
Network Protocols for Applications of Shared
Virtual Reality

Jiri Hnidek

Technical University of Liberec
Studentska 2

 Czech Republic 461 17 , Liberec

jiri.hnidek@tul.cz

ABSTRACT
Files are usually used for exchange of 3D data between graphical applications, but this approach is not feasible
for applications of shared virtual reality. Thus a network protocol is used for this purpose. Two antithetical
requirements are claimed for such protocol. Protocol has to be partially or completely reliable. Neither delay
jitter nor too high delay are acceptable. This paper explains and analyzes new version of protocol called Verse.
This improves shortcomings found in UDP, TCP, SCTP and DCCP transport protocols. The Verse protocol was
designed for sharing 3D data between applications of shared virtual reality. This paper also contains results of
experiments comparing suitability of network protocols for application of shared virtual reality.

Keywords
Shared Virtual Reality, Network Protocol, Transport Protocol, Delay, Delay Jitter, Verse

1. INTRODUCTION
Applications of shared virtual reality (ASVR) require
transferring of information (e.g. position of avatar
[KCJ0]) with small delay and delay jitter, because
flickering of object motion is disruptive for an
observer of virtual reality. Let consider situation,
when users of ASVR cooperate in this environment
and try to create large scene (e.g. city with buildings
). When users create these objects, then movements
of all entities (objects, vertexes) is unpredictable.
Each user should see what other users are doing in
real-time and movement of shared entities should be
smooth as much as possible. Many users of ASVR
can create large traffic. Moreover some activities of
users can cause burst traffic (uploading of existing
object, sculpt painting, etc.).

UDP protocol is usually used for sending real-time
data. On the contrary TCP is usually used for
transferring static 3D data, because it is reliable
stream protocol. When users of ASVR want to edit
shared geometry and topology of 3D objects, then
partial reliability as well as low latency is required.

It will be proved that any transport protocols as is
can not meet those needs. It will be shown that new
Verse protocol can effectively meet both needs.

2. CONDITIONS OF EXPERIMENTS
A special client-server application was developed for
testing all above network protocols (Fig. 9). Network
protocols were tested in real network environments,
but comparison of protocols required different
approach.

It was necessary to set exact parameters of link
between client and server applications for tested
protocols. For this reason the server application run
on virtualized Linux operating system and the client
application run on host. Virtual link between host
and virtualized OS was modified with Linux traffic

Permission to make digital or hard copies of all or
part of this work for personal or classroom use is
granted without fee provided that copies are not made
or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior
specific permission and/or a fee.

Figure 1. Each operating system had TBF engress
qdisc and Netem ingress qdisc. Connection of
Netem and TBF qdisc allowed to simulate real

network conditions.

WSCG 2011 Communication Papers 31

control to simulate real network conditions . The
Netem [Hem05] queueing disciple (qdisc) was used
for setting delay and delay jitter. The TBF qdisc was
used for setting limited bandwidth. It is important to
note, that unmodified link between host and
virtualized OS had delay 0.5 ms and average delay
jitter was 0.03 ms. Configured values of delay and
delay jitter were 10 times higher than values on
unmodified link. This delay simulated local are
network. The bandwidth of the link was limited
using TBF qdisc to 256 kb/s. The MTU of link was
1500 B.

3. METHODS OF EXPERIMENTS
Particle system was used to simulate wide range of
users working with 3D data. Two particle systems
were pre-generated. The particle system containing
100 particles was used for testing network protocols
at modified virtual link, because it generated decent
traffic and visualization. The particles system with
1000 particles was tested in real network
environment. The particle system is simple
simulation of bouncing balls, but it is assumed that
movement of particles simulates some type of
unpredictable movement and thus only position of
particles was sent through network. Graph at Fig. 2
shows time slope of particles in scene.

The particle systems were generated with 25 frames
per second (FPS). The illusion of slow motion
depends on many factors (resolution, distance of user
from the screen, etc.). In the worst case this illusion
is broken, when delay of received particle is longer
then 40 ms. Such particle is visualized as problematic
delay.

The main communication between client and server
is started by client application by a request to send
particles. When server receives client request, then it
starts to send positions of all moving particles every
40 milliseconds back to the client. The PMTU is
used during this simple handshake to discover
maximal size of packet. The position of each moving
particle is added to the packet in a simple message
containing particle id, frame number and vector of
position. When there are no other particles that could

be added to the packet or packet is full, then packet
is send to the client. The client application tries to
receive packets with positions of particles and it
visualizes differences between received and pre-
generated particle system. First 10 received blind
packets are used to compute average delay between
client and server before real data transfer.

4. TESTING OF TRANSPORT
NETWORK PROTOCOLS
UDP and TCP
UDP [Pos80] was the first tested protocol. UDP is
unreliable datagram protocol widely used in gaming
applications for its low latency. UDP is not
congestion aware and generated traffic can cause
congestion collapse. We can see at Fig 4 that
particles transported with UDP had low delays
except the period, when congestion occurred.
Average delay was bigger than 40 milliseconds and
packet loss was visually noticeable during
connection. On the other hand tests proved that using
pure UDP in ASVR is not feasible, because lost data
are not resent and it leads to inconsistency of shared
data in ASVR. UDP protocol could be used for
ASVR, but re-sending of lost packets has to be
solved at the application layer.

Contrary TCP protocol [Pos81] is not widely used in
gaming applications, because of the consequences of
its reliability mechanism. When one single packet is
lost, then proceeding of all following packets is
blocked until the lost packet is resent as we can see
at Fig 5. Such behavior lead to a sudden stop of
motion and high delay up to 1 second. Tests of TCP
protocol proved that using TCP in ASVR is possible
only in situations where bandwidth is bigger than the
highest generated bitrate, there are no other
concurrent transmission and RTT is much smaller
than 1/FPS. It is usually not possible to guarantee
such conditions in real networks and thus re-
transmission of lost data leads to very big delays.

 Al-Regib and Altunbasak proved in [ARA04], that
combination of UDP and TCP connection can be
effectively used for streaming of large 3D data sets.
This approach can be also used in ASVR for loading
large data sets, but it does not solve all specific
problems of ASVR, where many users share the
same 3D data set.

We can see at Fig. 4 and Fig. 5 that tests of UDP and
TCP protocols on real network produced similar
results as tests at modified virtual link.

SCTP
SCTP [Ste07] is a modern message based transport
protocol. It can act as reliable or partially reliable
protocol. SCTP does not provide reliable order
delivery, because it is based on message. When
reliable variant of SCTP is used, then there is no
need to wait for re-transmission of previous lost
packets. This feature could be considered as great

Figure 2. Time slope of particles in scene.
Duration of pre-generated particle system was 8

seconds using 25 frames per seconds (FPS).

WSCG 2011 Communication Papers 32

benefit for ASVR, because there is smaller average
delay of received particles. On the other hand this
caused flickering of received particles. Someone can
argue that this is visually more confusing than big
delays of TCP. Flickering could be theoretically
removed by adding a time stamp to each message,
but re-transmission of obsolete particle position is
not effective approach. Every re-transmission of
obsolete particle position makes congestion worse.
We can see at Fig. 6 that average delay of reliable
variant of SCTP is bigger than average delay of TCP.

Partial reliable variant of SCTP can specify time to
live (TTL) of each message. It means that sender
tries to re-transmit lost message only for specified
time. When the TTL of message is reached, then
unsent message is dropped. Partially reliable variant
of SCTP removed flickering of received particles,
when TTL was smaller then 0.5/FPS, but important
feature of reliability was lost. Using partially reliable
variant of SCTP in ASVR is not acceptable for the
same reason as pure UDP protocol. The results of
tests (Fig. 7) gave similar result as test of UDP
protocol.

DCCP
DCCP [KHF06] is a congestion friendly unreliable
datagram protocol. Congestion control of DCCP
protocol should be better than congestion control
implemented at application layer on top of UDP,
because DCCP can send ECN capable packet that
helps to detect congestion without dropping packets.
Tests of DCCP protocol proved that implementation
of this protocol in Linux is not ready yet for practical
deployment. When some error occurs (e.g. many
packets loss), then memory of machine can go out of
the limit [LF09]. Thus results of DCCP test were not
comparable with tests of other transport protocols.

5. VERSE PROTOCOL
All tested transport protocol failed in some way.
Unreliable or partially reliable protocols do not
resend lost packets. Reliable protocols try to resend
all lost data and it causes high delays. Verse protocol
uses different approach, because it tries to resend
only actual data and obsolete data are dropped.

Verse protocol [BSS06] [SB07] is an application
protocol designed for sharing 3D data in ASVR. It
uses UDP protocol as a transport layer. UDP it is
widely used datagram protocol and it allows
implementation of own effective resend mechanism
at application layer.

Principles of Verse Protocol
The Verse protocol uses client-server architecture. It
means the Verse server holds data and distributes
changes of shared data between connected clients.
For example, when a client sends a message
containing new position of the object to the server,
then server changes local position of the object and
re-transmits this change to all clients interested in

this object. From this point of view the Verse
protocol behaves like a network protocol used in
gaming applications [WCC+09]. The Verse protocol
allows much more. Applications can share not only
the object transformations but also geometry and
topology of objects, materials, textures, UV
coordinates etc. On the other side, the Verse protocol
does not allow to use multicast connections because
each client is interested in different set of objects.

Resend Mechanism of Verse Protocol
Basic principles of resend mechanism will be
described on the example (Figure. 3). It is assumed,
that the Verse packet with ID = 31 contained
information about object position. This packet was
sent from the sender to the receiver. The receiver
received this packet and sent the acknowledgment
packet back to the sender. The sender could be client
and receiver could be server and vice versa.

After a while the sender sent new packet. This packet
had ID = 32 and contained new position of the
object. This packet was lost. The receiver detected
this loss, when the packet with ID = 33 was received,
because the receiver expected packet with ID = 32.
After this, the receiver sent acknowledgment
containing information about reception of packet 33
and loss of the packet 32. The next method of
detection of packet loss is detection by sender using
timeouts.

Let's assume, that this acknowledgment was received
by the sender. How the sender processed this
acknowledgment? If the sender resent content of the
lost packet 32, then the receiver would receive
obsolete position of the object and it would lead to
inconsistency of shared data. On the other side the
lost packet could contain some useful and still valid
information (for example, information about position

Figure 3. Example of simplified Verse resend
mechanism. Each packet sent from the sender has

unique ID and it contains position of sphere
object. Acknowledgment packet sent from the

receiver to the sender contains positive or
negative acknowledgment of received packet.

WSCG 2011 Communication Papers 33

of some other object, command to delete an object
etc.). Therefor sender must pick non-obsolete data
from lost packet and pack them to a new packet.

It is important to note, that the most of packet loss is
caused by congestion in the network. Because
network equipments try to use fair scheduling for
data flows, then most of congestion is caused by
traffic from the sender. Thus most of the packet loss
could be effectively detected by methods described
above.

If packet loss was detected only by sender using
timeout, then this behavior would lead to high
delays. Let's consider that retransmission timeout
interval (RTO) is computed using the following
formulas. Smoothed RTT (SRTT) is computed with:

⋅RTT1−⋅SRTT SRTT (1)

where RTT is round trip time measurement from the
most recently acknowledged payload packet. The
RTO is then:

RTO=⋅SRTT (2)

Suggested value of constant α is 0.9 and suggested
value of constant β is 2. RTT of packet could be in
range of 1-100 ms in real network environment. If
SRTT is 10 ms, then not-lost packets are delivered
with average delay 5 ms and lost packet would be
delivered with average delay 25 ms. Proposed
approach used in Verse protocol allows to deliver
lost packet with average delay 15 ms. If 3D scene is
visualized with 60 FPS, then delay between two
frames is 16.7 ms. It is obvious, that Verse protocol
has high chance to resend lost packet just in time.

If TCP was used on transport layer, then the packet
loss would be solved very ineffectively from our
point of view. If the packet 34 was lost, then
processing of all following packets would be
suspended until content of the packet 34 would be
delivered. Such behavior had negative effect on
fluency of particle movements in tests of TCP
protocol.

The real Verse protocol is more complicated, then
example described above. Verse uses two types of
packets. Payload packets contain payload data.
Acknowledgment packets contain acknowledgments
of payloads packets.

Each payload packet has unique ID (Payload ID). A
sender increments the counter of sent packets every
time it sends a payload packet. When the counter
reaches value 232 , then the counter is reset to zero
value.

When payload packet is received, then receiver sends
an acknowledgment packet to the sender. This
acknowledgment packet has unique ID (AckNak ID)
and it contains at least one message with the
acknowledgment of the received payload packet.
This packet could contain more acknowledgment
messages (will be described later). The uniqueness of

AckNak ID is guaranteed by the same mechanism as
in the case of Payload ID. The receiver should send
at least one acknowledgment packet for two received
payload packets. The receiver should decrease or
increase the ratio of acknowledgment packets, when
sender detects acknowledgment packet loss. Thus the
sender negotiate the ratio of acknowledgment
packets.

Negative acknowledgment informs the sender, that
one ore more packets were lost. The receiver detects
packet loss, when expects receiving of payload
packet with ID = N , but payload packet with ID > N
is received. The host sends an acknowledgment
packet containing all the ACK and NAK messages
from the previous acknowledgment packets and
following sequence:

nak N  ,, nak  ID−1 , ack  ID (3)

When delayed packets (considered as lost) are
received, then it is possible to process non-obsolete
data from these packets, but it is easier to drop them.

Delivery of acknowledgment packet is uncertain,
because an unreliable datagram protocol on the
transport layer is used. Therefore, probability of
delivery of an acknowledge packet to other side must
be maximized. All the ACK and NAK messages
from previous acknowledgment packets are added to
further packets, including payload packets. It is clear,
that adding the ACK and NAK messages to packets
should be limited somehow. The ACK and NAK
messages could not be added to the packet infinitely,
because traffic with low packet loss and high delay
could produce long sequence of ACK and NAK
messages. In this manner ACK and NAK messages
would fill the whole packet in a short time.

To avoid infinite increase of the ACK and NAK
messages, acknowledgment of acknowledgment has
to be added to the Verse resend mechanism. The ID
of the last acknowledged payload packet is added to
the packet sent to the peer. This ID is called Ank ID.
When the receiver receives such packet, then it is
necessary to send only ACK and NAK messages for
payload packets greater than Ank ID. The sender
sends packets with the Ank ID until a newer
acknowledgment packet is received.

The next mechanism of limiting sequence of ACK
and NAK messages is compression of this sequence.
Let's consider the following sequence of ACK and
NAK messages:

ack 31 , ack 32, nak 33 , nak 34 ,
nak 35 , ack 36 , ack 37 , ack 38

(4)

Such sequence could be split into the several
subsequences containing only ACK messages:

AckSeqi={ack0N i ,, ackni
N ini} (5)

and NAK messages:

WSCG 2011 Communication Papers 34

NakSeqi={nak 0N i ,, nak ni
N ini} (6)

where ni+1 is the number of ACK or NAK messages
in each subsequence.

Because numbers of received payload packets are
constantly increasing, then original sequence could
be compressed to the following sequence:

ack 31 , nak 33, ack 36, ack 38 (7)

in general m subsequences could be compressed to
the following sequence:

ack0N 0 ,nak 0N1 , ack0N2 ,
, ack0 N m−1 , acknm−1

Nm−1nm−1
(8)

It is necessary to send an empty payload packet
every 2 seconds to the receiver, when there is no
payload data to send. It is used for computing current
RTT. Empty payload packets also work as a keep
alive packets. When the host does not receive any
packet from its peer during 30 seconds, then this
connection is considered as closed.

Tests of Verse protocol
The Verse protocol was tested in similar client-server
application where transport protocols were tested.
The Verse server run again on virtualized OS.
Position of moving particles were sent to the Verse
server from special Verse client running on the same
virtualized OS. When the Verse server received
positions of particles, then it tried to send these
positions to the second Verse client running at host
OS. The link between host and virtualized OS was
modified in the same way as it is described in
section 2. We can see at Fig. 8 that average delay of
Verse protocol was comparable with average delay
of UDP. The congestion was longer and delay was
bigger than with UDP, because messages containing
position of particles are not so simple as messages
used for tests of transport protocols. It is price for
flexibility and partial reliability of Verse protocol.

6. RELATED WORK
Work of Terrence L. Disz et. al. [DPPS95] contains
first experiments with CAVE to CAVE
communication. They proposed very ambitious plans
of object sharing, but it was only plan and this
project was canceled. Chen-Chi Chet et. al. [WCC+
09] proposed Game Transport Protocol (GTP) with 4
schemes of re-transmission, but every type of
retransmission scheme can re-transmit whole packet.
This approach is very similar to SCTP protocol and
it’s inefficiency for ASVR was proved. Harcsik et.
al. [HPG07] tested transport protocol and its
efficiency for network games. These test were
specific for network games using thin streams – they
consists of small packets sent at low packets rates.

7. CONCLUSION AND FUTURE
WORK
Sharing of 3D data over lossy networks is quite
challenging problem. UDP, TCP, SCTP and DCCP
transport protocols were tested and compared in
special client-server application. It was proved that
no transport protocol as is can guarantee low delays
together with reliable or semi-reliable transport.
Basic principles of new Verse protocol were
introduced. This protocol was also tested in the
client-server application. Proposed approach used in
Verse protocol gave significantly better results for
ASVR than simple ad-hoc solutions based on
transport protocols, because Verse resend mechanism
re-sends only actual data and obsolete data are
dropped. New Verse protocol allows to use
compression and thus further minimize congestion
and delays.

Future work will be focused on design and
implementation of reliable congestion control for
datagram transport varying packet size with fixed
sending rate of packets. Next target will be
implementation of prioritization, queueing and
scheduling of data, that are going to be sent to the
receiver. In this way it will be able to increase
probability of delivering data with high priority.

8. ACKNOWLEDGMENTS
This research is realized under the state subsidy of
the Czech Republic within the research and
development “Advanced Remediation Technologies
and Processes Center” 1M0554 – Program of
Research Centers PP2-DP01 supported by Ministry
of Education. I would like to thanks to Pavel Satrapa
and David Kmoch for useful suggestions and careful
reading of this paper.

9. REFERENCES
[ARA04] Al-Regib, G. Altunbasak, Y. 3TP: 3-D

models transport protocol. In Web3D ’04:
Proceedings of the ninth international conference
on 3D Web technology, pages 155–162, New
York, NY, USA, 2004. ACM.

[DPPS95] Disz, T.L. Papka, M.E. Pellegrino, M.
Stevens, R. Sharing Visualization Experiences
among Remote Virtual Environments. In
International Workshop on High Performance
Computing for Computer Graphics and
Visualization, pages 217–237. Springer-Verlag,
1995.

[KHF06] Kohler, E. Handley, M. Floyd, S.
Designing DCCP: congestion control without
reliability. In SIGCOMM ’06: Proceedings of the
2006 conference on Applications, technologies,
architectures, and protocols for computer
communications, pages 27–38, New York, NY,
USA, 2006. ACM.

WSCG 2011 Communication Papers 35

[KCJ07] Kempf, J., Chander, A., and Jo, M.
Optimizing avatar environmental update in
shared virtual reality environments. In
Proceedings of the First International Conference
on Immersive Telecommunications (ICST,
Brussels, Belgium, Belgium, 2007), ImmersCom
’07, ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications
Engineering), pp. 1–6.

[Hem05] Hemminger, S. Network Emulation with
NetEm. In Linux Conf Au, April 2005.

[HPG07] Harcsik, S., Petlund, A., Griwodz, C., and
Halvorsen, P. Latency evaluation of networking
mechanisms for game traffic. In Proceedings of
the 6th ACM SIGCOMM workshop on Network
and system support for games (New York, NY,
USA, 2007), NetGames ’07, ACM, pp. 129–134.

[Pos80] Postel, J. RFC 768: User Datagram Protocol,
aug 1980.

[Pos81] Postel, J. RFC 793: Transmission Control
Protocol, sep 1981. Updated by RFCs 1122,
3168.

[BSS06] Brink, E. Steenberg, E. Svenson, G. The
Verse Networked 3D Graphics Platform. In
SIGRAD ’06: Conference proceedings: The
Annual SIGRAD conference: Special theme:
Computer Games, pages44-48, Skövde, Sweden.
2006.

[SB07] Steenberg, E. Brink, E. The Verse
Specification. http://verse.blender.org/, 2007.

[Ste07] Stewart, R. RFC 4960: Stream Control
Transmission Protocol, sep 2007.

[WCC+09] Wu, C.C. Chen, K.T. Chen, C.M.
Huang, P. and Lei, C.L. On the challenge and
design of transport protocols for MMORPGs.
Multimedia Tools Appl., 45(1-3):7–32, 2009.

[LG09] Linux Foundation. Networking ToDo List.
http://www.linuxfoundation.org/collaborate/work
groups/networking/todo, 2009

Figure 4: Results of experiments with 1000 particles on real WAN network. The link had delay about 5 ms
(delay jitter 1 ms) and the bandwidth was about 1900 kb/s.

WSCG 2011 Communication Papers 36

http://www.linuxfoundation.org/collaborate/workgroups/networking/todo
http://www.linuxfoundation.org/collaborate/workgroups/networking/todo
http://verse.blender.org/

Figure 5: Test of UDP protocol proofed, that UDP had average delay quite low. Delay between two frames
was 40 milliseconds (~25 FPS). Some of particles lost after 100 th frame has never been resend and this

packet loss caused inconsistency of data between client and server.

Test of TCP protocol proofed, that this transport protocol is not feasible for ASVR. When generated
traffic exceeded bandwidth, then delay of received particles grooved to 1 second.

Figure 6: Test of semi-reliable variant of SCTP protocol gave similar results as UDP protocol. Average
delay was quite low, but lost packets were not resend and it caused inconsistency in data between server

and client, when transmission of particles was finished.

Test of reliable variant of SCTP protocol. This protocol gave similar results as TCP protocol. When
generated traffic exceeded bandwidth of the link between client and server, then delay grooved up to 3

seconds.

WSCG 2011 Communication Papers 37

Figure 7: Test of Verse protocol has bigger average delay, then UDP or semi-reliable variant of SCTP
protocol, because Verse protocol has to transfer more data (header, acknowledgment commands, node

commands, etc.). When transferring of particles was finished, then position of all particles was the same at
the client and the server.

Figure 8: Screenshot of client visualizing delay of received particles. TCP protocol is used in
this case. This screenshot was captured during congestion. Thus all received particles are

delayed. Red points visualize current received positions and white points visualize expected
positions of particles. Colored line between these two points visualize delay of received particle.

WSCG 2011 Communication Papers 38

	I05-full.pdf

