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ABSTRACT

Traditional ray tracing algorithms tend to provide photorealistic results but at high computing costs. Rendering times of minutes or days are 
not exceptional. On the other side, hardware accelerated OpenGL rendering can provide real-time interaction with virtual environment with 
unnoticeable  rendering  times.  This  paper  attempts  to  bring  these  two together  and  attempts  to  give  an  answer  on  the  difficulty  of 
implementing real-time photorealistic rendering. The paper presents case study on mimicking of POV-Ray photorealistic rendering with 
accelerated OpenGL pipeline. The study shows the opportunity to accelerate some photorealistic algorithms by real-time approaches while, 
on the other side, it locates the parts that are difficult to replace by traditional real-time rendering paradigms. Particularly, it is shown how 
to implement primary and shadow rays and POV-Ray-like material model using accelerated OpenGL pipeline using modern shader techno-
logy. On the other side, the difficulties of reflected and refracted rays implementation using real-time rendering approaches is discussed.
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1 Introduction

Photorealistic rendering is a very important domain in computer 
graphic  because  of  the  realism  that  is  often  expected  from 
graphics applications. Beginnings of photorealistic rendering can 
be  traced  back  to  the  '60s  to  the  invention  of  the  ray  casting 
algorithm [Appel 1968], followed later by ray tracing algorithm 
[Whitted 1980]. Ray tracing and other methods of photorealistic 
rendering,  however,  tend to  be computationally very expensive 
even for today's hardware, often forcing users to wait minutes, or 
even  days  for  high  quality  results.  On  the  other  side,  many 
applications  of  real-time computer  graphics  desiring for  higher 
realism  exist.  They  can  not  accept  computationally  expensive 
algorithms  of  photorealistic  computer  graphics.  Their  users 
require high productivity and interaction with the graphics scenes. 
Such  requirements  are  difficult  to  achieve  in  non-real  time 
applications.

Areas  desiring  real-time  photorealistic  rendering  include,  for 
instance,  CAD and architecture applications for interior  design. 
Architects often want to immediately see the esthetic value of the 
designed model. Presently, they are forced either to compromise 
productivity  by  waiting  for  the  results  of  the  photorealistic 
rendering,  or  to  compromise  visual  quality  by  throwing  away 
photorealism  and  by  using  standard  approaches  of  real-time 
computer  graphic  instead.  However,  visual  quality  is  often 
essential  while  standard  approaches  of  real-time  computer 

graphics usually tend to provide poor results on advanced scene 
lighting setups. If real-time photorealistic visualizations would be 
possible, they would provide high quality visualizations, making 
architects  and  designers  much  more  time  effective  while 
increasing  the  final  quality  of  the  designed  models.  Other 
applications include visualizations for civil engineering, scientific 
research, computer games, and visualizations in general.

Recent enhancements in programability of the graphics processor, 
particularly shaders, gives a question whether it would be possible 
to implement and accelerate some photorealistic algorithms using 
standard approaches of real-time computer graphics.  This paper 
does so by a case study of mimicking POV-Ray rendering with 
accelerated OpenGL pipeline while evaluating speed up factors of 
accelerated parts and describing difficulties with algorithms that 
are difficult to match with current OpenGL rendering paradigm.

2 State of the Art

The beginnings of  photorealistic  rendering  go back  to  the  '60s 
when  ray  casting  was  developed  [Appel  1968].  Ray  tracing 
[Whitted 1980] extends the idea of the ray casting by recursion – 
tracing  the  ray  in  the  scene  through  several  reflections.  [Arvo 
1989] presented a number of methods for ray tracing acceleration.

A number of modifications of ray tracing were developed. Path 
tracing [Kajiya 1986] uses Monte Carlo for stochastic evaluation 
of light distribution in the scene. It was extended to bidirectional 
path  tracing  [Lafortune  1993].  Photon  mapping  [Jensen  1995]
[Jensen 2001] creates scene light distribution by shooting large 
number  of  photons  from  the  light  sources  and  making  them 
bounce in the scene until they are absorbed somewhere, forming a 
photon map. To render a such scene, path tracing can be used, 
looking for contributions of closest photons at each surface hit. 

Permission to make digital or hard copies of all or part of this 
work for personal or classroom use is granted without fee 
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commercial advantage and that copies bear this notice and the 
full citation on the first page. To copy otherwise, or republish, 
to post on servers or to redistribute to lists, requires prior 
specific permission and/or a fee.
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Another  path  tracing  optimization  is  Metropolis  light  transport 
[Veach 1997].

With the evolvement of ray tracing algorithms, various ray tracing 
software emerged, such as POV-Ray in 1989, Yafaray (2002), and 
Radiance ray-tracing software system [Larson 1998].

A  number  of  real-time  ray  tracing  attempts  were  made. 
REMRT/RT  tools  (based  around  BRL-CAD  ray-tracer)  are 
parallel network distributed ray-tracing system developed in 1986 
and  credited  at  Siggraph  2005  as  a  first  real-time  ray  tracer 
capable  of  rendering several  frames  per  second [Muuss 1987]. 
OpenRT (www.openrt.de)  [Wald 2002] is  a  standalone closed-
source  real-time  ray  tracer.  In  2006,  Intel  demonstrated  the 
performance of its new dual-core processors on POV-Ray 3.7 beta 
that  is  capable  of  SMP (Symmetric  Multiprocessing).  In  2008, 
Intel demonstrated a special version of the computer game Enemy 
Territory: Quake Wars using ray tracing as rendering method. The 
demonstration used a 16-core system running at 2.93 GHz and 
providing 14-29  frames per  second (FPS)  on basic  HD (720p) 
resolution [Valich 2008].

Some  attempts  were  made  for  special  ray  tracing  acceleration 
hardware.  One of them was "Rendering on demand" [Chalmers 
2006]  using  specialized  hardware  based  on  DSP and  FPGA – 
(Field  programmable  gate  array).  The  Saarland  University 
developed  another  FPGA  based  system  called  Ray  Processing 
Unit capable of accelerating ray tracing algorithms in hardware 
[Woop 2005]. The University of Utah developed a highly parallel 
multicore solution for real-time ray tracing [Spjut 2009].

Other approaches tried to use the ever-growing power of GPUs 
for ray tracing. [Purcell 2002] was the first one that presented ray 
tracing running on GPU. Photon mapping followed [Purcell 2003] 
with more complex ray tracing algorithms [Horn 2007][Gunther 
2007][Shih 2009][Garanzha 2010]. Finally, Nvidia came with its 
own  GPU-accelerated  ray  tracing  API  called  OptiX  [Nvidia 
2009].

2.1   Real-time Rendering

Although ray tracing on GPU seems to be a promising approach, 
[Garanzha 2010] states that its GPU approach is only about 4x 
quicker than the CPU friendly implementation running on Core 2 

Quad.  Ray  tracing  algorithms  as  those  mentioned  here,  are 
currently capable of processing about 100Mrays/second on scenes 
with 100K triangles (roughly said). It is still a level of magnitude 
behind the processing power of the traditional rendering pipeline 
as will be shown in the paper. Thus, number of attempts, such as 
[Loviscach 2004], were made to approach photorealistic rendering 
with the traditional OpenGL rendering pipeline.

Real  time  graphics  used  to  focus  mostly  on  performance  and 
lacked  the  support  for  advanced  lighting  effects.  Applications 
were forced to use precomputed lighting or a fixed lighting model 
[Wright  2004]  that  is  too  limiting  for  many  modern  graphics 
applications (see figures  2,  3). Invention of shaders [Rost 2005] 
for the OpenGL pipeline brought new possibilities for realism and 
lighting effects of real time rendering (see figure  4). Moreover, 
the shader programming capabilities grow with each new graphics 
card generation, giving more and more possibilities to map some 
photorealism algorithms to the real time rendering paradigms.

This paper is going to investigate the topic and find photorealism 
algorithms  that  can  be  accelerated  and  identify  those  that  are 
difficult to map to the current OpenGL based real time rendering 
architectures. The photorealism will be studied on POV-Ray as it 
is a popular, recognized, and publicly available photorealistic ray 
tracer. Moreover, POV-Ray's source code is publicly available to 
be studied, modified, etc. Finally, the investigation will be done as 
a case study on mimicking POV-Ray with OpenGL using shader 
technology  as  this  will  easily  show  difficult  algorithms  to 
accelerate  as  well  as  performance  gains  of  successfully 
implemented parts.

3 POV-Ray Architecture

POV-Ray will be divided into three main parts for the purpose of 
this paper:

• ray tracing rendering

• scene description and modelling library

• material modelling algorithms

Figure 1: PRAY ray tracing tool rendering of fractally generated 
scene (4096 sphere objects in total) [Zemcik 1995]

Figure 2: Computer game Counter Strike (release year: 2000)
Note static shadows of the buildings and
shadows absence under moving people
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Only core functionality of these will be investigated, omitting for 
example, radiosity rendering and other various extensions.

POV-Ray ray tracing rendering is delivering photorealistic results 
on one side while  requiring much computing resources on the 
other side. Rendering times of hours or days are not exceptional. 
Mimicking  ray  tracing  in  the  OpenGL rendering  pipeline  is  a 
challenging task as they are using an opposite approach: POV-
Ray is tracing rays from the camera while OpenGL is projecting 
the scene geometry to the camera. This small  difference brings 
various challenges to various light effects that will be discussed 
through the paper.

The  scene  description  language  of  POV-Ray is  very  robust.  It 
starts from triangle meshes and atmospheric effects and finishes 
with splines, blobs, run-time evaluated functions, and animations. 
In this paper, we will focus just on triangle meshes because that is 
the natural representation to OpenGL and all other representations 
can be tessellated – producing a triangle representation.

Modelling  of  materials  is  more  advanced  in  POV-Ray than  in 
standard OpenGL. It includes even multiple layers of material and 
procedurally generated material surfaces. Many of these advanced 
material approaches should be implementable in OpenGL shaders. 
This paper will not go to the excessive material functionalities of 
POV-Ray, rather mimicking  of core material functionality will be 
discussed in section 3.2.

3.1   Ray Tracing

POV-Ray is a ray tracer. It casts a ray or a number of rays through 
each pixel of the image, rendered by camera. These rays are called 
primary rays. The ray travels through the scene until it hits a scene 
object,  a  light,  or  escapes the scene.  If  some object  is  hit,  the 
object's material is processed and computed color is assigned to 
the ray. If it is primary ray, the ray's color is immediately assigned 
to  the  rays  image  pixel.  However,  depending  on  the  material 
properties  and  the  light  setup,  material  processing  may  cause 
additional  rays  to  be  cast  from the  point  of  the  object  hit  to 
various  directions.  Such  rays  are  called  secondary  rays.  When 
these rays hit  other surfaces in the scene,  these secondary rays 
may spawn recursively additional secondary rays. If the light is 
hit, it assigns the ray the light's color. If the ray leaves the scene, it 
is usually assigned the background's or sky's color.

POV-Ray assigns the level's number to the rays cast. The primary 
rays cast from the camera are level 0 rays. When a surface is hit 
by a ray of level n and it emits a new ray or several rays, they are 
said to be of level n+1. Tracking of the ray level avoids infinite 
recursions in some scenes and limits the rendering time by giving 
a maximum ray level limit. POV-Ray sets the limit to 5 by default 
while the user may increase it as needed, for example, on scenes 
with many mirrors.

3.2   Ambient Scene: Level 0 Rays

The  idea  of  mimicking  POV-Ray  with  the  standard  OpenGL 
pipeline leads immediately to the crucial question whether POV-
Ray's ray casting can be replaced by the rendering pipeline. The 
approach  of  OpenGL is  to  project  the  scene's  geometry  to  the 
camera's rendering plane and to change the pixel's colors as the 
geometry is rasterized and fragments are processed. POV-Ray's 
approach is the opposite. The rays are cast through the rendering 
plane  and  the  color  of  the  pixels  are  determined  by  the  scene 
geometries hit by the rays. If only direct rays (e.g. level 0) are 
considered,  both  approaches  should  be  interchangeable.  The 
experiment of figures 5 and 6 proves the idea. Both images are of 
the same quality while POV-Ray's image took 4 seconds to render 
and  the  OpenGL's  one  2.2  milliseconds  (i7-920@2.66GHz, 
GeForce GTX 260).  An acceleration factor  of 1800 is the first 
achievement of this paper.

However,  limiting  rays  to  level  0  only  prevents  the  scene 
geometry to be illuminated by light sources and only the ambient 
component  of  the  light  model  affects  visual  appearance.  To 
include  light  sources,  rays  of  level  1  need  to  be  introduced, 
providing the secondary rays cast from the intersection point to 
the light sources.

3.2   POV-Ray's Surface Model

To accelerate POV-Ray's level 1 rays in OpenGL, it is necessary 
to properly model POV-Ray's interaction of a ray with a surface. 
If the ray hits the object's surface any combination of four things 
might happen:

Figure 3: Lighting artifacts on a scene using standard OpenGL 
Gouraud shading

Figure 4: Per-pixel lighting in a scene 
rendered using shader technology

WSCG 2011 Communication Papers 151



 absorption  –  the  light  ray  or  part  of  its  intensity  is 
absorbed, lowering its intensity and possibly altering its 
hue by absorption of some wavelengths only

 reflection  –  the  light  ray  is  reflected  in  one  or  more 
directions, secondary rays are cast

 refraction – transparent and translucent materials  may 
cause a portion of the light ray to refract into the object

 fluorescence and emission – the surfaces may emit the 
light  of  different  wavelengths,  possibly  altering  the 
spectrum of the ray

POV-Ray models the surface absorption like OpenGL. It uses the 
RGB light color model. If the surface if purely blue, it absorbs all 
red and green component of incoming light rays. If it is 50% grey, 
half  of  the  light  ray's  intensity  is  absorbed.  Various  reflection 
types  are  modelled  by  ambient,  diffuse,  specular,  phong,  and 
reflection  material  components.   Refraction is  modelled by the 
component  of  the  same  name,  by  the  densities  of  refraction 
environments, and the amount of transparency of a given object. 
Fluorescence and emission effects are simulated by the ambient 
component or material components set in a way that the amount 
of outgoing light is bigger than the amount of incoming light. This 
may happen, for example, when one of the material components is 
bigger than 1.0.

However, modelling POV-Ray's material properties with OpenGL 
is not an easy task because the surface materials of POV-Ray are 
very  robust  and  include  material  libraries  and  procedural 
functions. Because covering the material libraries and procedural 
functions  would  be  time  expensive  work  and  would  provide 
enough material for a paper dedicated just to this topic, this paper 
will be limited just to the core material modelling capabilities of 
POV-Ray.

POV-Ray  calls  the  set  of  material  surface  properties  "texture" 
(note the name collision with OpenGL's "texture"). The texture is 
composed of pigment, finish, and normal. The pigment can be a 
color,  image  map  (e.g.  2D  texture),  or  color  map  (procedural 
texture). Colors and image maps are the functionalities that have 
equivalents in OpenGL. Color maps are more complicated. They 
map  floating  point  values  in  a  range  from 0.0  to  1.0  to  color 
values  specified  in  the  map.  The  floating  point  values  can  be 
generated  by  various  mapping  functions  and  be  modified  by 
functions  like  turbulence  and  frequency.  These  procedural 

functions can be probably implemented using shaders,  however 
they are out of scope of this paper.

Finish is the next item of POV-Ray's surface texture. Knowing the 
pigment,  e.g.  surface color at  a given point – this may include 
texture  mapping  and  filtering  –  finish  gives  the  amount  of 
ambient,  diffuse,  specular,  phong,  reflection,  and  refraction 
component. All these values are floats, usually between 0.0 and 
1.0 to specify range from absence (value 0.0) to full intensity (1.0) 
of a given material component. Negative values and values over 
1.0 can be used as well  to create  special or  unrealistic effects. 
These intensities just multiply their value with the pigment color, 
resulting in the color of a particular component. Mimicking of all 
POV-Ray's finish material functionality in accelerated OpenGL is 
described summarized in the table 1.

The  last  POV-Ray's  material  surface  property  is  normal.  It  is 
designed for surface normal manipulation. It can be specified by a 
bump map or a procedural approach. The procedural generators 
are  out  of  the  scope  of  this  paper,  so  only  bump  maps  are 
considered. The bump maps have mandatory support in OpenGL 
since version 1.3 [Segal 2001], thus they can be implemented.

3.3   Secondary Rays

After  the  investigation  of  primary  rays  (level  0)  and  color 
processing on POV-Ray's  surface textures  and seeing that  it  is 
possible to implement them in OpenGL, it is possible to come to 
the next step: POV-Ray's level 1 rays. When a level 0 ray cast 
from the camera hits a surface of an object, several secondary rays 
of level 1 may be cast. Secondary rays called shadow rays are sent 
to each light source to see whether anything is in the way and 
obscures  the  light  source.  If  there  is  nothing  in  the  way,  the 
intersection point is illuminated by the particular light source and 
the color of the light source is assigned to the ray. If the light is 
obscured  by  an  object,  the  black  color  is  assigned  to  the  ray 
instead.

If  the  surface  has  a  non-zero  reflection  component,  another 
secondary ray is cast in the direction of the reflection vector. If the 
surface is not completely opague, e.g. it is transparent or semi-
transparent, another ray is cast into the object while a refraction 
effect may apply. The secondary rays are processed recursively in 
the same way as the primary rays, making secondary reflections 
and refractions, tertiary reflections,  etc.  At the end of each ray 

Figure 5: POV-Ray rendering using only level 0 rays Figure 6: OpenGL rendering using ambient light
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level n evaluation, the color of all the rays of the level n+1 are 
taken and included in the color computation of the ray of the level 
n. Finally, when level 0 ray evaluation is completed, its color is 
assigned to the pixel of the image.

Visual results are shown in the figure 7 for POV-Ray while using 
level 0 and 1 rays only, and figure 8 for the OpenGL accelerated 
implementation.

3.4   POV-Ray Lights

Casting of secondary rays, particularly shadow rays cast towards 
light sources, is influenced by the light type. As can be expected, 
POV-Ray  uses  a  more  advanced  lighting  model  than  built-in 
OpenGL  lights.  Anyway,  the  limited  built-in  light  model  was 
made obsolete in OpenGL 3.0 and programmers are encouraged to 
create their own lighting effects using shaders.

POV-Ray uses several types of lights:  point light, parallel  light 
(like OpenGL's directional light), spot light, cylindrical light, and 
area light. The first three have equivalents in OpenGL, the fourth 
should be possible to implement in shaders and the last one – area 
light – can be implemented as an array of point lights. That is 
actually the way that area light is implemented in POV-Ray. All 
the  details  of  POV-Ray's  lights  and  their  implementability  by 
OpenGL  are  described  in  the  table  2.  Implementability  was 
verified for point light, directional light and spot light. Cylindrical 
light is rarely used, and area light is just the array of point lights in 
POV-Ray. To prove implementability  of  the lights,  point  light, 

directional  light  and spot  light  were  implemented in  OpenGL's 
shaders. The results are shown in the figures. Because of the space 
limitations, we show just the spot light scene as the spot light is 
the most complex type  when considering  mentioned light types 
and  their  POV-Ray  implementation.  A  summary  of  lights 
implementability is shown in the table 2.

3.5   Higher Level Rays

When we attempted to analyze implementability of level 2 rays in 
OpenGL, we found it very difficult, particularly when considering 
the general case. Following the goals set in the beginning of this 
paper, this section successfully identifies one particular difficulty: 
to mimics POV-Ray rays starting from level 2. Additionally, the 
section  is  going  to  discuss  available  options  that  should  be 
addressed in the future.

Rays of higher level starting from level 2 bring very cool effects, 
like mirroring, reflections and refractions. One POV-Ray example 
is  shown  in  the  figure  9.  However,  these  rays  are  not 
straightforward  to  implement  for  the  general  case.  Some  GPU 
approaches  follow that  can  be  used  to  reach  similar  effects  as 
those created by level 2 rays:

– scene mirroring – there are various approaches to implement 
mirrors  in  OpenGL. Usually,  they just  duplicate  the scene 
behind the mirroring surface while using stencil test to limit 
rendering just to mirroring surface.

POV-Ray's Finish 
component

Required rays to be cast Finish component description Implementability in OpenGL

Ambient no ray casting required pigment multiplied by ambient component 
and global ambient intensity

yes, using ambient color and global 
ambient light

Diffuse

Phong

Specular

secondary ray is cast to 
each light source to test its 
visibility

for each visible light source compute sum of 
diffuse equations (Lambertian reflectance 
[Phong 1973]) of the pigment multiplied by 
diffuse component, and color of the ray cast 
to the light source. Brilliance parameter may 
modify distribution of the reflection.

for each visible light source compute phong 
highlight [Phong 1973] of pigment, phong 
intensity, light source ray color. Pigment 
color affects the ray if metallic is specified.

for each visible light source compute 
specular highlight [Blinn 1977][Phong 
1973] of pigment, specular intensity and 
light source ray color. Pigment color affects 
the ray if metallic is specified.

yes, but light source visibility requires 
accelerated shadow algorithms to be 
used. For example, shadow maps or 
shadow volumes techniques can be used.

Per-pixel lighting requires color 
components to be computed using 
shaders because OpenGL's per vertex 
lighting provides often unacceptable 
results (see figure 3).

Reflection one secondary ray cast in 
direction of reflection 
vector

color of reflection ray is multiplied with 
reflection intensity

Transparency one secondary ray cast into 
the object

the color of the ray is multiplied by 
transparent intensity. The direction of the 
ray may be affected by refraction

OpenGL provides direct support for 
transparency, but robust implementation 
of reflection and refraction is not trivial. 
Possible solutions are discussed in the 
paper.

Table 1: Relation between POV-Ray materials and OpenGL materials
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– render to texture – the mirrored or reflected geometry can be 
pre-rendered  to  the  texture  that  is  applied  to  the  surface 
afterwards.

– environment mapping – similar to render to texture approach, 
but  it  usually  renders  all  surrounding  environment  (360 
degrees)  to,  for  example,  cube  map.  The  pre-rendered 
environment  is  then  mapped  to  the  geometry  using,  for 
instance,  texgen  OpenGL functionality  or  shaders.  Effects 
like mirrors or surface reflections are easily implementable 
using environement mapping.

– GPU raytracing – there were number of attempts to perform 
ray  tracing  on GPU,  such  as  [Garanzha  2010][Shih 2009]
[Horn 2007][Gunther 2007].

The first three OpenGL-based options seem appropriate to create 
nice  reflections  and  refraction  effects  on  planar  surfaces. 
However, they are breaking projection coherency that was present 
with  primary  rays  and  shadow  level  1  rays.  Breaking  of  this 
coherency may result in a huge number of projections and pre-
rendering  to  texture.  Theoretically,  each  surface  that  is  not 
coplanar with any other surfaces may require its own projection. 
Such  solution  may  turn  to  be  very  performance  expensive. 
Moreover, curved surfaces, such as NURBS, exhibit even more 
problems.  They  can  not  be  processed  directly  as  they  are  not 
planar surfaces. They can be tesselated, but to reach high quality 
visual results, too many not coplanar surfaces may be produced, 
possibly harming performance too much.

Another approach can be to start GPU ray tracing at level 2 rays. 
Although GPU ray tracing still does not reach the performance of 

Figure 7: POV-Ray rendered image using rays level 0 and 1 Figure 8: OpenGL rendered image using per-pixel lighting

POV-Ray's light type Description Implementability in OpenGL

Point light The light placed in the scene shining equally in 
all directions

Similar to OpenGL's point light except that OpenGL's light does 
not cast shadows by default. One of shadow techniques need to 
be utilized. Lighting should be implemented per-pixel, for 
example, in shaders.

Parallel light The light whose rays come in parallel in certain 
direction

Similar to OpenGL's directional light with the exception of 
shadows. One of shadow techniques need to be used.

Spot light Like the point light but the light is restricted to 
a cone in some direction. The light intensity in 
the cone can be modulated. POV-Ray uses 
radius, falloff, and tightness parameters.

Similar to OpenGL's spot light except shadows and light 
intensity modulation. Shadows need to be implemented. 
Intensity modulation inside the cone is different from the 
OpenGL's built-in spotlight. However, shaders are usually used 
to implement per-pixel lighting and POV-Ray's light 
modulation can be computed there as well.

Cylindrical light Like spot light but it is constrained by a 
cylinder. It is useful for effects light laser 
beams. Technically, it is not based on parallel 
light as could be expected, but on point light 
whose rays are constrained by the cylinder.

Can be implemented in OpenGL shaders. Shadow technique 
needs to be used.

Area light Finite 1D or 2D rectangular area providing flat 
panel light. Technically, it is implemented 
using array of point lights. As a side effect, the 
light provides soft shadows.

Can be implemented as an array of point lights. Alternatively, 
some area light model [Au 2007] implemented using shaders 
can be used for instance.

Table 2: POV-Ray's lights and their implementability by OpenGL
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the  standard  OpenGL  rendering  paradigm,  it  may  outperform 
OpenGL approaches for level 2 rays. Further investigation would 
be necessary to clarify the best approach that may even lead to a 
hybrid solutions – rendering big planar surfaces in OpenGL and 
ray tracing the small or curved surfaces.

4   Experiments

All the algorithms developed in this paper were tested as a part of 
our Lexolights open source project available at:                     
http://lexolight.sourceforge.net.  The  website  includes  win32 
binaries  covering  the  functionalities  mentioned  in  this  paper. 
Namely, all POV-Ray core material functionality is implemented, 
e.g.  all  major  elements  of  POV-Ray's  texture  finish,  with 
exception of reflection and refraction elements that would require 
support of level 2 rays. Next covered area is lights that include 
point,  directional,  and  spot  light  while  we  used  shadow maps 
[Williams 1978] and LiSPSM [Wimmer 2004] for shadow rays 
visibility tests. Lexolight is implemented using OpenSceneGraph 
(http://www.openscenegraph.org)  –  high  level  rendering  library 
built  on the top of  OpenGL.  As  some of  our  algorithms were 
better suited to be included directly in OpenSceneGraph, such as 
POV-Ray scene converter and exporter, we submitted them to be 
included in the upcoming release for the profit of the open source 
community.

4.1   Performance

To evaluate the performance gains,  several  measurements were 
made for POV-Ray rendered scenes. Then, the same scene was 
rendered  by  hardware  accelerated  OpenGL.  The  results  are 
summarized  in  the  table  3.  We  used  the  scene  composed  of 
approximately  83000  triangles  visualized  on  high  and  low 
performance CPUs and a variety of graphics cards ranging from 
hi-end,  through mobility versions, to old low-end GPUs. POV-
Ray  rendering  took  from  few  seconds  to  about  a  minute. 
Rendering of the same scene for level 0 and level 1 rays using 
POV-Ray's accelerated OpenGL approach took less than 150ms 
even  on  very  old  mobile  fill-rate  limited  graphics  card.  For 
nowadays hi-end graphics cards, the speed up factor stayed far 
above 1000. We consider such speed up an interesting result. It 
shows a  potential  to  accelerate  level  0  and level  1  rays of  ray 
tracers. Another option can be to further investigate acceleration 
of level 2 rays or to consider whether a hybrid solution would be 
the best option for close-to-photorealistic real-time rendering.

5 Conclusions

This paper investigated the realization of photorealistic rendering 
in  real-time,  accelerated  by  the  graphics  hardware.  The 
investigation was made on a case study by mimicking of POV-
Ray with  OpenGL's  rendering  paradigm accompanied  with  the 
latest programmable shader technologies.

The presented study proved that the core POV-Ray material and 
lighting  functiontionality  can  be  implemented  in  accelerated 
OpenGL. It turned out that it is very easy to accelerate primary 
rays (e.g. level 0 rays) cast by POV-Ray when rendering the scene 
and a  speed up factor  of  400 was measured even on very old 
hardware.  Secondary  rays  of  level  1  were  accelerated  as  well 
while  together  with level 0  rays,  the speed up factor  was over 
3000 for modern hardware. Rays of level 2 and higher turned out 
to be difficult to be implemented in accelerated OpenGL. They 
may  require  additional  research  efforts  and  using  of  advanced 
rendering techniques as was discussed in section 3.5.

Future research should extend acceleration of rays of level 0 and 1 
to higher level rays. Although it may be difficult to do so, it would 
enable  additional  visual  effects  and  may even  lead to  ideas of 
accelerating global illuminations methods, such as radiosity.

Figure 9: POV-Ray rendered image using rays level 0,1, and 2

Level 0 Rays Acceleration Level 1 Rays Acceleration Level 2 Rays

POV-Ray
rendering 

(level 0 rays)

OpenGL
ambient 

rendering

Speed-up 
factor

POV-Ray 
rendering

(level 1 rays)

OpenGL
per-pixel 
ligting

Speed-up 
factor

POV-Ray 
rendering

(level 2 rays)

i7-920 @2.66GHz,
GeForce GTX 260

4s 2.2ms 1800 14s 4.4ms 3200 21s

Core 2 Duo @ 2.00GHz,
Radeon HD 3670 Mobility

8s 7.4ms 1100 21s 18ms 1200 33s

Athlon XP 2000+,
Radeon HD 2600 XT

12s 11.4ms 1100 37s 20.5ms 1800 58s

Core 1 Duo @ 1.83GHz, 
Radeon X1300M

13s 33ms 400 36s 133ms 270 55s

Table 3: Performance comparison
(screen size: 1440x1050, one omnidirectional light, 83000 triangles)
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