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ABSTRACT 
In this paper we introduce our improvements and innovations to an algorithm for the estimation of principal 

curvatures in point clouds. The major part of the improvement is achieved by the use of a new osculating circle 

fitting. In this paper, first of all, we explain the algorithm for Principal Curvature Estimation, as well as the 

previous osculating circle fitting. Then we present the new osculating circle fitting and an additional possibility 

of improving the results by a method, which adjusts some variables of the algorithm at runtime, to adapt the 

algorithm to the denseness of the particular point cloud. Furthermore, we present some results of the new 

methods. To complete this paper, we give a conclusion and an outlook. 
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1. INTRODUCTION 
With a 3D scanner, one can construct a digital model 

of a real object. However, to get a model most close 

to reality as possible, a couple of steps are needed. 

The 3D scanner produces a point cloud, mostly 

accurate, but, depending on the physical 

characteristics of the object, containing some small 

measurement errors. If the digital model is simply 

constructed by combining three neighbored points to 

a triangle, the measurement errors leads to several 

undesirable effects e.g., under certain conditions, a 

plane part of the surface can look cragged in the 

reconstructed digital model. To obtain mostly correct 

reconstructions of the surface, complex methods like 

presented in [Gun08], [Hor06], [Med05], [Kol04] 

and [Ada03] are needed. 

Another solution is to avoid the effects by 

reconstructing the object with the help of the 

principal curvatures of the surface, like presented in  

 

[Goi06]. The two principal curvatures are defined for 

each point of a surface and are the maximum and 

minimum curvature in a particular direction of the 

point. Therefore, these indicate how the surface is 

formed, e.g. a point on a plane has a maximum and 

minimum curvature of 0. If the two principal 

curvatures, the minimum and the maximum 

curvature, are not equal, then the directions in which 

they occur are clearly defined. The directions of the 

principal curvatures are the principal directions. 

For such a solution, which uses the principal 

curvatures, first of all, the knowledge of the principal 

curvatures and directions for each point in the point 

cloud is needed. Unfortunately, the principal 

curvatures are not directly generated by the 3D 

scanner. We need to estimate them with the point 

cloud. Some approaches to this task are presented in 

[Kal07], [Yan06] and also in [Goi06]. 

A new approach to this task is presented in [Sei10]. 

The presented algorithm uses an osculating circle 

fitting, which is based on the geometric algebra, for 

estimating the curvature. The algorithm already leads 

to useful estimations of the principal curvatures and 

the corresponding principal directions for each point 

of a point cloud. Nevertheless, there is room for 

improvement. The accuracy of the estimation as well 

as the performance of the algorithm are of major 

interest. We present two innovations to this 
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algorithm. An improved osculating circle fitting, also 

based on the geometric algebra, and a newly 

developed method, which automatically adapts the 

algorithm to the structure of the point cloud. 

In the second section we will explain the algorithm 

for principal curvature estimation. The previous 

osculating circle fitting will be explained separately 

to the algorithm, in the third section. In the following 

fourth section, the changed new version of the 

osculating circle fitting is presented and in the fifth 

section the new method, named dynamic variable 

adjustment, is introduced. Some results of the new 

methods are presented in the sixth section. At last, a 

conclusion and outlook is given in the seventh 

section. 

2. PRINCIPAL CURVATURE 

ESTIMATION ALGORITHM 
The algorithm described in this section is almost a 

summary of the algorithm presented in [Sei10]. The 

algorithm is explained in this part, since it is essential 

to understand the algorithm, for understanding the 

improvements and innovations. 

The goal of the algorithm is to calculate the principal 

curvatures and the principal directions of a point x, in 

a point cloud. To estimate the curvature, the 

Algorithm fits osculating circles to a set of points, 

like shown in Figure 1. The center m of the 

osculating circle is always on the straight line defined 

by x and his surface normal n. 

 

 

 

 

                           n 

                                    x 

 

                                               m 

 

 

 

 

 

 

 

Figure 1. osculating circle for a set of points 

 

The algorithm consists of 5 parts. The center of the 

algorithm, the third part, is the osculating circle 

fitting. The first and second part choose the points to 

which the osculating circles are fitted. The results of  

the fittings are used in the fourth and fifth part, to 

calculate the principal curvatures and principal 

directions. 

Choice of the Surrounding Points 
For estimating the principal curvatures of the 

arbitrary chosen point x, only the surrounding points 

of x are needed. Therefore, the first step is to choose 

all points which distance to x is smaller than the 

value of a predefined surroundings-threshold. The 

choice of this value is very important as it decides 

how many points are used for the fittings. 

Estimation of Planes in 16 Directions 
An osculating circle fitting is made for each of the 16 

directions. Therefore, we need 16 set of points which 

each represents one direction. 

One set of points represents one direction when they 

are arranged one after another, nearly forming a two 

dimensional curve. For this reason, an osculating 

circle fitting makes sense. When we fit an osculating 

circle to the curve, the circle nearly has the same 

curvature as the curve and hence the same curvature 

as the surface in the corresponding direction of x. 

We achieve such a set of points if we calculate the 

intersection of the surface and a plane, containing the 

surface normal n. Which direction the plane 

represents is defined by the second vector, with 

which the plane is defined. Therefore, we need to 

define vectors in 16 directions. Figure 2 shows how 

these 16 directions should be arranged. The green 

lines represent the 16 vectors of the 16 directions. 

 

 

Figure 2.  16 directions for point x 

 

 

Together with the surface normal each vector defines 

a plane. For a good representation of one direction 

each vector must be orthogonal to the surface normal. 

Therefore, we define the first vector    as follows: 
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The remaining vectors   up to     are calculated by 

repeatedly rotating    with      around  , i.e. the 

vector    is the result of the rotation of       around 

 , with the rotation angle     . 

The 16 planes defined by the surface normal and a 

corresponding   actually are only “half” planes since 

they start at x. Furthermore, the intersection of a 

plane and the surface cannot be perfectly calculated 

due to the fact that the point cloud is not infinite 

dense. For this reason, we define a plane-distance-

threshold. Every point of the set of surrounding 

points, which distance to a plane is less than the 

plane-distance-threshold, is assigned to the set of 

points of the corresponding direction. As result we 

have 16 set of points which each represents a part of 

the surface in a certain direction. 

Osculating Circle Fitting 
For each of the 16 set of points an osculating circle 

fitting is made. How this fitting works, is explained 

in detail in the third section. 

As result of the osculating circle fittings we get 

curvature values in 16 directions. 

Sine Function Fitting 
Since we do not know in which direction the 

principal curvatures are and also cannot be certain 

that one of the 16 sampled directions is exactly a 

direction of a principal curvature, we need to 

construct a function which interpolates the curvatures 

between the sampled directions. 

Figure 3 shows the calculated curvatures in 16 

directions for an arbitrary chosen point x. It is no 

coincidence that the calculated curvatures are 

arranged like a sine function. Since the principal 

directions are orthogonal to each other, a sine 

function makes a good approximation to the 

curvatures in all directions.  

 

 

Figure 3.  Fitted Sine Function 

As we can see the sine function in Figure 3 does not 

perfectly approximate the curvature values. Since we 

estimate the curvature with “half” planes we fit 2 

phases of the sine function. The correct curvature 

values are between the values for each phase. 

Therefore, the mean values represented by the sine 

function are accurate. 

The fitted sine function has the form: 

 

                  

 

The variable   represents the amplitude,   represents 

the phase and o represents the offset. The sine 

function fitting is based on the method described in 

[IEEE01]. 

For this method a matrix   and a vector   has to be 

defined, where    denotes the calculated curvature in 

the ith direction and    twice the rotation angle of the 

corresponding   . It has to be twice the angle, 

because the 16 curvature values represent two phases 

of the sine function. E.g.    has the rotation angle 

    , therefore    is      

 

    

     

     

 
      

     

     

 
      

 
 
 
 

             

  

  

 
   

  

 

With   and   a result vector   can be calculated: 

 

   

  
  
  

                 
    

     
    

 

Finally the amplitude, phase and offset of the fitted 

sine function can be calculated: 

 

           
    

                 

 

      

 
 

        
  
  

   
 

 
              

       
  
  

   
  

 
             

              

 

Calculation of the Principal Curvatures 

and Principal Directions 
The principal curvatures are denoted as    and   .  

   is the minimal curvature and    is the maximal 

curvature. Since the sine function represents the 

curvatures of x in all directions, the minimal and 
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maximal value of the sine function are exactly the 

value of    and   : 

 

                                           

 

For the principal directions, we must know at which 

angle the extrema of the sine function are. A sine 

function without shifted phase would have his 

maximum at     and his minimum at     . We 

achieve the angle of the extrema if we subtract the 

phase from the normal extrema. Additionally, we 

must divide the angle by 2, since the sine function 

was fitted for values of two phases. 

 

   
 
  
 

   

 
                     

 
 
 

   

 
  

 

Finally, we achieve the vector of the direction of    , 

if we rotate    with    around  . The rotation with 

    results in the vector of the direction of    . 

3. PREVIOUS OSCULATING CIRCLE 

FITTING 
The osculating circle fitting takes x, n and a set of 

points as input, and calculates a circle, which is as 

near as possible at all points. The output of the 

osculating circle fitting is the radius   and the center 

  of the fitted circle. 

A circle has the same curvature value at all his 

points: the multiplicative inverse of the radius. The 

circle is fitted to all points of the set and therefore 

nearly has the same curvature as the part of the 

surface which is represented by the set of points. 

Hence, the searched curvature of the surface in a 

certain direction is the multiplicative inverse of the 

radius of the fitted osculating circle. 

The osculating circle fitting is based on the geometric 

algebra in which a point is represented as a sphere 

with radius 0 and a plane is a sphere with infinite 

radius. These special characteristics of the geometric 

algebra permit to use the inner product of two 

geometric entities, like sphere and point, or plane and 

point, as a measure for the distance. For using this 

aspect, the osculating circle is handled like a sphere, 

which has the same radius and center like the circle. 

This osculating circle fitting uses a least squares 

approach to minimize the sum of all inner products of 

the sphere and the points, to which the sphere is 

fitted. Additionally, since the representation of a 

plane and a sphere is equal, the fitting can also result 

in a plane instead of a sphere. 

With this approach the symmetric matrix B can be  

constructed, where    denotes the ith point and   the 

number of points to which the sphere is fitted. For a 

more detailed deduction see [Hil06] and [Sei10]. 

 

  

 

 
 
 
 
 
 

        

 

   

        

 

   

        

 

   

        

 

   

        

 

   

        

 

   

        

 

   

        

 

   

        

 

    

 
 
 
 
 
 

     

 

        

 
 
 

 
                           

                             

      
 

 
  

        

  

 

The eigenvector of the smallest eigenvalue of this 

matrix B is the resulting vector   with which the 

radius   and the center   can be calculated: 

 

   

  
  

  

                   
  
  

 

 

         

 

Usually a radius is a positive value, but in this case,   

can be negative or positive. This is absolutely 

desired, since a curvature can be positive or negative. 

A negative curvature means that the curvature occurs 

in direction of the surface normal, a positive 

curvature means that the curvature occurs in the 

opposite direction. I.e. a point on a convex surface 

has negative curvatures in all directions and a point 

on a concave surface has only positive curvatures. 

The principal curvatures of a plane surface cannot be 

correctly estimated with a sphere. Since the approach 

is based on geometric algebra, where a plane is a 

sphere with infinite radius, this case can be also be 

correctly identified. If a plane is fitted instead of a 

sphere    is 0. Furthermore, an additional information 

is gained by   : if    is 0, the fitted sphere or plane 

intersects the origin.  

As mentioned before, the curvature of the curve, 

which was intended to be estimated, is the 

multiplicative inverse of the radius  . Hence, the 

calculation of the center   is actually not required 

for the algorithm. 
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4. NEW OSCULATING CIRCLE 

FITTING 
The newly developed osculating circle fitting is also 

based on the geometric algebra and starts with the 

same matrix B. The further steps however are very 

different. We avoid the costly calculation of the 

eigenvalues of the matrix, through defining a 

restriction on the vector  : we set    = 1. With this 

restriction the resulting radius can still have any 

value. The only possible result, which cannot be 

obtained anymore is a plane, which has    = 0. 

Nevertheless, we will see in a later step, that we can 

recognize a plane in another equation. 

With the changed   we can construct a system of 

equations without calculating the eigenvalues. The 

values of the symmetric matrix B are denoted with 

the variables a up to f: 

 

   
   
   
   

  

 

The system of equations is constructed as follows: 

 

 
   
   
   

   
  
  

 
    

 

                                              

                      

                      

 

If we rearrange the equations we get: 

 

                        

                    
   

  
 

  
  

 

 

                     
   

  

 

  
  
 

 

 

Since the system of equations is overdetermined, we 

can calculate    in two ways. If we calculate    for 

both possibilities by inserting    into the first 

equation we obtain the following equations for   : 

 

    
      

     
             

      

     
 

 

Due to the chosen value of    the radius   actually 

has the same value as   . 

              
  
  

                    

 

The radius of the osculating circle therefore has two 

possible results: 

 

   
      

     
            

      

     
 

 

Even if the chosen    apparently excluded the 

possibility of obtaining a plane we can recognize a 

plane in both equations. In both equations the 

denominator equals 0 if the fitting would result in a 

plane. 

The both equations mostly result in the same value 

for  . The values only differ due to numerical 

instability of floating point numbers. Tests have 

shown that the second equation has less faulty 

fittings than the first equation. If we use the second 

equation to calculate the radius, the fitting needs in 

most cases less than 50 % of the time of the previous 

fitting method, but the accuracy of the fittings is 

reduced by an average of 2 %. 

Another solution with impressive results, because it 

has not the same numerical instability, is to choose 

the equation with a better fitted osculating circle in 

every fitting, if the two equations for   do not have 

the same result.  

We can determine a measure for the quality of the 

fitting, denoted as  , by calculating the sum of the 

distances    to all points to which the circle was 

fitted: 

 

   

  

  

  

                        

   
   

   

  

 

    

      
    

 
     

    
 

     
    

 
      

 

      

 

   

 

 

If we calculate   for both values of  , we can decide 

which has a better osculating circle and choose this  .  
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An argument against would of course be that 

additional time is needed for checking which 

osculating circle is better. Nevertheless, the improved 

results justify the raised effort. With this method the 

fitting still needs less than 75 % of the time of the 

previous fitting method and achieves results that are 

highly more accurate than the results of the previous 

fitting method. As we will see in the tests the results 

are about 35 % up to 300 % more accurate. 

5. DYNAMIC VARIABLE 

ADJUSTMENT METHOD 
The method is needed because the results of the 

osculating circle fittings are only useful if the set of 

points which the fittings had as input, were chosen 

well. This method tries to optimize those set of points 

by adjusting two variables of the algorithm: the 

surroundings-threshold and the plane-distance-

threshold.  

As described in the algorithm, the surroundings-

threshold gives the limit, how small the distance of a 

point to x has to be, for including this point in the 

choice of the set of points. 

The plane-distance-threshold gives a limit how small 

the distance of a point to a plane of one direction has 

to be, for including this point in the set of points 

representing the intersection of the corresponding 

plane and the surface. 

This method tries to adjust the surroundings-

threshold to achieve a well-proven number of points 

in the surroundings-set and simultaneously adjust the 

plane-distance-threshold to this number. 

Various tests have shown that optimal results are 

achieved with around 375 points included in the 

surroundings and a plane-distance-threshold of 0,1. 

Therefore, we have chosen this combination 375/0,1 

as the initial target combination of the dynamic 

variable adjustment method. 

The method consists of 3 parts: The first part adjusts 

the surroundings-threshold for the subsequent point. 

The second part adjusts the target combination to 

more dense point clouds. The third part adjusts the 

plane-distance-threshold to the number of points in 

the surroundings-set.  

We assume that the principal curvatures of all points 

of a point cloud are estimated sequently with the 

algorithm for principal curvature estimation. 

Therefore, we can use the fact that the denseness of 

the surrounding part of the point cloud does not differ 

much from one point to the next point. 

This method is always executed right after the choice 

of the surroundings-set, hence before the planes in 16 

directions are defined and before the set of points for 

the fittings are constructed. Therefore, the adjustment 

of the plane-distance-threshold can still affect the 

choice of the set of points, but the adjustment of the 

surroundings-threshold only affects the principal 

curvature estimation of the subsequent point. 

In the following, the targeted number of points 

included in the surroundings-set is denoted as         

and the targeted plane-distance-threshold as        . 

The actual detected number of points in the 

surroundings-set is denoted as  . The actual plane-

distance-threshold is denoted as   and the 

surroundings-threshold as     

Initially,         has the value 375,         the value 

0,1 and   the value 4. 

Adjustment of the 

surroundings-threshold 
The surroundings-threshold has to be adjusted, 

because the number of points included in the 

surroundings should equal or at least almost equal the 

targeted number of points. If we assume that the 

points are more or less equally distributed in the 

point cloud we can calculate the optimal new 

surroundings-threshold with the help of the old 

surrounding-threshold and the number of points in 

the surroundings-set. The developed formula for the 

new surroundings-threshold is as follows: 

 

      

 
 
    

 

 
       

 

 

The best result would be achieved if the choice of the 

surroundings would be repeated after the adjustment. 

Unfortunately this step is very costly; therefore, the 

new surroundings-threshold is only used for the 

subsequent point. An exception is only the very first 

point for which the principal curvatures are 

estimated, since this is the only case where the point 

has no previous adjustment. For this reason, at the 

very first point, the choice of the surroundings-set is 

repeated after the adjustment. 

Adjustment of the Target Combination 
Tests have shown that for highly dense point clouds 

the initial chosen target combination 375/0,1 results 

in too small surroundings-threshold. Therefore, this 

combination is also adapted in some cases. 

If the surroundings-threshold is adapted to a value 

lower than 2, the target combination is set to 

750/0,05. If the surroundings-threshold is further 

adapted to a value lower than 1, the target 

combination is set to 1500/0,025. 

However, the target combination should also be 

adapted to the original value if a less dense part of  
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the point cloud is reached. Therefore, the target 

combination is set back to 750/0,05 from 1500/0,025 

or back to 375/0,1 from 750/0,05 if the surroundings-

threshold is adapted to a value higher than 4.  

Adjustment of the 

plane-distance-threshold 
The plane-distance-threshold is always adjusted to an 

appropriate value, depending on the number of points 

in the surroundings-set and the targeted values: 

 

             
       

 
 

 

6. TESTS AND RESULTS 
For evaluating the newly developed methods we have 

compared results of the new methods to results of the 

previous algorithm of [Sei10]. 

We have chosen 12 point clouds for the tests. The 

point clouds differ in the quantity of points and 

denseness of the point cloud. The surfaces 

represented by the different point clouds include 

various forms of curvatures. Therefore we achieve 

representative results, by testing with all 12 point 

clouds.  

The principal curvatures of all points of the point 

clouds are known, since for evaluating the results we 

have to calculate the average difference to the correct 

values for all points of a point cloud. 

Table 1 shows results without the dynamic variable 

adjustment method. The tests were made for several 

different combinations of the surroundings-threshold 

and the plane-distance-threshold. For each point 

cloud the table shows the best results of the best 

combination. Therefore, the table does not show that 

most of the other combinations resulted in average 

   /    differences of more than 0,01. This was the 

reason, why the dynamic variable adjustment method 

was developed. 

Compared methods: 

New01 is the algorithm with the new osculating 

circle fitting only using the second equation for  . 

New02 is the algorithm with the new osculating 

circle fitting with selection of the better equation. 

Previous is the unchanged previous algorithm. 

 

    is the chosen combination of the surroundings-

threshold and plane-distance-threshold. 

                       Previous     New01    New02  

1      6,0/0,3 6,0/0,3 6,0/0,5 

                0,0050 0,0051 0,0031 

              0,0050 0,0051 0,0023 

2      6,0/0,3 6,0/0,3 6,0/0,5 

                0,0032  0,0033 0,0022 

              0,0023 0,0024 0,0014 

3      4,0/0,1 4,0/0,1 4,0/0,1 

                0,0016 0,0017 0,0011 

              0,0007 0,0008 0,0006 

4      4,0/0,1 4,0/0,1 4,0/0,1 

                0,0018 0,0018 0,0015 

              0,0007 0,0007 0,0006 

5      4,0/0,1 4,0/0,1 4,0/0,1 

                0,0016 0,0016 0,0015 

              0,0011 0,0013 0,0011 

6      4,0/0,1 4,0/0,1 4,0/0,1 

                0,0007 0,0008 0,0006 

              0,0014 0,0014 0,0013 

7      4,0/0,1 4,0/0,1 4,0/0,1 

                0,0017 0,0018 0,0017 

              0,0008 0,0009 0,0008 

8      6,0/0,1 6,0/0,1 4,0/0,1 

                0,0014 0,0014 0,0005 

              0,0023 0,0024 0,0010 

9      4,0/0,1 4,0/0,1 4,0/0,1 

                0,0025 0,0026 0,0010 

              0,0025 0,0025 0,0017 

10      4,0/0,1 4,0/0,1 4,0/0,1 

                0,0017 0,0017 0,0011 

              0,0032 0,0032 0,0015 

11      4,0/0,1 4,0/0,1 4,0/0,5 

                0,0051 0,0051 0,0050 

              0,0014 0,0014 0,0013 

12      6,0/0,1 6,0/0,1 4,0/0,1 

                0,0011 0,0012 0,0003 

              0,0017 0,0017 0,0005 

Table 1. Test results with several possible 

combinations for s and p 

 

As we can see, for most of the point clouds the 

New02 method could achieve highly improved 

results. As we can see, for some point clouds no good 

results could be achieved with the limited number of 

    combinations. 

The time needed for the fittings could also be 

improved. On average New01 needed 50% and 

New02 75% of the time of Previous. 
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Table 2 shows the results with the dynamic variable 

adjustment method. In this table we can see that the 

dynamic variable adjustment method achieves good 

results and also that the new osculating circle fitting 

improved the principal curvature estimations.  

 

                                                      

        Previous     New02        Previous     New02  

1 0,0061 0,0021 0,0041 0,0014 

2 0,0037 0,0013 0,0028 0,0009 

3 0,0010 0,0007 0,0008 0,0005 

4 0,0008 0,0007 0,0006 0,0004 

5 0,0012 0,0012 0,0006 0,0006 

6 0,0018 0,0006 0,0021 0,0006 

7 0,0006 0,0006 0,0003 0,0003 

8 0,0010 0,0003 0,0011 0,0003 

9 0,0004 0,0001 0,0005 0,0001 

10 0,0012 0,0001 0,0014 0,0002 

11 0,0007 0,0005 0,0002 0,0001 

12 0,0014 0,0007 0,0015 0,0005 

Table 2. Test results with the dynamic variable 

adjustment method 

 

7. CONCLUSION AND OUTLOOK 
In this paper we presented our new osculating circle 

fitting and the dynamic variable adjustment method. 

The goal of both developments was to improve the 

presented algorithm for principal curvature 

estimation. 

The evaluation of the tests confirms that we have 

reached this goal. The new osculating circle fitting 

improves the results of the algorithm and is also 

faster than the previous one. The additional dynamic 

variable adjustment method improves the utilization 

of the algorithm for a whole point cloud. This 

method has also proven his worth. 

The presented improvements were concentrated 

mainly on the raising of the accuracy. The algorithm 

could be further improved by expanding it with a 

Moving Least Squares approach like in [Ada03] and 

[Gue08]. Other improvements shall also highly raise 

the speed. For this task an implementation in CUDA 

or OpenCL are planned.  

8. REFERENCES  
[Ada03] Adamson, Anders and Alexa, Marc: 

Approximating and Intersecting Surfaces from 

Points. Eurographics Symposium on Geometry 

Processing (SGP), pages 230–239, 2003. 

[Goi06] Gois, João Paulo, Tejada, Eduardo, Etiene, 

Tiago, Nonato, Luis Gustavo, Castelo, Antonio 

and Ertl, Thomas: Curvature-driven modeling and 

rendering of point-based surfaces. Brazilian 

Symposium on Computer Graphics and Image 

Processing (SIBGRAPI), pages 27-36, 2006. 

[Gue08] Guennebaud, Gaël, Germann, Marcel and 

Gross, Markus: Dynamic Sampling and 

Rendering of Algebraic Point Set Surfaces. In 

Eurographics, pages 653–662, 2008. 

[Hil06] Hildenbrand, Dietmar: Geometric Computing 

in Computer Graphics and Robotics using 

Conformal Geometric Algebra. Diss. Darmstadt 

2006. 

[Hor06] Hornung, Alexander and Kobbelt, Leif: 

Robust Reconstruction of Watertight 3D Models 

from Non-uniformly Sampled Point Clouds 

without Normal Information. Eurographics 

Symposium on Geometry Processing (SGP), 

pages 41–50, 2006. 

[IEEE01] Institute of Electrical and Electronics 

Engineers: Std. 1241-2000 IEEE standard for 

terminology and test methods for analog-to-

digital converters. chapter 3, pages 26-27, 2001. 

[Kal07] Kalogerakis, Evangelos, Simari, Patricio, 

Nowrouzezahrai, Dere and Singh, Karan: Robust 

statistical estimation of curvature on discretized 

surfaces. Eurographics Symposium on Geometry 

Processing (SGP), pages 13–22, 2007. 

[Kol04] Kolluri, Ravikrishna, Shewchuk, Jonathan 

Richard and O’Brien and James F.: Spectral 

Surface Reconstruction from Noisy Point Clouds. 

Eurographics Symposium on Geometry 

Processing (SGP), pages 11–22, 2004. 

[Med05] Mederos, Boris, Amenta, Nina, Velho, Luiz 

and de Figueiredo, Luiz Henrique: Surface 

Reconstruction for Noisy Point Clouds. 

Eurographics Symposium on Geometry 

Processing (SGP), pages 53–62, 2005. 

[Per09] Perwass, Christian: Geometric Algebra with 

Applications in Engineering. Berlin: Springer, 

2009.  

[Sei10] Seibert, Helmut, Hildenbrand, Dietmar, 

Becker, Meike and Kuijper, Arjan: Estimation of 

Curvatures in point sets based on geometric 

algebra. Angers: VISIGRAPP, International Joint 

Conference on Computer Vision, Imaging and 

Computer Graphics Theory and Applications, 

2010. 

[Yan06] Yang, Yong-Liang, Lai, Yu-Kan, Hu, 

 Shi-Min and Pottmann, Helmut: Robust Principal 

Curvatures on Multiple Scales. Eurographics 

Symposium on Geometry Processing (SGP), 

pages 223–226, 2006. 

WSCG 2011 Communication Papers 112


	I97-full.pdf

