1 Pre-processing Steps
In our approach, a series of pre-processing steps are ap-
plied to the coronal image to remove image noise (e.g.,
impulse noise) and to enhance the contrast between the
coronal loops and the background; thus, these steps pro-
vide images that are well-suited for the G-snake to seg-
ment the coronal loops accurately.

To remove impulse noise, 3×3 median filtering and
3× 3 low-pass filtering are applied. Then, to sharpen
the loop structures, a 3×3 unsharp masking is applied.
(Unsharp masking subtracts a blurred version of an im-
age from the image itself to reduce image intensity
by a local background defined by the smoothing pro-
cess [Gon02].) We note that the pre-processing steps
used here were empirically determined and are simi-
lar to the ones used in [Lee06, Lee06b, Asc10]. Fig-
ure 1 (b) shows the pre-processed image of the coronal
image shown in Figure 1 (a). As shown in the figure, the
pre-processed image contains less noise and the coronal
loop structures are much more distinguishable.

3.2 G-snake Initialization
The first step of the G-snake approach is to position a G-
snake on a coronal loop structure automatically. (Here,

(a)

(b)

Figure 2: Directionality of a loop point (center point of
the box) determined by PCA

we note that automated initialization of snake position
is a very challenging task for any type of snake-based
approaches.)

In our approach, a set of initial snake points are po-
sitioned on the image region where the points in the
region have very similar angular directions (since the
nearby points on the same coronal loop have similar
angular directions). In this paper, we denote the angu-
lar direction of a point as thedirectionalityof the point
and defined as the angular direction of high-intensity
point variation in a small image region around the point.
The directionality is measured using the principal com-
ponent analysis (PCA) as the arctangent of the maxi-
mum eigenvector’s components. (Here, we note that
we empirically determined that 11× 11 image region
is suitable image size to compute the directionality of
a point.) Figure 2 shows an example of directionality
of a loop point determined using PCA. The direction-
ality of the loop point (i.e., the center point of the red
box shown in Figure 2 (a)) determined using PCA is
marked as a red arrow in Figure 2 (b). As shown in the
figure, PCA determines the loop direction accurately.
(We note that this directionality measure has previously
been used in [Lee06b].)

Using the directionality measures, we search forN1×
N2 rectangular image regions where the directionali-
ties of the points in the region are very similar. (We
usedN1 = 10 andN2 = 3 for the G-snake.) Specifi-
cally, we place a rectangular box on the image where
the longer side of the box is parallel to the x-axis of
the image. Then, we rotate the rectangular box with
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(b) Step 2 (c) Step 3 (d) Step 5

(a) Initial G-Snake (e) Step 10 (f) Step 15 (g) Step 20 (k) Final G-Snake

(h) Step 30 (i) Step 40 (j) Step 50

Figure 3: Illustration of G-Snake minimization

respect to the region center point’s directionality and
determine the divergence of the directionalities for the
points in the rotated rectangular box. If the direction-
ality divergence of the rectangular box is smaller than
a threshold value, three equally-spaced G-snake points
are positioned along the center of the rectangular image
region. We empirically determined that three equally-
spaced points are a good set of initial G-snake points
as they are positioned closely such that they are always
on the same coronal loop structure. An example of G-
snake initialization is shown in Figure 3 (a). In the fig-
ure, three G-snake points (shown in red) are positioned
on a synthetic loop structure successfully.

3.3 G-snake Energy Minimization
For each initial G-snake points, the G-snake energy
function is minimized to segment the coronal loop
structure.

Our G-snake uses the greedy-based algorithm in its
minimization process. In the greedy-based algorithm, a
G-snake is defined as a set ofN points and each point is
moved to a new position of the local minimum (which
leads to the global minimization).

The energy function used in the G-snake are

EG−snake= ∑N
i=1 (aiEcont+biEcurv

+ciEgrow+diEimg (3)

+eiEgauss+ fiEdirec),

whereai , bi , ci , di , ei , and fi are the energy weights
(0≤ ai ,bi ,ci ,di ,ei , fi ≤ 1) andEcont, Ecurv, Egrow, Eimg,

Egauss, andEdirec are the continuity energy, the curva-
ture energy, the growth energy, the image energy, the
Gaussian energy, and the directionality energy, respec-
tively. (For the segmentation results shown in Section 4,
an equal weight of 1 is used for all the energies.)

Econt forces the distance between adjacent points to
be maintained at an equal distance.Econt is defined as

Econt = (d−‖vi −vi−1‖)
2
, (4)

whered is the average Euclidean distance between all
adjacent G-snake points.

Ecurv forces the snake to be smooth and avoid oscil-
lations.Ecurv is defined as

Ecurv = ‖(vi+1−vi)− (vi −vi−1)‖
2
. (5)

Egrow is a new energy that forces the G-snake to grow
along a coronal loop. To prevent “over-growing",Egrow

is considered only for the first and last G-snake points
(i.e.,ci = 0 for all i 6= 1 andN). Egrow is defined as

Egrow =−‖vi −vi−1‖
2
. (6)

Eimg forces the G-snake points to move toward points
with high intensity values.Eimg is defined as

Eimg =−I(x, y), (7)

whereI(x, y) is the intensity value at a point(x, y).
While Eimg attracts the G-snake points to points on

the coronal loop structures (as the coronal loop appear
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very bright in the image), it can also move the G-snake
toward noise pixels with high intensity. To prevent this
effect, new energies,EgaussandEdirec, are used in G-
snake.

Egaussforces the G-snake to move toward the points
whose intensity profile along the direction that is per-
pendicular to the loop direction is well-fitted by a Gaus-
sian curve. (As mentioned in Section 2, the cross-
section intensity profile of a coronal loop exhibits a
Gaussian-shape.)Egaussis defined as

Egauss=−G(A,B), (8)

whereA is the height (i.e., peak intensity) andB is the
center (i.e., horizontal position of peak) of the Gaussian
that has been fitted using the intensity profile along the
direction that is perpendicular to the loop direction.G
is defined as

G(A,B) =

{

0, if poor Gaussian fit
|B−Cp|, otherwise,

(9)

whereCp is the center of the profile. We define apoor
Gaussian fitcase as a case whenA is negative or too
large or when the sum of squared Gaussian fitting error
is too large. We have used the Levenberg-Marquardt al-
gorithm [Lev44, Mar63] for the Gaussian curve fitting.
(We note that we empirically determined that using 10
image points produces reasonable fitting results for the
TRACE images).

Edirec forces the G-snake to move toward the points
whose directionality is consistent with nearby loop
points’ directionalities. Edirec constraints the snake
points to stay on one loop structure– it prevents a snake
point to move toward other nearby loops.Edirec is
defined as

Edirec =
Na

∑
i=1

Nb

∑
j=1

|di j −µ |, (10)

wheredi j denotes the directionality of a point at (i, j)
andµ denotes the mean directionality in aNa×Nb im-
age region.

EG−snake is minimized iteratively until the G-snake
becomesstable. We define astableG-snake as a G-
snake whose the number of points moving to new posi-
tion is zero or the number of times points oscillating the
same points is more than a pre-defined threshold value.

Here, we note that using only three initial G-snake
points is often not enough to segment a (long) coronal
loop structure. Thus, in our approach, an intermedi-
ate point is added to each G-snake when the distance
between two adjacent G-snake points is greater than a
pre-defined threshold (e.g., 10 in pixels).

Figure 3 shows an example of G-snake minimization
process for a synthetic loop. As shown in the figure,
the G-snake grew toward the ends of the loop and seg-
mented the loop successfully. (Here, we note that the
snake without the new energy terms can not segment the

(a)

(b)

Figure 4: (a) Synthetic image and (b) Segmented loops

loop correctly; the new energy terms introduced here
enable segmentation of loop structures that exhibit the
Gaussian-shaped cross-sectional intensity profile.)

4 EXPERIMENTAL RESULTS
We have applied our new method to synthetic and real
coronal images. In this paper, we report segmenta-
tion results for ten synthetic and five real images. We
have used a similar scheme used in [Lee06] to gener-
ate the synthetic coronal images. Specifically, a simple
magnetic field model is used to create “loop lines" on
1024×1024 images and these loop lines simulated to
follow Gaussian-shaped cross-sectional intensity pro-
files. In addition, normal-distributed random image
noise is added to simulate real coronal image noise. The

Table 1: GPE measures on synthetic images
Datasets Max. Min. Mean Std. dev.
Syn. 1 18.44 0.00 0.32 1.05
Syn. 2 11.18 0.00 0.30 0.76
Syn. 3 7.07 0.00 0.57 1.01
Syn. 4 3.00 0.00 0.27 0.46
Syn. 5 6.74 0.00 0.35 0.59
Syn. 6 24.17 0.00 0.45 1.00
Syn. 7 12.81 0.00 0.33 0.60
Syn. 8 2.24 0.00 0.28 0.46
Syn. 9 4.00 0.00 0.29 0.48
Syn. 10 2.83 0.00 0.34 0.49
Average 9.24 0.00 0.35 0.69
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(a) Manual (b) OCM (c) DAM (d) G-snake

(e) Manual (f) OCM (g) DAM (h) G-snake

(i) Manual (j) OCM (k) DAM (l) G-snake

Figure 5: Coronal loop segmentation on real images (OCM and DAM results are borrowed from [Lee06, Lee06b])

size of the tested real images was 1024×1024. (Here,
we note that different set of G-snake’s parameters might
be needed for non-TRACE coronal images.) To eval-
uate the effectiveness of G-snake, we have measured
the four metrics (i.e., maximum, minimum, mean, and
standard deviation) of the global positional error (GPE).
GPE is defined as the global estimation of the short-
est Euclidean distance difference between the real loops
and the segmented loops [Lee06].

Figure 4 shows the G-snake segmentation result for
one synthetic image. As shown in the figure, G-snake
well-segmented the loop structures.

Table 1 shows the four metrics of GPE measures for
the ten synthetic images we tested. For these synthetic
images, the average of the mean GPE was only 0.35 (in
pixels).

For the real coronal image testings, we have used
the manual segmentation as the gold standard (since
the actual loop positions were unknown). In addition,
we have compared the G-snake’s results with the OCM
and DAM results. Figure 5 shows the segmentation re-
sults on three real coronal images. In the figure, the
manually-segmented loops are overlaid with red curves
(in the sub-figures (a), (e), (i)) and the automatically-
segmented loops are overlaid with orange curves. Sub-

figures (b), (f), and (j) show the OCM results, Sub-
figures (c), (g), and (k) show the DAM results, and
Sub-figures (d), (h), and (l) show the G-snake results.
As shown in the figure, the G-snake seems to produce
the best coronal loop segmentation results; the G-snake
segmented many of the loops that were not segmented
by OCM and DAM.

Table 2 shows the four metrics of GPE measures for
OCM, DAM, and G-snake on real coronal images. We
have chosen these five images for our testing as they
have been used by others. As shown in the table, G-
snake produced the minimum mean GPE measures for
all images. The overall average of the mean GPE for
G-snake was less than 1 pixel. (In some cases, the max-
imum and standard deviation GPE measures of G-snake
were slightly higher than that of DAM.)

5 CONCLUSION
In this paper, the G-snake for automated coronal loop
segmentation was described. The approach is the first
method that utilizes a snake in coronal loop segmenta-
tion. It uses new energies (i.e.,Egrow, Egauss, andEdirec)
in the snake’s minimization process to enable accurate
coronal loop segmentation. Through evaluation of the
technique, we have shown that the G-snake can provide
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Table 2: GPE measures for OCM, DAM, and G-snake
on real coronal images

Datasets Max. Min. Mean Std. dev.
Real 1 34.79 0.00 2.19 3.21
Real 2 17.03 0.00 1.93 1.78
Real 3 47.41 0.00 2.82 4.71
Real 4 37.54 0.00 3.00 4.60
Real 5 57.01 0.00 3.11 5.94
Average 38.76 0.00 2.61 4.05

(a) OCM

Datasets Max. Min. Mean Std. dev.
Real 1 19.00 0.00 1.73 1.79
Real 2 11.18 0.00 1.67 1.39
Real 3 12.00 0.00 1.41 1.60
Real 4 36.35 0.00 2.36 3.64
Real 5 16.97 0.00 1.56 1.80
Average 19.10 0.00 1.75 2.04

(b) DAM

Datasets Max. Min. Mean Std. dev.
Real 1 24.19 0.00 0.85 1.39
Real 2 28.79 0.00 1.10 1.76
Real 3 13.60 0.00 0.78 1.05
Real 4 20.62 0.00 1.03 1.83
Real 5 27.20 0.00 1.07 1.75
Average 22.88 0.00 0.97 1.56

(c) G-Snake

consistent and accurate segmentation results of coronal
loop structures.

In the future, we plan to perform further effective-
ness comparisons with other coronal loop segmentation
results (e.g., [Asc10]). In addition, we plan to adopt
the G-snake-based coronal loop segmentation to other
solar studies, such as solar magnetic field parameter re-
covery [Lee09]. We also hope to apply the G-snake
to other scientifically-interesting structures that follows
similar characteristics (i.e., G-snake may be adopted to
segment other image structures that follow a different
cross-sectional intensity profiles).
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