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ABSTRACT

A new approach to automatically segment the solar coronal loop stradiare intensity images of the Sun’s corona is de-
scribed. The approach is based on the active contour models (yreaiceexploits the Gaussian-like shape of the coronal
loop cross-sectional intensity profile to refine the snake’s position. pheoach utilizes the principal component analysis to
automatically initialize the snake’s position. It then uses a greedy minimizat&had to attract the snake toward the center
of coronal loop structures in each image. Its effectiveness is evdltlatgugh experiments on synthetic and real images.
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1 INTRODUCTION

Automated feature segmentation techniques have
been used and studied widely in many applications
(e.g., iris recognition [Teo05], fingerprint recogni-
tion [Pan01, Mag09], face recognition [Wis97, Kuk04],
remote sensing [Cao09], etc.). Automated segmenta-
tion techniques can aid understanding of the feature
characteristics. In this paper, we consider the problem
of automatically segmenting the coronal loop structures
from solar imagery.

The corona is the outermost layer of the Sun’s at-
mosphere. Many solar scientists study the corona to
gain insight of the solar activities (e.g., solar storms)
that impact our geo-space environment. One common
way to study the corona is via observation of the loop
structures in the corona. These loop structures are the
traces of the solar magnetic field that ultimately drives
the Sun’s dynamic activities [Lee06]. The typical way
solar scientists observe the coronal loop structures is
by considering them in solar imagery collected by a (b)
satellite. One preferred source of coronal images is
NASAs TRACE satellite [Sch99]. (Details of TRACE Figure 1. (a) TRACE coronal image and (b) Pre-
image acquisition process are also explained in [Schogjocessed image
and omitted here.) A sample TRACE coronal image is

shown in Figure 1 (a). In the figure, the bright arChing‘;hapes and very blurry boundaries. Moreover, they tend

structures are the coronal loops. to appear very close to each other or even overlap each

Automatic segmentation of the coronal 100p StfUCther in the image. In addition, image noises and other

tures is challenging as the structures have Compl%n-loop features (e.g., sponge-like wide white spots)

Permission to make digital or hard copies of all or part of thisare present on the coronal images.

work for personal or classroom use is granted without feeigeal :
that copies are not made or distributed for profit or commercial In thI_S paper, we present a new method, based
advantage and that copies bear this notice and the fulimitah thel On active contour models (i.e., also known as
first page. To copy otherwise, or republish, to post on serveto|  gngkes) [Kas87], to fully-automatically segment the
redistribute to lists, requires prior specific permissiod/ana fee. ’ .

coronal loop structures from the TRACE images. The
method uses the principal component analysis-based
loop direction measures to initialize the snake posi-

tion. It also exploits the shape of the coronal loop’s
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cross-sectional intensity profile to refine a greedynore than an order of magnitude faster than the dy-
algorithm-based snake. namic programming-based approach. In addition, it

The paper is organized as follows. Section 2 distends to be more stable. Here, we note that our new
cusses related work. In Section 3, the new snake-bassdake-based approach also uses the greedy algorithm-
approach for segmenting solar coronal loop structureased approach.
is described. The experimental results of applying the Next, the prior works on automated coronal loop seg-
new approach to synthetic and real coronal images angentation are discussed.
presented in Section 4. Section 5 concludes this paper. Oriented Connectivity Method(OCM) by Lee

et al. [Lee06] is the first automated coronal loop

2 RELATED WORK segmentation method. OCM is a constructive edge

In this section, the snake that our approach is based JgRkage method that utilizes a simplified solar magnetic
and the prior efforts on automated coronal loop segmefi€!d €stimate to guide the loop segmentation process.
tation are discussed. In particular, the magnetic field estimate is used to
Kass et al. [Kas87] have introduced the snake as &tfo9ressively link neighboring loop points together that

energy minimizing contour that is represented parame’ﬂ-a"e ongntatpns that are consistent with the magnetic
rically asvi(s) = (x(),yi(s)), where(x,y;) is theith ~ field's orientation. _

point position along the contour. An energy functionis Le€ etal. [Lee06b] have also introduced another au-
associated with the snake. Snake finds an image feé@mated coronal loop segmentation method called the
ture of interest (e.g., lines or edges) by minimizing itPynamic Aperture-based Methd®AM). DAM seg-
energy function. Snake’s energy functidyag is de- Ments coronal loops by exploiting the Gaussian-like
fined as the sum of internal energy terix() and exter- Shape of loop cross-sectional intensity profiles [Car03].

nal energy termBey) of each snake point and is definegSpecifically, DAM links the image points that have sim-
as ilar Gaussian shape parameters (as determined by a

1 ruled Gaussian surface fitting on image points) and have
Esnake= / Eint (V(S)) + Eext(V(s))ds (1) similar loop orientation (as determined by the principal
0 component analysis (PCA) [Dud00]).

Smith [Smi05] has adapted thénbiased Detection
Method(UDM) by Steger [Ste98] for coronal loop seg-
mentation. UDM segments curvi-linear structures with

2 2 different lateral contrast by taking account the geome-
a(s)vs(s)l J;B(S)|V$(S)‘ , (2) try of the structure surroundings. It utilizes the second

derivatives of image intensities in the direction perpen-

where a(s) is the weight of the first-order term (i.e., dicular to the structure to find the centroid position of a
vs(s)) andB(s) is the weight of the second-order termcurvi-linear structure.
(i.e., vss(S)). Vvs(S) andvss(s) terms prevent gaps and  Sellah and Nasraoui [Sel08] have utilized a type
sharp corners.Eimg can be expressed as a weightedf randomized Hough Transform callddcremental
combination of the line energ¥(ne), the edge energy Random Hough Transforrfi-RHT) to detect coronal
(Eedga, and the termination energ¥wrm). Ejne can loop structures.  (Randomized Hough Transform
force the snake to move toward high intensity points(RHT) [Kul90] is a fast Hough Transform approach
Eedge Ccan force the snake to move toward the imagéhat alleviates some of the expensive computational
points with large image gradien&rm can force the requirements of the standard Hough Transform
snake to move toward the end points of lines or edgeéT) [Hou62].) I-RHT detects a coronal loop structure
Econ can be defined aBcon = —K(X1 — X2)2, wherek by using a stream clustering algorithm to continuously
is the spring constanx, is a snake point, ang, is an update and extract the maximum bin of the HT ac-
image point. cumulator in an incremental fashion. However, their

Kass et al. [Kas87] have minimized the snake energgpproach was limited to detection of only one elliptical
function iteratively using Euler equations expressed in @oronal loop structure.
sparse matrix form. However, using their minimization Recently, Aschwanden [Asc10] has introduced a
method, some snake points tend to congregate in certaioronal loop tracing technique call&@tiented Coronal
image points and the process can be unstable. Ami@iUrved Loop Tracing(OCCULT), which is based
et al. [Ami90] have proposed a dynamic programmingen his earlier method [Asc08]. OCCULT utilizes
based minimization process that can avoid some dfie local loop directivity and the curvature radius
Kass et al. [Kas87]'s problems. However, the dy-constraints in coronal loop tracing. In particular, the
namic programming-based snake approach can be slawrvature radius constraint enables better loop tracing
Williams and Shah [Wil92] have proposed a greedy alby providing estimates of loop direction range based
gorithm for the snake’s energy minimization which ison previously-traced loop segment.

whereEey; is the sum of image energitg) and exter-
nal constraint energyE¢on). Eint can be defined as

Eint =
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Other coronal loop segmentation works in-
clude the solar loop mining system by Durak et
al. [Dur09, Durl0Q]. Their system includes a block-
by-block loop detection processing to retrieve images
with coronal loops from large number image datasets.
Another recent coronal loop segmentation method
is McAteer et al’'s2D Wavelet-Transform Modulus
Maxima Method[McA10]. Their method uses the
derivative of a 2D Wavelet-based smoothing func-
tion as an edge detector in segmenting coronal loop
structures.

3 NEW APPROACH

Next, the new snake-based approach for automated seg-
mentation of coronal loop structure is introduced.

The approach introduced in this paper exploits the
Gaussian-shape of the coronal loop’s cross-sectional in-
tensity profile in its snake minimization process. In
particular, the new energy terms based on this inten-
sity profile property are considered to enable the snake (b)
to more-accurately lock on the coronal loop structures.

We W”,I ca[l this new snake th@aussian-snakté(?- Figure 2: Directionality of a loop point (center point of
snake¢ in this paper. In our approach, a G-snake is PO box) determined by PCA
sitioned on a part of a coronal loop structure initially

and “grows” along the coronal loop structure until the

entire loop structure is segmented. Then, this processug note that automated initialization of snake position
repeated until all the coronal loop structures are consids a very challenging task for any type of snake-based
ered. approaches.)

Next, the details of the new approach including the |, our approach, a set of initial snake points are po-
pre-processing steps to “clean” the image and the inkjtioned on the image region where the points in the
tialization and minimization of the G-snake are disyegion have very similar angular directions (since the
cussed. nearby points on the same coronal loop have similar
3.1 Pre-proc ng Steps angular directions). In this paper, we denote the angu-

In our aporoach. a series of pre-brocessing steps are allar_direction of a point as thdirectionality of the point
P ' pre-p g step Ahd defined as the angular direction of high-intensity

lied to the coronal image to remove image noise (e.g., . o . . .
P g 9 (eg gint variation in a small image region around the point.

Impulse noise) and to enhance the contrast between ﬁe directionality is measured using the principal com-

coronal loops and the background; thus, these steps PrO= ot analysis (PCA) as the arctangent of the maxi-

vide images that are well-suited for the G-snake to seéjﬁ . )
um eigenvector's components. (Here, we note that

ment the coronal loops accurately. we empirically determined that 2411 image region

To remove impulse noise,>33 median filtering and . . . : Y :
N . is suitable image size to compute the directionality of
3 x 3 low-pass filtering are applied. Then, to sharpen

the loop structures, a:33 unsharp masking is applied. a point.) Figure 2 ShO.WS an gxample of direqtionglity
(Unsharp masking subtracts a blurred version of an imo-]c a loop point determined using PCA. The direction-

age from the image itself to reduce image intensitallty of the loop point (i.e., the center point of the red

' . %ox shown in Figure 2 (a)) determined using PCA is
by a local background defined by the smooth_lng Proarked as a red%rrow irg Iz)igure 2 (b). As shc?wn in the
ﬁzzz [r?e ?govigevg; ni(:itc?aflh a;;?grrariﬁggo;ﬁjs;g ;{; |_aure, PCA determines the loop direction accurately.

P! Y . tWe note that this directionality measure has previously
lar to the ones used in [Lee06, Lee06b, AsclO]. F'gb en used in [Lee06b] )
ure 1 (b) shows the pre-processed image of the coronal '

image shown in Figure 1 (a). As shown in the figure, the USing the directionality measures, we searchiNpx
pre-processed image contains less noise and the corola| "ectangular image regions where the directionali-

loop structures are much more distinguishable. ties of the points in the region are very similar. (We
32 G-snake | nitialization usedN; = 10 andN, = 3 for the G-snake.) Specifi-

cally, we place a rectangular box on the image where
The first step of the G-snake approach is to position a Ghe longer side of the box is parallel to the x-axis of
snake on a coronal loop structure automatically. (Herghe image. Then, we rotate the rectangular box with
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(b) Step 2 (c) Step 3

(a) Initial G-Snake (e) Step 10 (f) Step 15 (g) Step 20 (K) Fx&nake

(h) Step 30 (i) Step 40 (j) Step 50

Figure 3: lllustration of G-Snhake minimization

respect to the region center point’'s directionality andEgayss andEgirec are the continuity energy, the curva-
determine the divergence of the directionalities for théure energy, the growth energy, the image energy, the
points in the rotated rectangular box. If the directionGaussian energy, and the directionality energy, respec-
ality divergence of the rectangular box is smaller thatively. (For the segmentation results shown in Section 4,
a threshold value, three equally-spaced G-snake poirds equal weight of 1 is used for all the energies.)

are positioned along the center of the rectangular imageE.q; forces the distance between adjacent points to
region. We empirically determined that three equallybe maintained at an equal distanEgy is defined as
spaced points are a good set of initial G-snake points _

as they are positioned closely such that they are always Econt = (d— [|vi —vi_1]])?, 4

on the same coronal loop structure. An example of G- hered is th Euclid dist betw I
snake initialization is shown in Figure 3 (a). In the fig-W ered is tne average tucldean distance between a

ure, three G-snake points (shown in red) are ositione%djacemG'snake points. . .
P ( ) P Ecury forces the snake to be smooth and avoid oscil-

on a synthetic loop structure successfully. . ) .
4 P S Y lations. Eqyry is defined as
3.3 G-snake Energy Minimization ,
For each initial G-snake points, the G-snake energy Beurv = [(Vi+2 = W) = (Vi —vi-a)[I* ®)

function is minimized to segment the coronal loop EgrowiS @ New energy that forces the G-snake to grow

structure. along a coronal loop. To prevent “over-growin@gyrow

Our G-snake uses the greedy-based algorithm in ifs considered only for the first and last G-snake points
minimization process. In the greedy-based algorithm, fle.,c =0 foralli # 1 andN). Egow s defined as
G-snake is defined as a setpoints and each point is '

moved to a new posiFiqn .of the local minimum (which Egrow = —||Vi —Vi_1]/?. (6)
leads to the global minimization).
The energy function used in the G-snake are Eimg forces the G-snake points to move toward points

with high intensity valueskEijnq is defined as
Ec_snake= ZN:l (8 Econt+ biEcurv g y mg

+CiEgrow+ diEimg (3) Eimg = —1 (x,y), (7)

+&Bgausst fiBdirec), wherel (x, y) is the intensity value at a poi, y).
wherea;, by, ¢, di, g, and f; are the energy weights ~ While Eing attracts the G-snake points to points on
(0< &,bi,c,di, e, fi <1) andEcont, Ecurvs Egrows Eimg,  the coronal loop structures (as the coronal loop appear
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very bright in the image), it can also move the G-snake
toward noise pixels with high intensity. To prevent this
effect, new energie€gaussand Egirec, are used in G-
snake.

Egaussforces the G-snake to move toward the points
whose intensity profile along the direction that is per-
pendicular to the loop direction is well-fitted by a Gaus-
sian curve. (As mentioned in Section 2, the cross-
section intensity profile of a coronal loop exhibits a
Gaussian-shapeBgaussis defined as

Egauss: _G(A» B)a (8)

whereA is the height (i.e., peak intensity) aids the
center (i.e., horizontal position of peak) of the Gaussian
that has been fitted using the intensity profile along the
direction that is perpendicular to the loop directidb.

is defined as

_ 0, if poor Gaussian fit
G(A.B) = { |[B—Cp|, otherwise, ©
whereC, is the center of the profile. We defingpaor (b)

Gaussian fitcase as a case whéhnis negative or too

large or when the sum of squared Gaussian fitting eM@igure 4: (a) Synthetic image and (b) Segmented loops
is too large. We have used the Levenberg-Marquardt al-

gorithm [Lev44, Mar63] for the Gaussian curve ﬁttmg'éoop correctly: the new energy terms introduced here

(We note that we empirically determined that using 1 enable segmentation of loop structures that exhibit the

image points produces reasonable fitting results for t . i . : . .
TRACE images). h&aussmn shaped cross-sectional intensity profile.)

Edirec fc_>rces_ the _G-s_nake tq move tqward the POty  EXPERIMENTAL RESULTS
whose directionality is consistent with nearby loop ) )
points’ directionalities. Egirec constraints the snake We have applied our new method to synthetic and real
points to stay on one loop structure— it prevents asnal&‘_@ro”al images. In this paper, we report segmenta-
point to move toward other nearby l0opsEgirec is  HON results for ten synthetic and five real images. We

defined as have used a similar scheme used in [Lee06] to gener-
Na Np ate the synthetic coronal images. Specifically, a simple
Edirec = Z Zl|dij —Hl, (10)  magnetic field model is used to create “loop lines" on
i=1j=

1024x1024 images and these loop lines simulated to

whered;; denotes the directionality of a point af {) follow Gaussian-shaped cross-sectional intensity pro-
andu denotes the mean directionality ilfNg x N, im-  files. In addition, normal-distributed random image
age region. noise is added to simulate real coronal image noise. The

EG_snake iS minimized iteratively until the G-snake
becomesstable We define astable G-snake as a G-
snake whose the number of points moving to new posi-
tion is zero or the number of times points oscillating the _Datasets) Max. Min. Mean Std. dev.
same points is more than a pre-defined threshold value. Syn. 1844 000 032 105

Here, we note that using only three initial G-snake ~ SYn. 11.18 0.00 0.30 0.76
points is often not enough to segment a (long) coronal ~ SYyn. 707 000 057 1.01
loop structure. Thus, in our approach, an intermedi-  SYyn. 3.00 0.00 0.27 046
ate point is added to each G-shake when the distance Syn. 6.74 000 035 059
between two adjacent G-snake points is greater than a SYN. 2417 0.00 045 1.00
pre-defined threshold (e.g., 10 in pixels). Syn. 1281 0.00 0.33 0.60

Figure 3 shows an example of G-snake minimization ~ SYn. 224 000 0.28 046
process for a synthetic loop. As shown in the figure,  Syn. 400 000 029 048
the G-snake grew toward the ends of the loop and seg- Syn. 10 | 2.83 0.00 0.34 0.49
mented the loop successfully. (Here, we note that the Average | 9.24 0.00 035 0.69
snake without the new energy terms can not segment the

Table 1: GPE measures on synthetic images

O©CoO~NOOOUTA,WNPEP
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(a) Manual

(e) Manual (f) OCM

(i) Manual (k) DAM (I) G-snake

Figure 5: Coronal loop segmentation on real images (OCM ahld Besults are borrowed from [Lee06, Lee06b])

size of the tested real images was 1020824. (Here, figures (b), (f), and (j) show the OCM results, Sub-
we note that different set of G-snake’s parameters migfigures (c), (g), and (k) show the DAM results, and
be needed for non-TRACE coronal images.) To evalSub-figures (d), (h), and (I) show the G-snake results.
uate the effectiveness of G-snake, we have measur@d shown in the figure, the G-snake seems to produce
the four metrics (i.e., maximum, minimum, mean, andhe best coronal loop segmentation results; the G-snake
standard deviation) of the global positional error (GPE)segmented many of the loops that were not segmented
GPE is defined as the global estimation of the shorby OCM and DAM.
est Euclidean distance difference between the real loopsTable 2 shows the four metrics of GPE measures for
and the segmented loops [Lee06]. OCM, DAM, and G-snake on real coronal images. We

Figure 4 shows the G-snake segmentation result fdtvave chosen these five images for our testing as they
one synthetic image. As shown in the figure, G-snakbave been used by others. As shown in the table, G-
well-segmented the loop structures. shake produced the minimum mean GPE measures for

Table 1 shows the four metrics of GPE measures fall images. The overall average of the mean GPE for
the ten synthetic images we tested. For these synthefiesnake was less than 1 pixel. (In some cases, the max-
images, the average of the mean GPE was only 0.35 (imum and standard deviation GPE measures of G-snake
pixels). were slightly higher than that of DAM.)

For the real coronal image testings, we have us
the manual segmentation as the gold standard (sinte CONCLUSION
the actual loop positions were unknown). In addition|n this paper, the G-snake for automated coronal loop
we have compared the G-snake’s results with the OCdegmentation was described. The approach is the first
and DAM results. Figure 5 shows the segmentation ranethod that utilizes a snake in coronal loop segmenta-
sults on three real coronal images. In the figure, thgon. It uses new energies (i.€&grow, Egauss @NdEgirec)
manually-segmented loops are overlaid with red curvesa the snake’s minimization process to enable accurate
(in the sub-figures (a), (e), (i)) and the automaticallycoronal loop segmentation. Through evaluation of the
segmented loops are overlaid with orange curves. Sutechnique, we have shown that the G-snake can provide
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Table 2: GPE measures for OCM, DAM, and G-snake ational Problems in Vision, Pattern Recognition,

on real coronal images Vol. 12 (9), pp. 855-867, 1990.
Datasets| Max. Min. Mean Std. dev. [Asc08] Aschwanden, M.J., Lee, J.K., Gary, G.A,,
Real 1 34.79 0.00 2.19 321 Smith, M., and Inhester, B., Comparison of
Real 2 17.03 0.00 1.93 1.78 Five Numerical Codes for Automated Tracing of
Real3 | 47.41 000 282 4.71 Coronal Loops, Solar Physics, Vol. 248, pp. 359—
Real4 | 37.54 0.00 3.00 4.60 377, 2008.
Real5 | 57.01 0.00 311 594 [Asc10] Aschwanden, M.J., A Code for Automated
Average | 38.76 0.00 261 4.05 Tracing of Coronal Loops Approaching Visual
(@) OCM Perception, Solar Physics, Vol. 262 (2), pp. 399—
423, 2010.

- [Cao09] Cao, C., Newman, T.S., and Germany, G.A.,
Datasets) Max. Min. Mean Std. dev. New Shape-based Auroral Oval Segmentation

Reall |19.00 000 173 1.79 Driven by LLS-RHT, Pattern Recognition, Vol.

ggg:j éégg 888 ;gé égg [Car03] Carcedp, L., Brown, D., Hood,_A.Z Neukirch,
Real5 | 16.97 0.00 156 1.80 T., and Wiegelmann, T., A Quantitative Method
Average | 19.10 0.00 175 2.04 to Optimise Magnetic Field Line Fitting of Ob-

: . : : served Coronal Loops, Solar Physics, Vol. 218,

(b) DAM pp. 29-40, 2003.
[Dud00] Duda, R.O., Hart, P.E., and Strok, D.G., Pat-

Datasets] Max. Min. Mean Std. dev. tern Classification, 2nd Edition, Wiley, New
Real1 | 2419 0.00 085 1.39 York, 2000.
Real 2 28.79 0.00 1.10 1.76 [Dur09] Durak, N., Nasraoui, O., and Schmelz J.,
Real3 | 13.60 0.00 0.78 1.05 Coronal Loop Detection from Solar Images, Pat-
Real4 | 20.62 0.00 1.03 1.83 tern Recognition, Vol. 42 (11), pp. 2481-2491,
Real5 | 27.20 0.00 1.07 1.75 20009.
Average | 22.88 0.00 097 1.56 [Dur10] Durak, N., Nasraoui, O., and Schmelz J., Au-

(c) G-Snake tomated Coronal-Loop Detection based on Cun-

tour Extraction and Contour Classification from
the SOHO/EIT Images, Solar Physics, Vol. 264,
pp. 383-402, 2010.

on02] Gonzalez, R.C. and Woods, R.E., Digital Im-
age Processing, 2nd Edition, Prentice Hall, Up-
per Saddle River, New Jersey, 2002.

Iﬁ|ou62] Hough, P.V.C, Method and Means for Recog-

consistent and accurate segmentation results of cororggl
loop structures.

In the future, we plan to perform further effective-
ness comparisons with other coronal loop segmentatié >
results (e.g., [Asc10]). In addition, we plan to adopt nizing Complex Patterns, U.S. Patent, 3,069,654,
the G-snake-based coronal loop segmentation to other 1962.
solar studies, such as solar magnetic field parameter §as87] Kass, M., Witkin, A., and Terzopoulos, D.,
covery [Lee09]. We also hope to apply the G-snake Snakes: Active Contour Models, International
to other scientifically-interesting structures that falo Journal of Computer Vision, Vol. 1 (4), pp. 321—
similar characteristics (i.e., G-snake may be adoptedto 331, 1987.
segment other image structures that follow a differerjKuk04] Kukharev, G. and Nowosielski, A., Visi-
cross-sectional intensity profiles). tor Identification- Elaborating Real Time Face

Recognition System, The 12th Int'l Conference
ACKNOWLEDGMENT in Central Europe on Computer Graphics, Visu-
We acknowledge that the results of OCM and DAM alization, and Computer Vision (WSCG 2004),
were borrowed from [Lee06, Lee06b]. We also thank Plzen, Czech Republic, pp. 157-164, 2004.
the reviewers for their valuable comments which im{kul90] Kultanen, P., Xu, L., and Oja, E., Randomized
proved our paper. Hough Transform (RHT), Proceedings, 10th In-

ternational Conference on Pattern Recognition,
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