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ABSTRACT 
The LFT algorithm (Large Fat Tetrahedron) is used to detect congruent subsets amongst unordered point sets and 
forms the kernel of a partial shape matching method. Although the method yields several advantages and is 
relatively efficient, its performance depends highly on the choice of various geometrical threshold parameters, as 
e.g., for the length difference of two edges. We present an overview of the key parameters of the algorithm and 
their influence on the computation, a guide line to provide an initial value for the parameters and we propose an 
approach to their automatic adjustment. 
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1. INTRODUCTION 
The LFT algorithm (Large Fat Tetrahedron) was 
designed to detect approximately congruent 
tetrahedrons in two point sets [Vergeest 2010].  If 
such tetrahedrons are found, they might indicate the 
overlapping region of partially matching shapes. The 
assumption was that if a large fat tetrahedron with 
particular dimensions occurs in point set A, the 
probability that a congruent tetrahedron is found in 
point set B is small, unless both tetrahedrons reside in 
the overlap region of A and B. Thus, LFTs can serve 
as indicators of partial shape matching. The algorithm 
will be briefly described in Section 2. 

One important application of partial shape matching 
is 3D scanning of physical objects. To construct a 
geometric model from a physical object, multiple 
scan views are taken, each consisting of range data, 
i.e. 3D points representing the object’s surface. Since 
the orientation of the object relative to the scanning 
device is different for different scan views, the 
collection of points from all scan views do not as 
such represent the object’s surface. First the points 

need to be aligned to each other, that is be 
transformed to a common coordinate system. The 
process of aligning the scan views is called scan view 
registration. From the aligned point sets the surface of 
the object can be reconstructed, either fully or 
partially, depending on the coverage of the scan 
views. If the surface can be fully reconstructed, it can 
be assumed to represent the boundary of a volume, or 
solid model. Then a solid model can be derived, 
which can serve as input to a CAD (Computer-Aided 
Design) system for further modeling and processing. 
Basing a design on an existing object or on reuse of 
precedent models is an important paradigm in some 
industries, such as industrial design engineering. Such 
a method can be successful only when even 
occasional users of scanning devices can easily 
operate the system. However, the registration task is, 
even nowadays, still an impeding factor. In practice 
the user could be a stylist who has manually created a 
clay model of a future household device. Whereas 
taking the scan views of the clay model is a 
commonsense task to him/her, the registration of 
view pairs is not. The scanning system’s 
manufacturer normally offers an interactive software 
package, allowing the user to designate 
correspondences he/she observes amongst the scan 
views, as to provide a starting position for a shape 
matching algorithm, typically based on the ICP 
(Iterative Closest Point) method. The user has to 
aligned each scan view with the set of scan views 
aligned previously. Generally this way of operating 
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the scanner is perceived as slow and tedious, both by 
incidental users and by trained operators. 

Several approaches have been reported to the 
problem of partial shape matching. From here on we 
assume that the input data consists of unordered point 
sets only. That is, we will not rely on preprocesses 
that generate surface meshes, nor on additional 
information such as color, texture or material 
properties of the scanned object. We focus on the 
kernel problem of matching two point sets. Most 
methods make use of geometric descriptors and/or 
feature points. The geometric descriptor can take 
many forms, including moments, FFT coefficients, 
spin images etc [Johnson 1999]. Defining a feature 
using integrated quantities rather than using 
derivatives reduces the influence of noise [Gelfland 
2005]. Another approach to diminish sensitivity to 
noise and data outliers is taken by [Aiger 2008]. He 
collects sets of 4 planar points in each of the two 
point clouds. If a particular set from one point cloud 
is approximately congruent with one from the other 
point cloud, a candidate corresponding pair of 4-
points sets is found. If the 4-points set is relatively 
wide, then the method is less sensitive to noise. We 
refer to [Gelfland 2005] and references therein for a 
more extended description of registration methods. 

Our approach is inspired by the 4-points congruent 
sets as in [Aiger 2008]. We look for 4-points sets 
which define a large fat tetrahedron (LFT). The 
assumption is that the geometry of a large tetrahedron 
is relatively rare and therefore can serve to detect 
correspondences in the two point clouds. However, 
since true correspondence exists in the overlap region 
only, an upper bound must be set to the size of the 
tetrahedrons. Secondly, since the number of fat 
tetrahedrons in point sets can be very large, a 
straightforward comparison of two sets of 
tetrahedrons (each derived from one point cloud) 
would not be efficient. Our algorithm derives a 
limited number of fat tetrahedrons from one point 
cloud. Then each tetrahedron is tested for being 
approximately congruent to any point neighborhood 
in the other point set. In [Vergeest 2010] we have 
speculated about the advantages of the LFT algorithm 
compared to other strategies. However, lacking a 
benchmark platform we cannot demonstrate this. In 
the next section the LFT algorithm will be briefly 
described. In section 3 we present the influence of 
parameters on the computational performance of the 
method. Conclusions and recommendations are given 
in section 4. 

2. THE LFT ALGORITHM 
Let two point sets A and B be given, originating from 
sampling of a portion of the surface of a three-
dimensional object. There may exist subsets A’ ⊆ A 

and B’⊆ B such that A’ and B’ are samples of the 
same subsurface of the object. A’ and B’ are then said 
to represent an overlap region of the samples.  

Let a set of sets Bi be a partitioning of B defined as 
follows. A three-dimensional grid is constructed, 
aligned with a bounding box of B. The grid has the 
size of the bounding box of B. The block-shaped grid 
elements, or cells, all have the same size and have 
index i, i = 1, ..., G, where G is the number of cells of 
B. Each cell encloses zero or more points of B. Each 
point of B is enclosed by exactly one cell. Bi is the set 
of points enclosed by cell indexed i.  

Let A’ and B’ be the largest overlap of A and B, 
informally defined as follows. Assuming that A and B 
are range images of a physical object, let SA and SB 
informally be defined as the portions of the surface of 
the physical object represented by A and B, 
respectively. Then, both A’ and B’ represent all or 
some part of the physical overlap surface SA ∩ SB. 
Depending on the extent of SA ∩ SB , A’ and B’ each 
may contain zero up to as many points as the 
cardinality of A and B, respectively. 

Let B’ i = Bi ∩ B′ , that is the portion of cell Bi 
coinciding with the overlap region. Our search 
strategy is based on the assumption that the overlap 
region is connected and has the extent of at least the 
size of a cell. In such cases there might exist sets Bi 
containing multiple points of Bi’ . A property of any 
point of B’ is that its Euclidian distance to A is 
relatively small, provided that A and B are defined in 
the same coordinate system. However, since A and B 
originate from independent sampling processes, they 
will in general be defined in different coordinate 
systems. The difference between the two coordinate 
systems can be described by a rigid body 
transformation M, such that MB and A are defined in 
the same coordinate system, where MB is the set of 
points of B to which transformation M has been 
applied. We name this transformation the matching 
transformation. 

Since neither the overlap region, nor the matching 
transformation M are known, we determine which of 
the sets Bi is fully or partly contained in B’. We do so 
by constructing the largest and fattest tetrahedron in 
each cell and test each such LFT against congruency 
with 4-points sets of A. 

2.1 Finding the LFT 
When a small set of points of Bi is close to A and if 
these points are sufficiently non-planar, then the 
transformation to match this set with A is a relatively 
good candidate of the M we are looking for. Relying 
on this principle we base the algorithm on matching 4 
points to A, where the 4 points are contained in the 
same cell. The 4 points, denoted v1, v2, v3, v4, are 
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selected from Bi such that they form an LFT as 
follows: v1 and v2 are the points in Bi which are 
furthest apart. v3 is the point in Bi furthest from the 
line through v1 and v2, that is it maximizes |(v3 − v1) × 
(v2 − v1)|.  v4 is the point in Bi furthest from the plane 
defined by v1, v2 and v3, that is it maximizes | ((v3 − 
v1) × (v2 − v1) ) . (v4 − v1) |. An example of an LFT is 
shown in Figure 1. 

 

 
Figure 1. Point cloud B, its cell structure and the 
LFT contained in a cell. Data are from the 
Stanford Bunny [Stanford 2010]. 

2.2 Calculating the transformation M 
Once an LFT has been determined in a particular cell 
of point cloud B, we look for potential corresponding 
4-points sets in A. As mentioned, when the LFT 
resides in the overlap region of shapes A and B then 
there should exist 4 points in A representing a 
tetrahedron with dimensions equal to those of the 
LFT, that is up to some precision since the point sets 
A and B are obtained as independent measurements. 
The deviation between “corresponding” points can be 
expected to be as large as half of the scan spacing 
practiced. We have applied two methods to detect 
(approximately) congruent 4-points sets in A. We 
look for points a1, a2, a3 and a4 in A such that there 
exists a transformation M with Mvi ≈ ai for i=1,...4. 
The edge lengths of the LFT are denoted l ij = |vi – vj|. 

 

Method 1 

For each point in A, name it a1 

  Translate the LFT such that v1=a1 

  Search for points in A at distance l12 from a1 
  and name them a2 

  For each such a2 

    Search for points in A at distance l13 from v1 and at 
    distance l23 from v2 and name them a3 

    For each such a3 

      Rotate the LFT about v1 such that v2 gets closest 
      to a2 

      Rotate the LFT about axis (v1, v2) such that 
      v3 gets closets to a3 

      If then v4 is close to any point in A (called a4) the 
      accumulated transformations so far applied 
      to the LFT represent a candidate M 

End of method 1 

Alternatively we can explicitly test congruency by 
comparing the six edge lenths of the LFT to the 
corresponding distances between candidate points a1, 
a2, a3, a4. We define δ1 as the threshold value for 
length comparisons. 

 

Method 2 

For each point in A, name it a1 

  For each point in A, name it a2 

    If |dist(a1, a2) – l12| < δ1 

      For each point in A, name it a3 

        If |dist(a1, a3) – l13| < δ1 and 
        |dist(a2, a3) – l23| < δ1 

          For each point in A, name it a4 

            If |dist(a1, a4) – l14| < δ1 and 
            |dist(a2, a4) – l24| < δ1 and 
            |dist(a3, a4) – l34| < δ1 

              Compute M from the vi and ai. 

End of method 2 

In method 2 the calculation of the transform M is 
postponed until the congruency is fully checked. One 
way to obtain M (as we implemented it) is to 
concatenate the translations and rotations in exactly 
the same way as done in method 1; see [Vergeest 
2010] for the explicit equation. The two sets (v1, v2, 
v3) and (a1, a2, a3) are sufficient to determine M, but 
they do not lead to a set of linear equations with a 
unique solution since the congruency is approximate 
only. However, a solution based on minimizing Σ 
|Mvi – ai|

2 would be feasible and accurate (not 
implemented). 

2.3 Computing the degree of overlap 
Typically thousands of candidate M transforms are 
found, depending on threshold δ1. If δ1 is increased 
the number of candidates will rise steeply, as 
discussed later. We need to test whether or not a 
particular M is the matching transform. If an LFT L is 
contained in B′  then the directed Hausdorff distance 
of ML to A will be (by definition) small if M is the 
matching transformation. It can be expected that then 
a significant portion of the points MBi (from the 
current cell) will be close to A as well. Conversely, 
when many points MBi appear close to A the 
probability that M is the matching transform is large. 

v1 

v2 v3 

v4 
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In our algorithm, all points in cell Bi are subjected to 
M and their distance to A is determined. If a sufficient 
fraction f of the points are closer than δ2 to A then M 
is saved as a candidate transformation. As a final 
step, each of the candidate transformations is used to 
compute the set MB, involving all points of B. The 
degree of matching of B to A is defined as N, the 
number of points in MB closer than δ3 to A. The 
transformation producing the largest N is the outcome 
of the method. 

3. PERFORMANCE AND 
PARAMETERS 
As reported in [Vergeest 2010] the algorithm has 
been successfully applied to practical scan view 
registration. A typical CPU time of partial shape 
matching was 500s, which could be reduced to about 
10s in a CUDA-GPU implementation [Kooijman 
2009]. 

We have now studied the influence of the parameters 
δ1, δ2, δ3 and f on the computational performance of 
the algorithm for method 2. The granularity of the 
subdivision into G cells is also of influence to the 
algorithm. Not all cells produce an acceptable LFT. 
We have set a lower limit to the number of points 
from B contained in a cell; if the cell contains too few 
points we do not consider it. If a particular LFT is too 
small or too thin, it is discarded. Therefore, typically 
10% of the cells produce an LFT for further 
processing. We focused on method 2 since its 
implementation is relatively simple and it will be 
compared to its CUDA implementation in the near 
future. An upper bound of the complexity of the 
algorithm is C ∝ GP6, where P is the number of 
points occurring in a scan view (we assumed that A 
and B are of comparable size). In the search process, 
for each cell, each point in A is visited at least twice 
in order to form the line segment a1a2. When the test 
against l12 is passed, another loop over all elements of 
A is made to find candidates a3 and finally one more 
loop to find a4 (the maximal cost is proportional to 
GP4 so far).  If a4 is found, then all points in the cell 
are compared to A (cost proportional to P2) and 
possibly another check of all B against A is 
performed, as described in section 2.3. The main 
terms of the cost C are: 

C ∝ P2
 + β1P

3 + β 2P
4 + (β 3 + β 4)P

6.        (1) 

β1 is the probability that the l12 test is passed, β2 is 
proportional to the probability that the l13 and l23 test 
are passed and β3 is proportional to the probability 
that the l14, l24 and l34 tests are passed. β4 depends on 
parameter f  and the degree of overlap found of points 
in the current cell with A. 

If we would set δ1=0 then no LFT would practically 
pass the l12 test and terms 2 and 3 would vanish, or 

β1= β2= β3= β4= 0. If aforementioned fraction f and all 
δi are large then C behaves like an 6th power function 
of P for large P; the number of candidate M 
transforms would be very large and many of them 
have to be checked by Hausdorff twice, namely once 
involving MBi and possibly once more involving MB. 

To achieve efficient partial shape matching the 
algorithm should detect the matching M (therefore, 
the parameters should not be too small), without 
superfluous candidates (therefore, the parameters 
should not be too large). 

To gain insight in the effects of the parameters we 
have performed numerical tests on one particular set 
of A and B, with cardinality 3188 and 2407, 
respectively. These sets are down-sampled versions 
of the Bunny data from the Stanford Scan Data 
Repository [Stanford 2010]. The data points are 
relatively evenly spaced, about 2mm apart, on a 
surface with a diameter of approximately 150mm. 

Table 1 gives an impression of the computational 
expense of the algorithm for Method 2. The 10 runs 
differ only by the parameter δ1. The cell division was 
G = 5×5×5 = 125 equally sized blocks of 
24×31×27mm. Out of these, 77 were empty and 7 
cells contained an LFT that was sufficiently large and 
fat. Out of these 7, only one LFT appeared to be 
located in the overlap region and could produce the 
correct matching transform. This particular LFT had 
l12 = 40.6mm and a base triangle of height 20.2mm 
(that is the distance of point v3 to edge v1v2) and 
thickness 3.1mm (distance of v4 to the base). The 
algorithm includes threshold parameters for thickness 
to accept LFTs and also for the minimum number of 
points contained in cells that are considered as carrier 
of an LFT. For the runs of Table 1, the limitation 
parameters were chosen 3.0mm for height and 96 for 
the number of points in a cell. The latter number was 
calculated as nB / G2/3 = 2407/25 ≅ 96, which reflects 
the fact that the data points represent a dimensionality 
2 boundary rather than a volumetric content. The cell 
located in the overlap region contained 100 points. 
We have set fraction parameter f = 0.9. If 90% or 
more of the cell points after transformation got closer 
than δ2 to any point of A then the LFT yielded “cell 
OK” in the table. δ2 was set to 1.5mm. The threshold 
for computing the overlap explicitly was set to δ3 = 
1.5mm. When the correct overlap (and thus the 
correct matching transform) was found, the 
associated LFT was classified as “all OK”. 

From the table we see that δ1 = 0.67 is approximately 
the lowest threshold for which at least one of the 7 
LFTs produced the correct matching transform M. 
The number of points from MB closer than δ3 = 
1.5mm to A was 540 (22.4%), reflecting the size of 
the overlap region (we were able to judge the 
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nA = 3188,  nB = 2407,  G = 125,  LFTs = 7,  δ2 = 1.5mm,   δ3 = 1.5mm,   f = 0.9 

δ1 (mm) a12 a12 OK a123 a123 OK a1234 a1234 OK cell OK all OK CPU(s) 

0.00 7.1×107 0 0 0 0 0 0 0 2 

0.15 7.1×107 2.0×105 6.3×108 6.5×103 2.0×107 10 0 0 18 

0.30 7.1×107 4.0×105 1.3×109 5.1×104 1.7×108 438 0 0 40 

0.45 7.1×107 5.9×105 1.9×109 1.8×105 5.6×108 4345 2 0 95 

0.60 7.1×107 7.9×105 2.5×109 4.2×105 1.3×109 22,900 4 0 330 

0.66 7.1×107 8.7×105 2.8×109 5.6×105 1.8×109 36,638 6 0 410 

0.67 7.1×107 8.9×105 2.8×109 6.9×105 1.9×109 45,274 10 1 460 

0.75 7.1×107 9.9×105 3.2×109 8.2×105 2.6×109 83,868 15 2 780 

1.05 7.1×107 1.4×106 4.4×109 2.3×106 7.2×109 5.8×105 64 4 4800 

1.50 7.1×107 2.0×106 6.3×109 6.6×106 2.1×1010 4.5×106 371 26 36,700 

Table 1.  Complexity terms of length tests by Method 2 as function of threshold δ1. Data are from the 
Stanford Bunny. 

 

correctness of the transformation of these particular 
scan views based on ground knowledge from 
alternative shape matching methods). Out of the 
100 points in the particular cell containing the 
“correct” LFT, 97 were at close distance to A 
(within threshold δ2 = 1.5mm).  

Obviously, the 4 vertices v1...v4 of the LFT itself 
belong to that set of 97 points, since they are close 
to the points a1...a4. For the same LFT one different 
4-points set in A was found leading to a 
transformation passing “Cell OK”. With that 
transformation 91 points of the cell were close to A 
but so were only 159 points of B, making it very 
unlikely that the transformation was the matching 
transform. Another LFT generated 8 transforms 
passing “Cell OK” but turned out not the matching 
transform. The total of 10 cases of “Cell OK” is 
depicted in Figure 2. The number of overlap points 
in B is plotted against the rotation exerted by the 
transform. The latter quantity was chosen as it 
characterizes the transform, although there is, of 
course, not a one-to-one relationship between the 
angle and the transformation matrix. The orientation 
of scan view B relative to A is 89.9 degrees, 
according to the solution found at δ1 = 0.67. The 
number of l12 tests is, independently of δ1, equal to 
nA

2 times the number of LFTs considered. For the 
runs of Table 1 this number, labeled a12, was 
31882×7 = 7.1×107. For δ1 = 0.67, 1.3% of the l12 
comparisons passed the test, labeled “a12 OK”. This 
percentage is collective over all accepted LFTs in 
the run. The number of (l13, l23) tests is nA times the 
“a12 OK” cases, or 2.8×109. This number depends 
on the third power of nA. Further, β1 in equation (1) 
is dependent on δ1. 
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 Figure 2. Number of points in MB close to A 
versus rotation of M for δ1 = 0.67 and f=0.9. The 
plot contains 10 data points. 
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Figure 3. Number of points in MB close to A 
versus rotation of M for δ1 = 0.75 and f=0.9. The 
plot contains 15 data points. 

For the particular runs in Table 1 it turned out that 
β1 = 0 for δ1 ≤ 0.66 and β1 is rising for increasing 
δ1. For δ1 = 0.67, 0.02% of the a123 tests was 
positive. This percentage is proportional to β2 and 
depends on δ1. From the 1.9×109 a1234 tests, 0.002% 
or 45,274 resulted positively. This fraction affects 
β3. Finally, the number of exhaustive tests of 
distance MB to A depends on the fraction of “cell 
OK” (0.02% in the run for δ1 = 0.67). This fraction 
is proportional to β4. 
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The increase of computation time with increasing δ1 
is obvious from the rightmost column of Table 1. 
The choice of δ1 seems most critical, whereas δ2 and 
f affect the number of distance evaluations, which 
will be increasingly critical for large nA and nB. 

The effect of changing f from 0.9 to 0.8 is shown in 
Figure 5, which should be compared to Figure 3. 
The number of candidates passing the f threshold 
rises from 15 to 308. Instead of having only two 
correct transformations for f=0.9, there are 4 of 
them for f=0.8.  They show up as a narrow peak in 
Figure 5 near 90°. 
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Figure 4. Number of points in MB close to A 
versus rotation of M for δ1 = 1.05 and f = 0.9. 
The plot contains 64 data points. 
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Figure 5. Number of points in MB close to A 
versus rotation of M for δ1 = 0.75 and f = 0.8. 
The plot contains 308 data points. 

Lowering f to 0.5 does not lead to more correct 
transforms, but increases the background of 
incorrect candidates (Figure 6). In Table 2 the 
number of candidates and the performance of the 
algorithm, for the different values of f, are 
presented. It should be noted that coefficient β4 
increases with decreasing f, leading to 6th power 
behavior of the complexity, see equation (1). The 
increase of CPU time in Table 2 can be practically 
completely attributed to the number of full distance 
computations. When the number of tested cells 
increases from 308 to 8695 (factor 28.2), the CPU 
time for B-to-A distance computation increases by 
factor (2114-780) / (829-780) = 27.2. In all cases 
the number of cell-to-A distance computations is 

83,868, which would increase with the 6th power of 
number points as well. However, the β3 coefficient 
is small when δ1 is moderate and the number of 
points in a cell is small. 
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Figure 6. Number of points in MB close to A 
versus rotation of M for δ1 = 0.75 and f = 0.5. 
The plot contains 8695 data points. 

 

nA = 3188,  nB = 2407,  G = 125,  LFTs = 7, 

 δ1 = 0.75mm, δ2 = 1.5mm,   δ3 = 1.5mm 

f a1234 OK cell OK all OK CPU(s) 

0.9 83,868 15 2 780 

0.8 83,868 308 4 829 

0.5 83,868 8695 4 2114 

Table 2. Dependence on f of the performance of 
Method 2. 

 

We observed that increasing δ1 and/or decreasing f 
puts a dramatic load on the computation. Further, 
having approximately 1.6 times more unordered 
points in the sets, rises the CPU times by a factor 
20.8, see Table 3 for details. For a pure 6th order 
behavior one would expect a factor 16.8, but there 
are other factors such as the number of accepted 
LFTs, which changed from 7 to 9. 

 

4. CONCLUSIONS 
The two most critical factors influencing the 
performance of the algorithm are the point set sizes 
and δ1. In the test runs we have used down-sampled 
versions of point sets containing originally 40,200 
and 30,400 points. The down-sampling algorithm 
removed points conservatively from the set such 
that no two points were less than ε length units 
apart, where ε was set to 2mm for the runs in Tables 
1 and 2, and ε = 1.5mm for the runs in Table 3. For 
given ε an upper limit of δ1 would be 0.5ε in a 
worst-case one-dimensional setting. Using a small 
value for δ1 could lead to zero LFT matches. 
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nA = 3188,  nB = 2407,  G = 125, δ1 = 0.75mm, δ2 = 1.5mm,   δ3 = 1.5mm,   f = 0.9 

nA, nB, LFTs a12 a12 OK a123 a123 OK a1234 a1234 OK cell OK all OK CPU(s) 

3188,  2407, 7 7.1×107 9.9×105 3.2×109 8.2×105 2.6×109 83,868 15 2 780 

5140,  4127, 9 2.4×108 3.1×106 1.6×1010 4.0×106 2.1×1010 737,044 703 40 16,240 

Table 3. Effect of increasing the density of the point sets by approximately a factor 1.6 for Method 2. 

 

Empirically we have found δ1=0.66mm=0.33ε as an 
upper limit in the particular setting of the runs we 
performed. This could be considered as a rule of 
thumb for δ1, although it presumes evenly spaced 
points. The choice of G has turned out to be critical 
as well. When we selected G=6×6×6=216, none of 
the LFTs yielded a correct transform, unless we 
increased δ1 from 0.67 to 1.05mm. Indeed, refining 
the cell subdivision could exceptionally imply that 
fewer cells are fully included in the overlap region. 
When we lowered G to 4×4×4=64, none of the 
LFTs yielded a correct transform, not even at δ1 = 
1.05. This could have been expected since the LFTs 
all exceed the size of the overlap region and are 
therefore unlikely to fit “correctly” to A at any 
place. 

The subdivision has been implemented on an 
arbitrarily orientated evenly spaced grid, namely a 
grid aligned with the global coordinate system. This 
subdivision method could be improved significantly 
to reduce the number cells that should be 
considered further. If we assume that the overlap 
region contains at least 20% of the points of B then 
the 5×5×5 subdivision seems appropriate. 

The values of δ3 and δ4 are less critical, provided 
that δ1 is not unnecessarily large. The values we 
supplied (1.5mm or 0.75ε) seem reasonable. f=0.9 
turned also a good starting value; the correct 
transforms yielded about 95% overlap of the cell 
with A, and we observed that even with increased 
δ1, it was not useful to set f lower than 0.9. 

As mentioned, these recommendations for initial 
parameter values are still case-specific. When the 
scanning process would result in very unevenly 
distributed points, the parameters should be derived 
from the highest occurring ε. 

A possible strategy for automatically adjusting the 
parameters is to set ε relatively large (e.g. 0.01 
times the diagonal of the bounding box of A) and 
perform a run with δ1 = 0.3ε. Then the largest 
overlap detected can be tested for compactness and 
connectedness. If the distribution of the overlapping 
points is not consistent with a connected portion of 
A and/or B, runs with increased δ1 can be carried 
out. 

Both the length tests and the distance computations 
can be implemented with a good degree of 
parallelization. Unlike purely two-dimensional 
processes such as image restoration, 3D scan view 
data cannot be subdivided in portions which can be 
processed completely independently. Still an 
acceleration of the computation by a factor of 10 to 
100 appears feasible in Cuda implementations that 
are presently under investigation. 
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