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ABSTRACT
This paper presents a scene classification method using the integration of the reconstruction errors by local
Kernel Principal Component Analysis (KPCA) and global KPCA. There are some methods for integrating
local and global features. However, it is important to give obvious different role to each feature. In the
proposed method, global feature with topological information represents the rough composition of scenes
and local feature without position information represents fine part of scenes. Experimental results show
that accuracy is improved by using the reconstruction errors obtained from the different point of views. The
proposed method is much better than only local KPCA, global KPCA and linear Support Vector Machine
(SVM) of bag-of-visual words with the same basic feature. Our method is also comparable to conventional

methods using the same database.
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1 INTRODUCTION

In recent years, many local feature based methods has
been proposed [1, 2, 3, 4]. Local features are more
robust to pose variations [4, 5] and partial occlusion
[6] than global features. Although local features have
these advantages, local features based methods tend
to mis-classify samples which are classified easily by
global features. Global features are adequate to extract
the rough information and relation with various regions
though they are not robust to pose variations and par-
tial occlusion. Thus, if we integrate global features and
local features well, the accuracy will be improved.

There are some methods for combining local features
with global features. For example, a face detector us-
ing SVM with a summation kernel of local and global
features was proposed [7]. However, when local and
global features are integrated in the level of a kernel
function and a detector is constructed by SVM with
the kernel, the properties of local and global features
may deny each other. Li [5] used holistic image as well
as local patches in pose independent face recognition.
Although accuracy was improved by using the sum of
probabilities by both features, there is a possibility that
the both properties are not used sufficiently in the sim-
ple summation.
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To integrate effectively local and global features, it
is important to give each feature to obvious different
role (property). There are some methods which gave
each feature to different role. Rao [8] proposed a brain
model in which global prediction and local complemen-
tation were integrated. They reported that end-stopping
cell was obtained by this formulation. Murphy [9] in-
tegrated local and global features in Bayes theorem to
localize objects in images. In this method, global fea-
ture was used as context and local features were used as
part classifiers. By giving the obvious different role to
each feature, localization accuracy was improved.

In recent years, global features were used as contex-
tual information for object detection [9, 10]. However,
in these methods, scene category information was not
used. If the system recognizes the category of scenes
not only global feature of an image, the system can pre-
dict the object candidates which are probably included
in the scene category. Thus, researchers pay attention
to scene category classification problem in recent years
[11, 12, 2, 13, 14]. To classify scene category, the
rough composition of images is important. In this pa-
per, KPCA of global features represents the composi-
tion of images. It is effective for scene classification.
However, global feature of an image is easily influenced
by the position changes of objects in scenes. In gen-
eral, the positions of objects in scenes are not static.



Therefore, the sift-invariant similarities by local fea-
tures should be integrated with the rough composition.
To do so, we integrate KPCA of local features without
position information and global KPCA. We show that
accuracy is improved by integrating the reconstruction
errors obtained by both KPCAs with different role.

The proposed method is evaluated using 13 scene
category database [15] because many methods were
evaluated using this database [11, 12, 2, 13, 14]. We
evaluated our method using the same experimental set-
ting with conventional methods. The proposed method
achieves more than 82.5% by integrating the recon-
struction errors obtained by both KPCAs though only
global KPCA and local KPCA achieve below 77%. The
accuracy is much better than the linear SVM of bag-of-
visual words with the same basic feature. Our approach
is also comparable with the conventional methods.

In section 2, the details of the proposed method are
explained. Evaluation results using 13 scene database
are shown in section 3. Finally, conclusion and future
works are described in section 4.

2 PROPOSED METHOD

The proposed method consists of 3 steps. The first step
extracts the features from images. In this paper, grid
sampling with 16 x 16 grids is used, and orientation his-
tograms of Gabor features are developed at each grid.

The second step is the local and global KPCAs. In
local KPCA, 4 orientation histograms without position
information on 2 x 2 grid are used as a local feature. In
global KPCA, orientation histograms with topological
information on an image are used. Local KPCA rep-
resents the fine part of scenes and global KPCA repre-
sents the rough composition of scenes. Note that global
KPCA is position dependent and local KPCA is posi-
tion independent. The third step is the classification by
integrating the reconstruction errors in both KPCAs.

In section 2.1, orientation histogram of Gabor fea-
tures is explained. Local and global KPCAs are ex-
plained in section 2.2. Section 2.3 explains the classifi-
cation by integration of both KPCAs.

2.1 Features for scene classification

In recent years, the effectiveness of orientation his-
togram [1] for object recognition is reported. We de-
velop the orientation histogram from multi-scale Gabor
features because Gabor features are better representa-
tion than simple gradient features [13].

First, we define Gabor filters. They are defined as
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Figure 1: Orientation histogram from Gabor features

the experiments, Gabor filters of 8 different orientations
(u ={0,...,7}) with 3 frequency levels (v = {0,1,2})
are used. In the following experiments, the norm of real
and imaginary parts at each point is used as the output
of a Gabor filter. The size of Gabor filters of 3 differ-
ent frequency levels is setto 9 x 9, 13 x 13 and 17 x 17
pixels respectively.

Next, we explain how to develop the orientation his-
togram from the output of Gabor filters. In this pa-
per, the orientation histogram is developed from evenly
sampled M x M grid. Figure 1 shows the example of
2 x 2 grid with only one scale parameter ! First, Gabor
features (real and imaginary parts) of 8 orientations are
extracted from the input image. The norm of real and
imaginary parts at each pixel is computed. Then the ori-
entation histogram with 8 bins at each grid is developed
by voting the output value of the maximum orientation
at each pixel to the orientation bin. This process is re-
peated at each scale parameter independently.

In the experiments, we use evenly sampled 16 x 16
grid, and the orientation histogram of 24 dimensions
(= 3 scales x 8 orientation bins) is developed at each
grid. Only 24 dimensional orientation histogram at
each grid is too small to classify scenes by using only
local features. Thus, we use 4 orientation histograms
on 2 x 2 grid without overlap are used as one local fea-
ture. Namely, 64 (= 8 x 8) local features are obtained
from an image. The dimension of a local feature is 96
(=24 x2x2).

In local KPCA, local features without position infor-
mation are used. In global KPCA, all 64 local features
with position information are used.

2.2 Local and global KPCA with different
role

In this section, at first, we explain KPCA and kernel

function. After that, local KPCA and global KPCA are

explained.

Kernel PCA  This section explains KPCA [16, 17]

briefly. When data {x;...,x.} is given, x is mapped

ky = kmux/fv, 0=pu ~TC/8, f= \/E and 6 = m. In ! Inthe experiments, Gabor features of 3 scale parameters are used.
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into high dimensional space by non-linear mapping
0(x). By applying linear PCA in high dimensional
space, non-linear principal components are obtained.
Covariance matrix in high dimensional space is com-
puted by

L
c= %Zq)(x,-)q)(x,-)T. 2)
i=1

Eigen value problem for KPCA is defined by AV = CV
where A is eigen value and V are eigen vectors. Eigen
vectors lie in the span of ¢ (x1),...,¢(xz). Therefore,
the eigen vector is represented by

L
v=Y @ (x), 3)
i=1

where @ is the coefficient.

The equation does not change when ¢ (x;) is multi-
plied to both sides. Then the eigen value problem is
changed as

Ao(x)TV=0(x)TCVv  forall k=1,...,L. (4)

By substituting eigen vectors shown in equation (3)
into equation (4) and using the kernel matrix K where
Kij =0 (x;)T¢(x;), we obtain the following eigen value
problem

Lio = Ko. 5

By solving the eigen value problem, o is obtained. We
have to normalize the obtained o.” for satisfying v; Vp =
l1forallp=1,...,L.

An input sample x is mapped into the p-th principal
component axis by

L
vlf(])(x) = Z(Xip K(x;,x). 6)
i=1
The new feature vector in KPCA space is obtained by
the weighted sum of similarities with training samples
because kernel function computes the similarity with
training samples.

Next, moving on to consider the types of kernel func-
tion, it is reported that a normalized polynomial kernel
gives comparable performance with a Gaussian kernel
using optimal parameters [18]. In addition, the param-
eter dependency of a normalized polynomial kernel is
much lower than that of a Gaussian kernel. Since a
normalized kernel satisfies Mercer’s theorem [19], it is
used as the kernel function. The normalized polynomial
kernel is defined as
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By normalizing the output of a standard polynomial
kernel, the kernel value is between —1 and 1. In this
paper, all orientation histograms are positive values as
explained in section 2.1. Thus, the kernel value takes
between 0 and 1 as with a Gaussian kernel. In local
KPCA, d =5 is used empirically.
Local KPCA Since the distribution of local features
without position information is non-linear, KPCA is
appropriate for representing it [4, 20]. In this paper,
KPCA is applied to the set of 4 orientation histograms
without position information on 2 x 2 grid, and we call
this “local KPCA”. Since the norm normalization of an
input feature vector improves accuracy [6], the norm of
each orientation histogram is normalized before apply-
ing local KPCA.

Reconstruction error of ¢ (x) by local KPCA can be
computed as

10() =VVTIoWIP = ¢ o) —oxVVTo(x)
= Kxx) =Vl @®

Since we use a normalized polynomial kernel, K (x, x) =
1 and the reconstruction error takes the value between 0
and 1. |[VT¢(x)||? is called as CLAss-Featuring Infor-
mation Compression (CLAFIC) [21, 22, 23, 24]. The
reconstruction error is also called as Distance From
Feature Space (DFFS) [25]. The reconstruction error
K (x;,x;) = |[VT ¢ (x;)||* of i-th local feature x; is denoted
as €j;.

In the classification by using only local KPCA, we
compute the sum of reconstruction errors of all local
features in an image, and the image is classified to the
category which has minimum reconstruction error.
Global KPCA with local summation kernel In this
paper, we want to compute the reconstruction error of
the i-th local feature x; from local and global view-
points, and both reconstruction errors are integrated to
improve accuracy. When global KPCA without any de-
vices is applied to the set of all local features of an im-
age, we obtain only the total reconstruction error €, and
can not obtain the reconstruction error € of the i-th
local feature x;. Therefore, we use the local summa-
tion kernel [26] and the expansion of it [20] to compute
the reconstruction error of i-th local feature by global
KPCA.

Local summation kernel in which local kernels are
summarized is defined as

N N
Y 0(a) () = YK (xi,y,)

i

= 04(x)" 05 (y) 9)
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where ¢ (x) = (¢ (x1)7,...,0 (en) )T andx = (xT ... . xL)T.

Namely, in a local summation kernel, each local feature
x; is mapped into ¢ (x;) and global feature ¢, (x) is con-
structed by connecting all ¢ (x;). After that linear PCA
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is applied to the set of ¢, (x) extracted from training im-
ages.

If we use a normalized polynomial kernel with 2nd
degree as a local kernel, we can compute eigen vectors
of primal form directly not dual form. Therefore, we
can compute the reconstruction error of i-th local fea-
ture by using the eigen vectors of the primal form. Note
that dual form is the description using kernel function
and primal form uses ¢ (x) directly not kernel function.

In normalized polynomial kernel with 2nd degree
(d = 2 in equation (7)), the dimension of a mapped fea-
ture ¢ (x) becomes (nd +2)(nd + 1) /2 when the dimen-
sion of an input feature x is nd. For example, the 2 di-
mensional feature x = (x1,x,)” is mapped into 6 dimen-
sional feature ¢ (x) = (x}/a,x3/a, V/2x1/a, \/2x2/a,
V2x1x2/a,1/a)T where a is the norm of the vector
(x%,x%,ﬁxl, V2x3, V/2x1x2, 1)”. Note that the norm
of mapped feature is normalized to 1 in a normalized
polynomial kernel. In this paper, the dimension of ¢ (x;)
is 4753 because the dimension of a local feature x; is 96.

The eigen vectors W with the primal form which are
obtained by global KPCA with a local summation ker-
nel can be described as

WZ(W],...,WM), (10)
where M is the number of dimension (eigen vectors
used) of KPCA space. The p-th eigen vector w, can
be described as

wp=(Whi,... . why). (11)

This equation means that each eigen vector is con-
nected the coefficient vectors for ¢ (x;) which is the fea-
ture after non-linear mapping of i-th local feature. The
dimension of w; corresponds to ¢ (x;). Thus, a global
feature x extracted from an image is mapped into the
p-th principal component axis as

N
wpog(x) = Y wyo(x). (12)
Since we use a local summation kernel, inner product
between eigen vector and ¢ (x) can be decomposed into
the summation of local inner products.

The difference from local KPCA is the eigen vectors
which are determined by using entire feature extracted
from an image. Namely, the eigen vectors of global
KPCA are position dependent though the eigen vectors
of local KPCA are not. Since global KPCA with a lo-
cal summation kernel is the linear PCA of ¢4(x), eigen
vectors also have relative information with other local
regions.

The computation of reconstruction error by global

—

KPCA is easy because ¢, (x) and dg(x) = WWT ¢, (x)
can be computed directly by primal form. Since the to-
tal reconstruction error ||dg (x;) — g (x;)||? is the sum of
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reconstruction error of all local features as YV ||0 (x;) —

—

 (x;)]]?, the reconstruction error of the i-th local feature
can be computed easily. The reconstruction error of i-th
local feature is described as €.

In the classification by using only global KPCA, the
total reconstruction error Y €, of an image is com-
puted, and the image is classified to the category which
has minimum error.

2.3 Classification by inter-complementation

We integrate the reconstruction errors obtained by local
and global KPCAs with different role. Figure 2 shows
the reconstruction by local KPCA. The i-th local fea-
ture x; (square region in the Figure) is mapped to ¢ (x;)
which is shown as the circle in the Figure. The circle on
the right side shows the reconstructed feature VV7 ¢ (x;)
by local KPCA. The difference between 2 circles is the
reconstruction error of i-th local feature.

Figure 3 shows the reconstruction by global KPCA
with a local summation kernel. The i-th local feature x;
is mapped to ¢ (x;), and global feature is constructed as
Og(x) = (0 (x1)7,...,0 (xy)T)T. The circle on the left
side in the Figure shows the global feature ¢4(x) and
the circle on the right side shows the reconstructed fea-
ture WWT ¢4 (x) by global KPCA. As shown in previous
section, the total reconstruction error by global KPCA
is divided into the reconstruction error at each local fea-
ture.

The difference between the reconstruction error by
local and global KPCAs is whether position dependent
or not. In addition, global KPCA with a local summa-
tion kernel uses the relation with various regions though
relative information with other regions is not used in
local KPCA. Therefore, the integration of both recon-
struction errors obtained from the different points of
view will improve the accuracy.

To integrate the both reconstruction errors, we use the
weighted integration as

N N
E=y) &i+(1-7)} i (13)

l 1
where 7 is the weight. A test image is classified to the
category which gives the minimum integration error. If
we set Y to 0, the method corresponds to the use of only
global KPCA. v = 1 means that only local KPCA is
used. Experiments demonstrate the effectiveness of our
integration method.

3 EXPERIMENTS

In this section, the proposed method is evaluated us-
ing the 13 scene database [15]. First, image database,
evaluation method is explained in section 3.1. Next,
evaluation results are shown in section 3.2.
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Figure 2: Reconstruction by local KPCA
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Figure 3: Reconstruction by global KPCA

3.1 Image database and evaluation method

We use the database of 13 scene categories in order to
compare our method with conventional studies [11, 12,
2, 13, 14]. The database includes only gray-level im-
ages with various sizes. Each scene category has dif-
ferent number of images. Examples of 13 scene cate-
gories are shown in Figure 4. There are various scene
categories such as outdoor and indoor. The within-class
variance in scene classification is larger than that in face
recognition problem because camera angle and objects
in images are not static.

In this paper, the images of each scene category are
divided into two sets; training and test sets. 100 images
selected randomly are used as training set. The remain-
ing images of each scene category are used as test set.
This protocol is the same as [11, 12, 2, 13, 14].

Each scene category has the different number of test
images. The minimum and maximum number of test
image of a class is 110 and 310. To reduce the bias of
different number of test images, the mean of the clas-
sification rate of each scene category is used in evalu-
ation. This is also the same as conventional methods.
We repeat this evaluation 3 times with different initial
seed of a random function, and the mean classification
rate of 3 runs is used as a final result.

3.2 Evaluation results

First, the proposed integration method is evaluated while
changing the weight v in equation (13). Figure 5 shows
the result in which horizontal axis is y and the vertical
axis is the correct classification rate. Note that Y =0
means the use of only global KPCA and y = 1 means
the use of only local KPCA. The 3 lines in the Figure
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Figure 4: Examples of 13 scene images. (a) suburb (b)
coast (c) forest (d) highway (e) inside-city (f) mountain
(g) open-country (h) street (i) tall-building (j) office (k)
bedroom (1) kitchen (m) living-room

mean the results with 3 different initial seeds for ran-
dom function. The average classification rate of 3 runs
is shown in Figure 6. Figures demonstrates that the in-
tegration of 2 KPCAs with different role improves ac-
curacy. The best accuracy achieves more than 82.5%
though the accuracy of only local KPCA or global
KPCA is below 77%. Namely, about 6% in accuracy
is improved by very simple weighted integration.
Table 1 shows that best accuracy of the proposed
method, the accuracy of only local and global KPCA.
The best accuracy of the weighted integration method
is obtained at y = 0.79. To show the baseline accuracy,
we also evaluate the linear SVM of bag-of-visual words
[27] which are commonly used in scene classification
and object categorization. The basic feature for com-
puting the visual words is 4 orientation histograms on
2 x 2 grid which are same as the proposed method. Ta-
ble 1 also shows the accuracy. It achieves below 73%.
This result shows the effectiveness of our method.
Finally, our method is compared with the conven-
tional methods using the same database [11, 12, 13, 14,
2]. In general, the classification accuracy depends on
the features and classifiers. Since each conventional
method used different features and classifiers, the direct
comparison with our method is difficult. Comparison
result is shown Table 2. Note that accuracy of conven-
tional methods is obtained from each paper. Since two
methods [11, 12] used the bag-of-visual words with the
local parts obtained from evenly sampled grid, they are
similar with linear SVM of bag-of-visual words imple-
mented by us. In [13], orientation histograms were de-
veloped from subregions with various sizes. Our simple
approach gives much better accuracy than the method.
In [14], auto-correlation in KPCA space of visual words
is used to give shift-invariance and relative informa-
tion with neighboring regions to feature. The proposed
method integrates the shift-invariance similarity by lo-
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Table 1: Evaluation result

Method Classification rate
Proposed method 82.63%
local KPCA 76.62%
global KPCA 74.711%
linear SVM of bag-of-words 72.66%

Table 2: Comparison with conventional methods

Method Classification rate
Proposed method 82.63%
[2] (PAMI2008) 85.9%
[28] (ICPR2010) 84.33%
[14] (ICTP2009) 81.43%
[13] (ICVS2008) 76.12%
[12] (ECCV2006) 73.4%
[11] (CVPR2005) 65.2%
globalKPCA_localKPCAL —+—
0.84 - globalKPCA _localKkPCA2
globalKPCA_IocaIKRQﬁB ek
; X
082 | f xxlx\\
P
081 zfﬁ 5
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Figure 5: Accuracy of the proposed integration method

cal KPCA and the similarity with position dependent
rough composition by global KPCA. Our simple ap-
proach outperforms the result in [14]. Unfortunately,
our method is worse than the method [2] using spatial
pyramid probabilistic Latent Semantic Analysis and the
method [28] using local co-occurrence features. How-
ever, those methods used many devices while the pro-
posed method is very simple in which the reconstruc-
tion errors of 2 KPCAs are integrated by only one pa-
rameter. In addition, the simple integration method is
comparable to conventional methods though the direct
comparison is difficult because of different features and
classifiers. This shows the possibility of our approach.
The accuracy will be improved further if we extend the
proposed approach. This is a subject of future works.
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Figure 6: Average accuracy of 3runs

4 CONCLUSIONS AND FUTURE WORKS

We proposed a scene classification method using the
integration of rough composition by global KPCA and
fine part by local KPCA. By giving the obvious differ-
ent role to both KPCAs, the simple weighted integra-
tion improved about 6% in comparison with only local
and global KPCAs. The proposed method also outper-
formed the linear SVM of bag-of-visual words with the
same features. Our very simple approach gave com-
parable accuracy with conventional methods using the
same database. This shows the possibility of our ap-
proach.

In this paper, the simple weighted integration is used,
and the accuracy is evaluated with the fixed weight for
all test samples. However, if we select the appropri-
ate weight for each test sample, the accuracy will be
improved further. We may use the particle filter to se-
lect the weight such as [4]. This is a subject for future
works.
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