
Mimicking POV-Ray Photorealistic Rendering
with Accelerated OpenGL Pipeline

J. Pe ivač

Brno University of Technology
Božet chova 2ě

612 66 Brno, Czech Republic

peciva@fit.vutbr.cz

P. Zem íč k

Brno University of Technology
Božet chova 2ě

612 66 Brno, Czech Republic

zemcik@fit.vutbr.cz

J. Navrátil

Brno University of Technology
Božet chova 2ě

612 66 Brno, Czech Republic

inavrati@fit.vutbr.cz

ABSTRACT

Traditional ray tracing algorithms tend to provide photorealistic results but at high computing costs. Rendering times of minutes or days are
not exceptional. On the other side, hardware accelerated OpenGL rendering can provide real-time interaction with virtual environment with
unnoticeable rendering times. This paper attempts to bring these two together and attempts to give an answer on the difficulty of
implementing real-time photorealistic rendering. The paper presents case study on mimicking of POV-Ray photorealistic rendering with
accelerated OpenGL pipeline. The study shows the opportunity to accelerate some photorealistic algorithms by real-time approaches while,
on the other side, it locates the parts that are difficult to replace by traditional real-time rendering paradigms. Particularly, it is shown how
to implement primary and shadow rays and POV-Ray-like material model using accelerated OpenGL pipeline using modern shader techno-
logy. On the other side, the difficulties of reflected and refracted rays implementation using real-time rendering approaches is discussed.

Keywords
photorealistic rendering, POV-Ray, OpenGL, raytracing, shaders

1 Introduction

Photorealistic rendering is a very important domain in computer
graphic because of the realism that is often expected from
graphics applications. Beginnings of photorealistic rendering can
be traced back to the '60s to the invention of the ray casting
algorithm [Appel 1968], followed later by ray tracing algorithm
[Whitted 1980]. Ray tracing and other methods of photorealistic
rendering, however, tend to be computationally very expensive
even for today's hardware, often forcing users to wait minutes, or
even days for high quality results. On the other side, many
applications of real-time computer graphics desiring for higher
realism exist. They can not accept computationally expensive
algorithms of photorealistic computer graphics. Their users
require high productivity and interaction with the graphics scenes.
Such requirements are difficult to achieve in non-real time
applications.

Areas desiring real-time photorealistic rendering include, for
instance, CAD and architecture applications for interior design.
Architects often want to immediately see the esthetic value of the
designed model. Presently, they are forced either to compromise
productivity by waiting for the results of the photorealistic
rendering, or to compromise visual quality by throwing away
photorealism and by using standard approaches of real-time
computer graphic instead. However, visual quality is often
essential while standard approaches of real-time computer

graphics usually tend to provide poor results on advanced scene
lighting setups. If real-time photorealistic visualizations would be
possible, they would provide high quality visualizations, making
architects and designers much more time effective while
increasing the final quality of the designed models. Other
applications include visualizations for civil engineering, scientific
research, computer games, and visualizations in general.

Recent enhancements in programability of the graphics processor,
particularly shaders, gives a question whether it would be possible
to implement and accelerate some photorealistic algorithms using
standard approaches of real-time computer graphics. This paper
does so by a case study of mimicking POV-Ray rendering with
accelerated OpenGL pipeline while evaluating speed up factors of
accelerated parts and describing difficulties with algorithms that
are difficult to match with current OpenGL rendering paradigm.

2 State of the Art

The beginnings of photorealistic rendering go back to the '60s
when ray casting was developed [Appel 1968]. Ray tracing
[Whitted 1980] extends the idea of the ray casting by recursion –
tracing the ray in the scene through several reflections. [Arvo
1989] presented a number of methods for ray tracing acceleration.

A number of modifications of ray tracing were developed. Path
tracing [Kajiya 1986] uses Monte Carlo for stochastic evaluation
of light distribution in the scene. It was extended to bidirectional
path tracing [Lafortune 1993]. Photon mapping [Jensen 1995]
[Jensen 2001] creates scene light distribution by shooting large
number of photons from the light sources and making them
bounce in the scene until they are absorbed somewhere, forming a
photon map. To render a such scene, path tracing can be used,
looking for contributions of closest photons at each surface hit.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

WSCG 2011 Communication Papers 149

Another path tracing optimization is Metropolis light transport
[Veach 1997].

With the evolvement of ray tracing algorithms, various ray tracing
software emerged, such as POV-Ray in 1989, Yafaray (2002), and
Radiance ray-tracing software system [Larson 1998].

A number of real-time ray tracing attempts were made.
REMRT/RT tools (based around BRL-CAD ray-tracer) are
parallel network distributed ray-tracing system developed in 1986
and credited at Siggraph 2005 as a first real-time ray tracer
capable of rendering several frames per second [Muuss 1987].
OpenRT (www.openrt.de) [Wald 2002] is a standalone closed-
source real-time ray tracer. In 2006, Intel demonstrated the
performance of its new dual-core processors on POV-Ray 3.7 beta
that is capable of SMP (Symmetric Multiprocessing). In 2008,
Intel demonstrated a special version of the computer game Enemy
Territory: Quake Wars using ray tracing as rendering method. The
demonstration used a 16-core system running at 2.93 GHz and
providing 14-29 frames per second (FPS) on basic HD (720p)
resolution [Valich 2008].

Some attempts were made for special ray tracing acceleration
hardware. One of them was "Rendering on demand" [Chalmers
2006] using specialized hardware based on DSP and FPGA –
(Field programmable gate array). The Saarland University
developed another FPGA based system called Ray Processing
Unit capable of accelerating ray tracing algorithms in hardware
[Woop 2005]. The University of Utah developed a highly parallel
multicore solution for real-time ray tracing [Spjut 2009].

Other approaches tried to use the ever-growing power of GPUs
for ray tracing. [Purcell 2002] was the first one that presented ray
tracing running on GPU. Photon mapping followed [Purcell 2003]
with more complex ray tracing algorithms [Horn 2007][Gunther
2007][Shih 2009][Garanzha 2010]. Finally, Nvidia came with its
own GPU-accelerated ray tracing API called OptiX [Nvidia
2009].

2.1 Real-time Rendering

Although ray tracing on GPU seems to be a promising approach,
[Garanzha 2010] states that its GPU approach is only about 4x
quicker than the CPU friendly implementation running on Core 2

Quad. Ray tracing algorithms as those mentioned here, are
currently capable of processing about 100Mrays/second on scenes
with 100K triangles (roughly said). It is still a level of magnitude
behind the processing power of the traditional rendering pipeline
as will be shown in the paper. Thus, number of attempts, such as
[Loviscach 2004], were made to approach photorealistic rendering
with the traditional OpenGL rendering pipeline.

Real time graphics used to focus mostly on performance and
lacked the support for advanced lighting effects. Applications
were forced to use precomputed lighting or a fixed lighting model
[Wright 2004] that is too limiting for many modern graphics
applications (see figures 2, 3). Invention of shaders [Rost 2005]
for the OpenGL pipeline brought new possibilities for realism and
lighting effects of real time rendering (see figure 4). Moreover,
the shader programming capabilities grow with each new graphics
card generation, giving more and more possibilities to map some
photorealism algorithms to the real time rendering paradigms.

This paper is going to investigate the topic and find photorealism
algorithms that can be accelerated and identify those that are
difficult to map to the current OpenGL based real time rendering
architectures. The photorealism will be studied on POV-Ray as it
is a popular, recognized, and publicly available photorealistic ray
tracer. Moreover, POV-Ray's source code is publicly available to
be studied, modified, etc. Finally, the investigation will be done as
a case study on mimicking POV-Ray with OpenGL using shader
technology as this will easily show difficult algorithms to
accelerate as well as performance gains of successfully
implemented parts.

3 POV-Ray Architecture

POV-Ray will be divided into three main parts for the purpose of
this paper:

• ray tracing rendering

• scene description and modelling library

• material modelling algorithms

Figure 1: PRAY ray tracing tool rendering of fractally generated
scene (4096 sphere objects in total) [Zemcik 1995]

Figure 2: Computer game Counter Strike (release year: 2000)
Note static shadows of the buildings and
shadows absence under moving people

WSCG 2011 Communication Papers 150

Only core functionality of these will be investigated, omitting for
example, radiosity rendering and other various extensions.

POV-Ray ray tracing rendering is delivering photorealistic results
on one side while requiring much computing resources on the
other side. Rendering times of hours or days are not exceptional.
Mimicking ray tracing in the OpenGL rendering pipeline is a
challenging task as they are using an opposite approach: POV-
Ray is tracing rays from the camera while OpenGL is projecting
the scene geometry to the camera. This small difference brings
various challenges to various light effects that will be discussed
through the paper.

The scene description language of POV-Ray is very robust. It
starts from triangle meshes and atmospheric effects and finishes
with splines, blobs, run-time evaluated functions, and animations.
In this paper, we will focus just on triangle meshes because that is
the natural representation to OpenGL and all other representations
can be tessellated – producing a triangle representation.

Modelling of materials is more advanced in POV-Ray than in
standard OpenGL. It includes even multiple layers of material and
procedurally generated material surfaces. Many of these advanced
material approaches should be implementable in OpenGL shaders.
This paper will not go to the excessive material functionalities of
POV-Ray, rather mimicking of core material functionality will be
discussed in section 3.2.

3.1 Ray Tracing

POV-Ray is a ray tracer. It casts a ray or a number of rays through
each pixel of the image, rendered by camera. These rays are called
primary rays. The ray travels through the scene until it hits a scene
object, a light, or escapes the scene. If some object is hit, the
object's material is processed and computed color is assigned to
the ray. If it is primary ray, the ray's color is immediately assigned
to the rays image pixel. However, depending on the material
properties and the light setup, material processing may cause
additional rays to be cast from the point of the object hit to
various directions. Such rays are called secondary rays. When
these rays hit other surfaces in the scene, these secondary rays
may spawn recursively additional secondary rays. If the light is
hit, it assigns the ray the light's color. If the ray leaves the scene, it
is usually assigned the background's or sky's color.

POV-Ray assigns the level's number to the rays cast. The primary
rays cast from the camera are level 0 rays. When a surface is hit
by a ray of level n and it emits a new ray or several rays, they are
said to be of level n+1. Tracking of the ray level avoids infinite
recursions in some scenes and limits the rendering time by giving
a maximum ray level limit. POV-Ray sets the limit to 5 by default
while the user may increase it as needed, for example, on scenes
with many mirrors.

3.2 Ambient Scene: Level 0 Rays

The idea of mimicking POV-Ray with the standard OpenGL
pipeline leads immediately to the crucial question whether POV-
Ray's ray casting can be replaced by the rendering pipeline. The
approach of OpenGL is to project the scene's geometry to the
camera's rendering plane and to change the pixel's colors as the
geometry is rasterized and fragments are processed. POV-Ray's
approach is the opposite. The rays are cast through the rendering
plane and the color of the pixels are determined by the scene
geometries hit by the rays. If only direct rays (e.g. level 0) are
considered, both approaches should be interchangeable. The
experiment of figures 5 and 6 proves the idea. Both images are of
the same quality while POV-Ray's image took 4 seconds to render
and the OpenGL's one 2.2 milliseconds (i7-920@2.66GHz,
GeForce GTX 260). An acceleration factor of 1800 is the first
achievement of this paper.

However, limiting rays to level 0 only prevents the scene
geometry to be illuminated by light sources and only the ambient
component of the light model affects visual appearance. To
include light sources, rays of level 1 need to be introduced,
providing the secondary rays cast from the intersection point to
the light sources.

3.2 POV-Ray's Surface Model

To accelerate POV-Ray's level 1 rays in OpenGL, it is necessary
to properly model POV-Ray's interaction of a ray with a surface.
If the ray hits the object's surface any combination of four things
might happen:

Figure 3: Lighting artifacts on a scene using standard OpenGL
Gouraud shading

Figure 4: Per-pixel lighting in a scene
rendered using shader technology

WSCG 2011 Communication Papers 151

 absorption – the light ray or part of its intensity is
absorbed, lowering its intensity and possibly altering its
hue by absorption of some wavelengths only

 reflection – the light ray is reflected in one or more
directions, secondary rays are cast

 refraction – transparent and translucent materials may
cause a portion of the light ray to refract into the object

 fluorescence and emission – the surfaces may emit the
light of different wavelengths, possibly altering the
spectrum of the ray

POV-Ray models the surface absorption like OpenGL. It uses the
RGB light color model. If the surface if purely blue, it absorbs all
red and green component of incoming light rays. If it is 50% grey,
half of the light ray's intensity is absorbed. Various reflection
types are modelled by ambient, diffuse, specular, phong, and
reflection material components. Refraction is modelled by the
component of the same name, by the densities of refraction
environments, and the amount of transparency of a given object.
Fluorescence and emission effects are simulated by the ambient
component or material components set in a way that the amount
of outgoing light is bigger than the amount of incoming light. This
may happen, for example, when one of the material components is
bigger than 1.0.

However, modelling POV-Ray's material properties with OpenGL
is not an easy task because the surface materials of POV-Ray are
very robust and include material libraries and procedural
functions. Because covering the material libraries and procedural
functions would be time expensive work and would provide
enough material for a paper dedicated just to this topic, this paper
will be limited just to the core material modelling capabilities of
POV-Ray.

POV-Ray calls the set of material surface properties "texture"
(note the name collision with OpenGL's "texture"). The texture is
composed of pigment, finish, and normal. The pigment can be a
color, image map (e.g. 2D texture), or color map (procedural
texture). Colors and image maps are the functionalities that have
equivalents in OpenGL. Color maps are more complicated. They
map floating point values in a range from 0.0 to 1.0 to color
values specified in the map. The floating point values can be
generated by various mapping functions and be modified by
functions like turbulence and frequency. These procedural

functions can be probably implemented using shaders, however
they are out of scope of this paper.

Finish is the next item of POV-Ray's surface texture. Knowing the
pigment, e.g. surface color at a given point – this may include
texture mapping and filtering – finish gives the amount of
ambient, diffuse, specular, phong, reflection, and refraction
component. All these values are floats, usually between 0.0 and
1.0 to specify range from absence (value 0.0) to full intensity (1.0)
of a given material component. Negative values and values over
1.0 can be used as well to create special or unrealistic effects.
These intensities just multiply their value with the pigment color,
resulting in the color of a particular component. Mimicking of all
POV-Ray's finish material functionality in accelerated OpenGL is
described summarized in the table 1.

The last POV-Ray's material surface property is normal. It is
designed for surface normal manipulation. It can be specified by a
bump map or a procedural approach. The procedural generators
are out of the scope of this paper, so only bump maps are
considered. The bump maps have mandatory support in OpenGL
since version 1.3 [Segal 2001], thus they can be implemented.

3.3 Secondary Rays

After the investigation of primary rays (level 0) and color
processing on POV-Ray's surface textures and seeing that it is
possible to implement them in OpenGL, it is possible to come to
the next step: POV-Ray's level 1 rays. When a level 0 ray cast
from the camera hits a surface of an object, several secondary rays
of level 1 may be cast. Secondary rays called shadow rays are sent
to each light source to see whether anything is in the way and
obscures the light source. If there is nothing in the way, the
intersection point is illuminated by the particular light source and
the color of the light source is assigned to the ray. If the light is
obscured by an object, the black color is assigned to the ray
instead.

If the surface has a non-zero reflection component, another
secondary ray is cast in the direction of the reflection vector. If the
surface is not completely opague, e.g. it is transparent or semi-
transparent, another ray is cast into the object while a refraction
effect may apply. The secondary rays are processed recursively in
the same way as the primary rays, making secondary reflections
and refractions, tertiary reflections, etc. At the end of each ray

Figure 5: POV-Ray rendering using only level 0 rays Figure 6: OpenGL rendering using ambient light

WSCG 2011 Communication Papers 152

level n evaluation, the color of all the rays of the level n+1 are
taken and included in the color computation of the ray of the level
n. Finally, when level 0 ray evaluation is completed, its color is
assigned to the pixel of the image.

Visual results are shown in the figure 7 for POV-Ray while using
level 0 and 1 rays only, and figure 8 for the OpenGL accelerated
implementation.

3.4 POV-Ray Lights

Casting of secondary rays, particularly shadow rays cast towards
light sources, is influenced by the light type. As can be expected,
POV-Ray uses a more advanced lighting model than built-in
OpenGL lights. Anyway, the limited built-in light model was
made obsolete in OpenGL 3.0 and programmers are encouraged to
create their own lighting effects using shaders.

POV-Ray uses several types of lights: point light, parallel light
(like OpenGL's directional light), spot light, cylindrical light, and
area light. The first three have equivalents in OpenGL, the fourth
should be possible to implement in shaders and the last one – area
light – can be implemented as an array of point lights. That is
actually the way that area light is implemented in POV-Ray. All
the details of POV-Ray's lights and their implementability by
OpenGL are described in the table 2. Implementability was
verified for point light, directional light and spot light. Cylindrical
light is rarely used, and area light is just the array of point lights in
POV-Ray. To prove implementability of the lights, point light,

directional light and spot light were implemented in OpenGL's
shaders. The results are shown in the figures. Because of the space
limitations, we show just the spot light scene as the spot light is
the most complex type when considering mentioned light types
and their POV-Ray implementation. A summary of lights
implementability is shown in the table 2.

3.5 Higher Level Rays

When we attempted to analyze implementability of level 2 rays in
OpenGL, we found it very difficult, particularly when considering
the general case. Following the goals set in the beginning of this
paper, this section successfully identifies one particular difficulty:
to mimics POV-Ray rays starting from level 2. Additionally, the
section is going to discuss available options that should be
addressed in the future.

Rays of higher level starting from level 2 bring very cool effects,
like mirroring, reflections and refractions. One POV-Ray example
is shown in the figure 9. However, these rays are not
straightforward to implement for the general case. Some GPU
approaches follow that can be used to reach similar effects as
those created by level 2 rays:

– scene mirroring – there are various approaches to implement
mirrors in OpenGL. Usually, they just duplicate the scene
behind the mirroring surface while using stencil test to limit
rendering just to mirroring surface.

POV-Ray's Finish
component

Required rays to be cast Finish component description Implementability in OpenGL

Ambient no ray casting required pigment multiplied by ambient component
and global ambient intensity

yes, using ambient color and global
ambient light

Diffuse

Phong

Specular

secondary ray is cast to
each light source to test its
visibility

for each visible light source compute sum of
diffuse equations (Lambertian reflectance
[Phong 1973]) of the pigment multiplied by
diffuse component, and color of the ray cast
to the light source. Brilliance parameter may
modify distribution of the reflection.

for each visible light source compute phong
highlight [Phong 1973] of pigment, phong
intensity, light source ray color. Pigment
color affects the ray if metallic is specified.

for each visible light source compute
specular highlight [Blinn 1977][Phong
1973] of pigment, specular intensity and
light source ray color. Pigment color affects
the ray if metallic is specified.

yes, but light source visibility requires
accelerated shadow algorithms to be
used. For example, shadow maps or
shadow volumes techniques can be used.

Per-pixel lighting requires color
components to be computed using
shaders because OpenGL's per vertex
lighting provides often unacceptable
results (see figure 3).

Reflection one secondary ray cast in
direction of reflection
vector

color of reflection ray is multiplied with
reflection intensity

Transparency one secondary ray cast into
the object

the color of the ray is multiplied by
transparent intensity. The direction of the
ray may be affected by refraction

OpenGL provides direct support for
transparency, but robust implementation
of reflection and refraction is not trivial.
Possible solutions are discussed in the
paper.

Table 1: Relation between POV-Ray materials and OpenGL materials

WSCG 2011 Communication Papers 153

– render to texture – the mirrored or reflected geometry can be
pre-rendered to the texture that is applied to the surface
afterwards.

– environment mapping – similar to render to texture approach,
but it usually renders all surrounding environment (360
degrees) to, for example, cube map. The pre-rendered
environment is then mapped to the geometry using, for
instance, texgen OpenGL functionality or shaders. Effects
like mirrors or surface reflections are easily implementable
using environement mapping.

– GPU raytracing – there were number of attempts to perform
ray tracing on GPU, such as [Garanzha 2010][Shih 2009]
[Horn 2007][Gunther 2007].

The first three OpenGL-based options seem appropriate to create
nice reflections and refraction effects on planar surfaces.
However, they are breaking projection coherency that was present
with primary rays and shadow level 1 rays. Breaking of this
coherency may result in a huge number of projections and pre-
rendering to texture. Theoretically, each surface that is not
coplanar with any other surfaces may require its own projection.
Such solution may turn to be very performance expensive.
Moreover, curved surfaces, such as NURBS, exhibit even more
problems. They can not be processed directly as they are not
planar surfaces. They can be tesselated, but to reach high quality
visual results, too many not coplanar surfaces may be produced,
possibly harming performance too much.

Another approach can be to start GPU ray tracing at level 2 rays.
Although GPU ray tracing still does not reach the performance of

Figure 7: POV-Ray rendered image using rays level 0 and 1 Figure 8: OpenGL rendered image using per-pixel lighting

POV-Ray's light type Description Implementability in OpenGL

Point light The light placed in the scene shining equally in
all directions

Similar to OpenGL's point light except that OpenGL's light does
not cast shadows by default. One of shadow techniques need to
be utilized. Lighting should be implemented per-pixel, for
example, in shaders.

Parallel light The light whose rays come in parallel in certain
direction

Similar to OpenGL's directional light with the exception of
shadows. One of shadow techniques need to be used.

Spot light Like the point light but the light is restricted to
a cone in some direction. The light intensity in
the cone can be modulated. POV-Ray uses
radius, falloff, and tightness parameters.

Similar to OpenGL's spot light except shadows and light
intensity modulation. Shadows need to be implemented.
Intensity modulation inside the cone is different from the
OpenGL's built-in spotlight. However, shaders are usually used
to implement per-pixel lighting and POV-Ray's light
modulation can be computed there as well.

Cylindrical light Like spot light but it is constrained by a
cylinder. It is useful for effects light laser
beams. Technically, it is not based on parallel
light as could be expected, but on point light
whose rays are constrained by the cylinder.

Can be implemented in OpenGL shaders. Shadow technique
needs to be used.

Area light Finite 1D or 2D rectangular area providing flat
panel light. Technically, it is implemented
using array of point lights. As a side effect, the
light provides soft shadows.

Can be implemented as an array of point lights. Alternatively,
some area light model [Au 2007] implemented using shaders
can be used for instance.

Table 2: POV-Ray's lights and their implementability by OpenGL

WSCG 2011 Communication Papers 154

the standard OpenGL rendering paradigm, it may outperform
OpenGL approaches for level 2 rays. Further investigation would
be necessary to clarify the best approach that may even lead to a
hybrid solutions – rendering big planar surfaces in OpenGL and
ray tracing the small or curved surfaces.

4 Experiments

All the algorithms developed in this paper were tested as a part of
our Lexolights open source project available at:
http://lexolight.sourceforge.net. The website includes win32
binaries covering the functionalities mentioned in this paper.
Namely, all POV-Ray core material functionality is implemented,
e.g. all major elements of POV-Ray's texture finish, with
exception of reflection and refraction elements that would require
support of level 2 rays. Next covered area is lights that include
point, directional, and spot light while we used shadow maps
[Williams 1978] and LiSPSM [Wimmer 2004] for shadow rays
visibility tests. Lexolight is implemented using OpenSceneGraph
(http://www.openscenegraph.org) – high level rendering library
built on the top of OpenGL. As some of our algorithms were
better suited to be included directly in OpenSceneGraph, such as
POV-Ray scene converter and exporter, we submitted them to be
included in the upcoming release for the profit of the open source
community.

4.1 Performance

To evaluate the performance gains, several measurements were
made for POV-Ray rendered scenes. Then, the same scene was
rendered by hardware accelerated OpenGL. The results are
summarized in the table 3. We used the scene composed of
approximately 83000 triangles visualized on high and low
performance CPUs and a variety of graphics cards ranging from
hi-end, through mobility versions, to old low-end GPUs. POV-
Ray rendering took from few seconds to about a minute.
Rendering of the same scene for level 0 and level 1 rays using
POV-Ray's accelerated OpenGL approach took less than 150ms
even on very old mobile fill-rate limited graphics card. For
nowadays hi-end graphics cards, the speed up factor stayed far
above 1000. We consider such speed up an interesting result. It
shows a potential to accelerate level 0 and level 1 rays of ray
tracers. Another option can be to further investigate acceleration
of level 2 rays or to consider whether a hybrid solution would be
the best option for close-to-photorealistic real-time rendering.

5 Conclusions

This paper investigated the realization of photorealistic rendering
in real-time, accelerated by the graphics hardware. The
investigation was made on a case study by mimicking of POV-
Ray with OpenGL's rendering paradigm accompanied with the
latest programmable shader technologies.

The presented study proved that the core POV-Ray material and
lighting functiontionality can be implemented in accelerated
OpenGL. It turned out that it is very easy to accelerate primary
rays (e.g. level 0 rays) cast by POV-Ray when rendering the scene
and a speed up factor of 400 was measured even on very old
hardware. Secondary rays of level 1 were accelerated as well
while together with level 0 rays, the speed up factor was over
3000 for modern hardware. Rays of level 2 and higher turned out
to be difficult to be implemented in accelerated OpenGL. They
may require additional research efforts and using of advanced
rendering techniques as was discussed in section 3.5.

Future research should extend acceleration of rays of level 0 and 1
to higher level rays. Although it may be difficult to do so, it would
enable additional visual effects and may even lead to ideas of
accelerating global illuminations methods, such as radiosity.

Figure 9: POV-Ray rendered image using rays level 0,1, and 2

Level 0 Rays Acceleration Level 1 Rays Acceleration Level 2 Rays

POV-Ray
rendering

(level 0 rays)

OpenGL
ambient

rendering

Speed-up
factor

POV-Ray
rendering

(level 1 rays)

OpenGL
per-pixel
ligting

Speed-up
factor

POV-Ray
rendering

(level 2 rays)

i7-920 @2.66GHz,
GeForce GTX 260

4s 2.2ms 1800 14s 4.4ms 3200 21s

Core 2 Duo @ 2.00GHz,
Radeon HD 3670 Mobility

8s 7.4ms 1100 21s 18ms 1200 33s

Athlon XP 2000+,
Radeon HD 2600 XT

12s 11.4ms 1100 37s 20.5ms 1800 58s

Core 1 Duo @ 1.83GHz,
Radeon X1300M

13s 33ms 400 36s 133ms 270 55s

Table 3: Performance comparison
(screen size: 1440x1050, one omnidirectional light, 83000 triangles)

WSCG 2011 Communication Papers 155

Acknowledgements

This work was supported by the Ministry of Education, Youth and
Sports of the Czech Republic under the research program LC-
06008 (Center for Computer Graphics). Special thanks to
Cadwork Informatik AG and Cadwork development team in Brno
for the support of this project.

References

AU, A. 2007. A simple area light model for GPUs. In Shader X5, W.
Engel, Ed. Charles River Media, Chapter 2.1, 63—67.

APPEL, A. 1968. Some techniques for shading machine renderings of
solids. In Proceedings of the April 30--May 2, 1968, Spring Joint
Computer Conference (Atlantic City, New Jersey, April 30 - May
02, 1968). AFIPS '68 (Spring). ACM, New York, NY, 37-45.
DOI= http://doi.acm.org/10.1145/1468075.1468082

ARVO, J. AND KIRK, D. 1989. A survey of ray tracing acceleration
techniques. In An introduction To Ray Tracing, A. S. Glassner,
Ed. Academic Press Ltd., London, UK, 201-262.

BLINN, J. F. 1977. Models of light reflection for computer synthesized
pictures. SIGGRAPH Comput. Graph. 11, 2 (Aug. 1977), 192-
198. DOI= http://doi.acm.org/10.1145/965141.563893

CHALMERS, A., DEBATTISTA, K., GILLIBRAND, R., LONGHURST, P., AND
SUNDSTEDT, V. 2006. Rendering on demand. In EGPGV2006 - 6th
Eurographics Symposium on Parallel Graphics Visualization,
Eurographics, 9--18.

GARANZHA, K., LOOP, C., 2010. Fast Ray Sorting and Breadth-First Packet
Traversal for GPU Ray Tracing, Computer Graphics Forum 29, 2.
Proceedings of Eurographics 2010, Norrköping, Sweden.

GUNTHER, J., POPOV, S., SEIDEL, H., AND SLUSALLEK, P. 2007. Realtime Ray
Tracing on GPU with BVH-based Packet Traversal. In
Proceedings of the 2007 IEEE Symposium on interactive Ray
Tracing (September 10 - 12, 2007). IEEE/Eurographics
Symposium on Interactive Ray Tracing. IEEE Computer Society,
Washington, DC, 113-118. DOI=
http://dx.doi.org/10.1109/RT.2007.4342598

HORN, D. R., SUGERMAN, J., HOUSTON, M., AND HANRAHAN, P. 2007.
Interactive k-d tree GPU raytracing. In Proceedings of the 2007
Symposium on interactive 3D Graphics and Games (Seattle,
Washington, April 30 - May 02, 2007). I3D '07. ACM, New
York, NY, 167-174. DOI=
http://doi.acm.org/10.1145/1230100.1230129

JENSEN, H. W., CHRISTENSEN, N. J. 1995. Photon maps in Bidirectional
Monte Carlo Ray Tracing of Complex Objects". Computers &
Graphics 19 (2), pages 215—224.

JENSEN, H. W. 2001. Realistic Image Synthesis Using Photon Mapping. A.
K. Peters, Ltd.

KAJIYA, J. T. 1986. The rendering equation. SIGGRAPH Comput. Graph.
20, 4 (Aug. 1986), 143-150. DOI=
http://doi.acm.org/10.1145/15886.15902

LAFORTUNE, E.P. AND WILLEMS, Y.D., Bi-directional Path Tracing, Computer
Graphics Proc., Alvor (Portugal), 1993, pp. 145-153.

LARSON, G. W. AND SHAKESPEARE, R. 1998 Rendering with Radiance: the Art
and Science of Lighting Visualization. Morgan Kaufmann
Publishers Inc.

LOVISCACH, J. 2004 Emulating an Offline Renderer by 3D Graphics
Hardware, WSCG 2004, 269-276.

MUUSS, M. J. 1987. RT & REMRT: Shared Memory Parallel and Network
Distributed Ray-tracing Programs. Proceedings of 4th Computer
Graphics Workshop, Cambridge, MA, USA, October 1987.
Usenix Association, pp 86-98.

NVIDIA 2009. Nvidia OptiX. Nvidia website:
http://www.nvidia.com/object/optix.html.

PHONG, B. T. 1973 Illumination for Computer-Generated Images. Ph.D.
Thesis. UMI Order Number: AAI7402100., The University of
Utah.

PURCELL, T. J., BUCK, I., MARK, W. R., AND HANRAHAN, P. 2002. Ray tracing
on programmable graphics hardware. In Proceedings of the 29th
Annual Conference on Computer Graphics and interactive
Techniques (San Antonio, Texas, July 23 - 26, 2002).
SIGGRAPH '02. ACM, New York, NY, 703-712. DOI=
http://doi.acm.org/10.1145/566570.566640

PURCELL, T. J., DONNER, C., CAMMARANO, M., JENSEN, H. W., AND HANRAHAN,
P. 2003. Photon mapping on programmable graphics hardware. In
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
Conference on Graphics Hardware (San Diego,California, 2003).
Eurographics Association, Aire-la-Ville, Switzerland, 41-50.

ROST, R. J. 2005 Opengl(R) Shading Language (2nd Edition). Addison-
Wesley Professional.

SEGAL, M., AKELEY, K. 2001. The OpenGL Graphics System: A
Specification (Version 1.3). Silicon Graphics, Inc. Available at:
http://www.opengl.org/documentation/specs/

SHIH, M., CHIU, Y., CHEN, Y., AND CHANG, C. 2009. Real-Time Ray Tracing
with CUDA. In Proceedings of the 9th international Conference
on Algorithms and Architectures For Parallel Processing (Taipei,
Taiwan, June 08 - 11, 2009). A. Hua and S. Chang, Eds. Lecture
Notes In Computer Science, vol. 5574. Springer-Verlag, Berlin,
Heidelberg, 327-337. DOI= http://dx.doi.org/10.1007/978-3-642-
03095-6_32

SPJUT, J., KENSLER, A., KOPTA, D., AND BRUNVAND, E. 2009. TRaX: a
multicore hardware architecture for real-time ray tracing. Trans.
Comp.-Aided Des. Integ. Cir. Sys. 28, 12 (Dec. 2009), 1802-
1815. DOI= http://dx.doi.org/10.1109/TCAD.2009.2028981

VALICH, T. 2008. Intel converts ET: Quake Wars to ray tracing. TG Daily.
(June 12, 2008), Available online at
http://www.tgdaily.com/html_tmp/
content-view-37925-113.html .

VEACH, E. AND GUIBAS, L. J. 1997. Metropolis light transport. In
Proceedings of the 24th Annual Conference on Computer
Graphics and interactive Techniques International Conference on
Computer Graphics and Interactive Techniques. ACM
Press/Addison-Wesley Publishing Co., New York, NY, 65-76.
DOI= http://doi.acm.org/10.1145/258734.258775

WALD, I., BENTHIN, C. AND SLUSALLEK, P. 2002. OpenRT – A Flexible and
Scalable Rendering Engine for Interactive 3D Graphics.
Technical report, Saarland University. Available at
http://graphics.cs.uni-sb.de/Publications.

WHITTED, T. 1980. An improved illumination model for shaded display.
Commun. ACM 23, 6 (Jun. 1980), 343-349. DOI=
http://doi.acm.org/10.1145/358876.358882

WILLIAMS, L. 1978. Casting curved shadows on curved surfaces.
SIGGRAPH Comput. Graph. 12, 3 (Aug. 1978), 270-274. DOI=
http://doi.acm.org/10.1145/965139.807402

WIMMER, M., SCHERZER, D., PURGATHOFER, W. 2004. Light Space Perspective
Shadow Maps, In Rendering Techniques 2004 (Proceedings
Eurographics Symposium on Rendering), p. 143-151. June 2004.

WOOP, S., SCHMITTLER, J., AND SLUSALLEK, P. 2005. RPU: a programmable
ray processing unit for realtime ray tracing. In ACM SIGGRAPH
2005 Papers (Los Angeles, California, July 31 - August 04,
2005). M. Gross, Ed. SIGGRAPH '05. ACM, New York, NY,
434-444. DOI= http://doi.acm.org/10.1145/1186822.1073211

WRIGHT, R. S. AND LIPCHAK, B. 2004 OpenGL Superbible (3rd Edition).
Sams.

ZEMCIK, P., CHALMERS, A. G. 1995. Optimised CSG Tree Evaluation for
Space Subdivision. Computer Graphics Forum, p. 139-146,
Netherlands, 1995

WSCG 2011 Communication Papers 156

	J31-full.pdf
	ABSTRACT
	1	Introduction
	2	State of the Art
	2.1 Real-time Rendering
	3	POV-Ray Architecture
	3.1 Ray Tracing
	3.2 Ambient Scene: Level 0 Rays
	3.2 POV-Ray's Surface Model
	3.3 Secondary Rays
	3.4 POV-Ray Lights
	3.5 Higher Level Rays
	4 Experiments
	4.1 Performance
	5	Conclusions
	Acknowledgements
	References

