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ABSTRACT

Many algorithms require vector algebra operations such as the dot product, vector norms or component-wise manipulations.
Especially for large-scale vectors, the efficiency of algorithms depends on an efficient implementation of those calculations.
The calculation of vector operations benefits from the continually increasing chip level parallelism on graphics hardware. Very
efficient basic linear algebra libraries like CUBLAS make use of the parallelism provided by CUDA-enabled GPUs. However,
existing libraries are often not intuitively to use and programmers may shyaway from working with cumbersome and error-
prone interfaces. In this paper we introduce an approach to simplify the usage of parallel graphics hardware for vector calculus.
Our approach is based on expression templates that make it possible to obtain the performance of a hand-coded implementation
while providing an intuitive and math-like syntax. We use this technique to automatically generate CUDA kernels for various
vector calculations. In several performance tests our implementation shows a superior performance compared to CPU-based
libraries and comparable results to a GPU-based library.
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1. INTRODUCTION

In the last years general purpose computation on graph-
ics processing units (GPGPU) has become more and
more popular [Deg10, TNA+10, VKS10]. The mod-
ern GPU is not only a graphic engine but also a flex-
ible programmable processor that can execute thou-
sands of threads in parallel[TNA+10]. In future par-
allel computing will most probably get even more im-
portant. Microprocessor development will focus on
adding cores rather then increasing single thread per-
formance [OHL+08]. Since todays GPUs outclass con-
sumer CPUs in terms of FLOPS, which is a common
measure for computing capabilities, it is obvious that
one should use this to speed up numerical calculations.
Highly parallel linear algebra libraries like CUBLAS
make use of computing power on graphics hardware
but have a lack in usability. In this paper we take on
this problem by introducing a technique allowing us to
use a concise and math-like syntax, while utilizing the
computing power of the GPU. We achieve our goal by
combining CUDA and the expression templates tech-
nique.

Permission to make digital or hard copies of all or part
of this work for personal or classroom use is granted
without fee provided that copies are not made or dis-
tributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first
page. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CUDA [NVI10b] is a general purpose parallel com-
puting architecture developed by NVIDIA. It allows
one to run code, written in CUDA C, which is de-
rived from C and has some extensions but also restric-
tions, on CUDA-enabled GPUs. In general, this is done
by writing a so-called kernel, a function that is exe-
cuted N times in N different threads. The threads are
organized in warps and blocks. Each block is indi-
vidually scheduled on the GPU processor cores. This
means, blocks can run on any processor core in any or-
der. Thus, a CUDA kernel scales automatically with
the number of cores. A warp is a group of 32 parallel
threads within a block. Each warp is scheduled individ-
ually and executes one instruction per cycle. Hence, to
reach maximum efficiency the threads’ execution path
within a warp should not diverge, because otherwise
each path will be executed separately in serial, multi-
plying the execution time by the number of execution
paths. [NVI10b]

In our approach we use the expression template tech-
nique, which was concurrently invented by Todd Veld-
huizen and David Vandevoorde in 1995 [VJ03, Vel95,
IR09], to generate CUDA kernels. In general expres-
sion templates make passing expressions as function ar-
guments in C++ possible. The expression gets inlined
into the function body, preventing the overhead of call-
backs. Therefore a templated class is defined, which
represents an arbitrary expression. At compile time the
expression gets parsed and stored as the template pa-
rameter [Vel95].

We use this technique to generate CUDA kernels,
for arbitrary mathematical expressions, which then can
concurrently be evaluated on the GPU.
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2. RELATED WORK
Since an efficient implementation of vector algebra op-
erations is crucial to many algorithms, there are many
libraries facing this problem. On the one hand, tem-
plate expression math libraries like uBLAS or blitz++1

provide a math-like syntax but do not use the new com-
puting capabilities on GPUs [Vel00, WK+10]. But
since scientific computing through graphics hardware
can be considerably faster then C-code for the CPU
[CAN08], we attempt to make use of those capabili-
ties in our approach. On the other hand libraries like
CUBLAS [NVI10a] or thrust2 are based on CUDA.
While CUBLAS implements basic linear algebra func-
tionality, thrust is a generic C++ template library for
CUDA with a high-level STL-like interface. However,
neither of the two provides a convenient mathematical
syntax as our implementation does. Additionally, with
CUBLAS, only a fixed set of functions is available,
which leads to unnecessary calculations as well as to
the use of temporary objects in the limited GPU mem-
ory [NVI10a]. The thrust library supports user-defined
operations but requires manual specification of func-
tor classes, which means plenty lines of code for the
SAXPY operationY = c∗X +Y, with c as a constant.
A simpler solution again requires the allocation of tem-
porary objects. Unlike existing CUDA libraries, our
implementation provides a math-like syntax and avoids
temporary objects for most operators.

3. IMPLEMENTATION
Like already said we want to make the utilization of
CUDA based vector-calculus easier via the expression
template technique. This technique allows to pass ex-
pressions as function arguments. Those expressions get
inlined, thus the code is nearly as fast as handwritten C.
It can also be used to overload class operators and have
the compiler generate the code to compute the result
in a single pass without temporary objects. To achieve
this, no subset of an arbitrary expression may be eval-
uated, until the entire expression is known. At compile
time, the complier determines the expression type and
stores it as a template parameter. Hence, all operations
and operands are determined before the evaluation is
evaluated and according to this the expression can be
computed in one pass [VJ03, Vel95].

The CUDA compiler (nvcc) does only support a sub-
set of C++ that includes function templates but no gen-
eral template programming [NVI10b]. Thus, expres-
sion templates can not be used directly in CUDA code
Instead, we use the expression templates to generate
a CUDA kernel for each expression type at runtime.
Those kernels are automatically executed once the exe-

1 http://www.oonumerics.org/blitz/
2 http://code.google.com/p/thrust

cution reaches the code line, where the expression oc-
curs.

We achieve our goal by introducing several
new classes. Initially we introduce the classi-
cal classes of the expression template technique:
A base classExpression and a vector class
cudaVec. Expression represents any kind of
an expression (without assignment), likev + w,
component_wise_sin(v) or simplyv. Sincev is also an
expressioncudaVec is derived fromExpression.
cudaVec also inheritsthrust::device_vector
from the thrust library to allow for interoper-
ability with thrust’s generic interface, e.g. for
reductions. Additionally, we develop the class
AssignmentExpression with represents an
assignment of an expression to acudaVec and over-
load the assignment operator in thecudaVec class
to instantiate an AssignmentExpression.
For example v = w+u is represented by an
AssignmentExpression. A subset of the
class structure is shown in Figure 1.

For each element-wise operation, like multiplica-
tion of a vector with a scalar or the addition of two
vectors, an operator expression class is derived from
Expression. For example, the multiplication of
a vector with a scalar would be implemented in a
VectorMultipliesScalarExpression class.

In order to allow for a concise and math-like syntax,
we overload the arithmetic operators (like +, -, *, /) for
expressions such that they invoke the constructor of the
appropriate operator expression. An Example of an op-
erator expression class and the associated creator func-
tion is shown in Listing 1. In the firest part the class
SumExpression is defined which represents a plus
operation with two arbitrary expressions as operands.
The class has two template parameters, each of which
stores an operator expression type. The template pa-
rameters’ types depend on the expression types the con-
structor is called with. In the second part one can see
the associated creator function. It is a templated func-
tion, in this case the plus operator, thus any expression
can be an argument. The creator function invokes the
constructor of its associated class.

In this way, we can directly write vector alge-
bra in application code and the necessary tree of
expression classes is automatically instantiated. A
simple example is given in Listing 2. Since the
plus operator is redefined as an creator function,
it returns an instance of theSumExpression.
Both template parameters are typed ascudaVec,
becausea’s andb’s type iscudaVec. Additionally
the overloaded assignment operator in the cudaVec
class instantiates anAssignmentExpression
with SumExpression<cudaVec,cudaVec> as
template Parameter. The resulting structure of the
classes is shown in Figure 2.
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AssignmentExpression Expression thrust::device_vector

cudaVecoperator expression classes

Figure 1: The class structure.

t empla te <typename E1 , typename E2>
c l a s s SumExpress ion : p u b l i c Express ion <SumExpression <E1 , E2> > {

p u b l i c :
c o n s t E1 &_ l ;
c o n s t E2 &_r ;
SumExpress ion ( c o n s t Express ion <E1> &l , c o n s t Express ion <E2> &r )

: _ l ( l ) , _ r ( r ) {}
/ / . . .
}

template < c l a s s E1 , c l a s s E2>
SumExpression <E1 , E2>i n l i n e operator +( c o n s t Express ion <E1> &l ,

c o n s t Express ion <E2> &r ) {
re turn SumExpression <E1 , E2> ( l , r ) ;

}

Listing 1: Example for an operator expression class and the associated creator function.

cudaVec a ( 1 0 0 ) , b ( 1 0 0 ) , c ( 1 0 0 ) ;
/ / i n i t i a l i z e a , b

c = a + b ;

Listing 2: Sample code which instantiates the classes
shown in Figure 2.

Because we want to evaluate the expressions on the
GPU, each templatedAssignmentExpression
has to generate a CUDA kernel which per-
forms the calculation. As Listing 3 shows,
AssignmentExpression contains a static
member variable to which the appropriate
CUDA kernel is assigned at program startup.
This is achieved by the static initializer
AssignmentExpression::init() which is
called for each templatedAssignmentExpression
and which takes care of generating the kernel code,
compiling it with nvcc and loading it.

Each kernel is built according to a pattern (Listing 4).
Only the parameter list and the evaluation line depend
on the type of theAssignmentExpression. To
create these two strings, we traverse the object hier-
archy for the corresponding expression from the root.
Each operator expression class writes its CUDA opera-
tor or CUDA function into the evaluation line and calls
its parameters to do the same. Hereby the tree is grad-
ually traversed. If a parameter is a terminal symbol (a
cudaVec or a constant), the parameter list is extended
by a new parameter and the name of the parameter is
put into the evaluation line as an operand.

The example in Listing 2 generates the kernel shown
in Listing 5. In this case the tree has a root typed
as SumExpression with two children of the type
cudaVec. As the tree is hierarchically traversed, the
SumExpression writes its cuda operator (a+) into
the evaluation line. Since both children are terminal
symbols, each extends the parameter list and puts the
parameter’s name into the evaluation line.

WSCG 2011 Communication Papers 187



AssignmentExpression<cudaVec, sumExpression<cudaVec, cudaVec> >

cudaVec
sumExpression<cudaVec, cudaVec>

cudaVec cudaVec

Figure 2: Hierarchy of objects that is created when Listing 1is compiled.

t empla te < c l a s s E>
c l a s s Ass ignmen tExpress ion {

/ / . . .
s t a t i c i n t ke r ne l I D ;
s t a t i c i n t i n i t ( ) ;

/ / . . .
}
template < c l a s s E>
i n t Ass ignmentExpress ion <E > : : ke r ne l I D =

Ass ignmentExpress ion <E > : : i n i t ( ) ;
template < c l a s s E>
i n t Ass ignmentExpress ion <E > : : i n i t ( ) {

/ / genera te , comp i le and load k e r n e l
}

Listing 3: Implementation of theAssignmentExpression class.

ex t ern "C" __g loba l__ void k e r n e l (f l o a t ∗ a ,
/∗ p a r a m e t e r l i s t∗ / , unsigned i n t s i z e ) {
i dx = blockDim . x ∗ b lock I dx . x + t h r e a d I d x . x ;
i f ( i dx < s i z e ) {

a [ i dx ] = /∗ e v a l u a t i o n l i n e∗ / ;
}

}

Listing 4: The Kernel prototype.

ex t ern "C" __g loba l__ void k e r n e l (f l o a t ∗ a , f l o a t ∗ b ,
f l o a t ∗ c , unsigned i n t s i z e ) {
i dx = blockDim . x ∗ b lock I dx . x + t h r e a d I d x . x ;
i f ( i dx < s i z e ) {

a [ i dx ] = b [ i dx ] + c [ i dx ] ;
}

}

Listing 5: Kernel generated by compiling Listing 2.
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The kernel code is compiled into an assembler-like
ptx file by the CUDA compiler and then loaded with
the CUDA Driver API.

Now, if an AssignmentExpression has to be
evaluated, the expression template generated tree is tra-
versed and each terminal symbol passes its value (in the
case ofcudaVec a pointer) to the kernel via the CUDA
driver API. Thereafter the kernel is executed.

4. EXPERIMENTAL RESULTS
We now examine the experimental performance of our
implementation. Zotos and Stephanides have shown
that the performance of major numerical CPU-based
libraries varies only by a factor of 4 [ZS]. We there-
fore exemplarily compare our implementation to the
expression template library uBLAS, as well as to an
implementation based on the thrust GPU programming
framework. Our tests were performed on an Intel Core
i5 750 CPU, which has four cores running at 2.67 GHz
on a 64 bit Linux system with four GB RAM and an
NVIDIA GeForce GTS 250 GPU with 1 GB on-board
memory.

The GPU time is only reported as execution time
and neither includes the time of transferring input data
across the PCI express bus to the device nor the time
necessary to compile the CUDA kernels. Normally, the
data is transferred from the host to the device at the be-
ginning and then all calculations concerning these data
are executed. Only after the last calculation, the data is
transferred back to the host. Since data transfer, which
is limited by 4GB/s, can proceed while a contempora-
neous kernel execution is in progress, the PCIe trans-
fer can often be executed in the background, so that no
major delay occurs [SHG09]. The kernel compiler is
started only once at program startup, therefore the ex-
ecution time gives us the clearest picture of the overall
performance.

We perform different computations with various vec-
tor sizes to compare the efficiencies. Our first test is
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Figure 3: Test 1: a = b + c. The execution time of our
CUDA implementation is 35 to 58 times faster com-
pared to uBLAS and performs similar to thrust.

a = b+ c starting with a vector size of 1000000 up
to a maximum of 50000000. Smaller sizes could not
be compared since the processor time of an execution
drops below 1ms. Figure 3 shows the result of this test.
We gain a 55 to 58 times faster execution time for vec-
tor sizes between 1000000 and 33553920 compared to
uBLAS and a little bit faster execution time compared
to thrust. The execution time of our implementation
increases heavily if the size goes from 33553920 to
33553921 due to the fact that we need to modify our
kernel. We are forced to do so, because our first ker-
nel computes one element per thread and now there are
more elements then the maximum number of threads on
the GPU used in our tests. Hence we only get a 35 times
speed boost compared to uBLAS and drop slightly be-
low the execution time of thrust. With a further increas-
ing vector size our implementation closes the gap to
thrust and increases performance compared to uBLAS
as well. The described performance drop was observed
in every test we took.

In the second and third test we test a bit more com-
plex calculations. In comparison to uBLAS the results
were similar to the first test and are shown in Figure 4
and 5. For thrust we tested both possible methods, one
with a user-defined functor class and one with tempo-
rary objects. Since the memory on graphics hardware is
limited the second method could only be tested for the
vector-sizes up to 3355920. It is obvious that the tem-
porary object method is up to five times slower then our
implementation and also slower then the functor class
approach.

In comparison to the functor class method our imple-
mentation performed faster in the second test for vector
sizes below 33443920 but fell behind for greater vector
sizes. Like in the first test, the gap closes with increas-
ing size. The thrust implementation and ours performed
on a similar level in the third test.
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Figure 4: Test 2: a = 0.12*b + 7.54*c. The execu-
tion time of our implementation is 38 to 64 times faster
compared to uBLAS and about 5 times faster then thrust
with temporary objects. Thrust’s implementation with
a functor class and ours are on the same level.
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Figure 5: Test 3:a = (b− (a+ 3.75∗ c) + c− 0.24∗
b)/27.51+a−0.25∗b. The execution time our imple-
mentation is 47 to 60 times faster compared to uBLAS
and again about 5 times faster then thrust with tem-
porary memory allocation. Our implementation and
thrust’s functor class approach perform similar.

In a fourth test we normalized a vector. Therefor we
had to compute the euclidean norm and multiply the in-
verse with the vector. Thrust did not provide the func-
tionality of calculating the Euclidean norm, thus a user-
defined functor class is needed. The computation of the
Euclidean norm we used in our implementation is part
of the CUBLAS library from NVIDIA and gets evalu-
ated first, before the expression template generated ker-
nel is executed. Even though we need two kernel exe-
cutions there is a considerable performance gain com-
pared to uBLAS as shown in Figure 6. The speed of our
implementation and thrust’s are comparable.

We also want to examine the different syntaxes of our
implementation to thrust and uBLAS (Listing 6). Our
implementation and uBLAS have the same concise and
math-like syntax whereas thrust’s syntax is more cum-
bersome and requires way more code.

5. CONCLUSION AND FUTURE
WORK

We presented a technique, which leads to a library for
vector algebra operations utilizing the capabilities of
graphics hardware and still providing a math-like and
concise syntax. Our implementation combines expres-
sion templates with CUDA, so that we benefit from the
strengths of both.

Our experimental results show a superior perfor-
mance compared to the non-GPU library uBLAS,
while keeping the same brief syntax. In comparison
to the thrust library our implementation performed
similar to the user-defined functor class method in all
tests. Compared to the thrust method with temporary
objects our approach was considerably faster.

We want to point out that kernel generation occurs at
run time and of course slows down the execution time
of the program. But for programs with a long execution
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Figure 6: Test 4:a = a/‖a‖2. The execution time of
our CUDA implementation is 34 to 56 times faster com-
pared to uBLAS. Thrust shows comparable results.

time this investment quickly pays off. There are pos-
sibilities conceivable that one could save time in this
step. By caching earlier compiled kernels, recompila-
tion can be avoided. Possible further extensions of our
library include copy-free implementation of matrix al-
gebra as well as further optimization of the kernel call
parameters such as the number of threads per block.
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