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ABSTRACT

The ability to generate random samples that match a spherical PDF given in terms of spherical harmonic coefficients is very
important in many fields of computer graphics. Recent work has shown that generating such samples can be done efficiently,
but the published methods are not robust in the presence of reconstruction errors which manifest themselves as negative values
of the PDF. In our paper, we extend the approach so that it can handle such errors, and generates uniform distribution of samples
in the negative parts of the sampled function while preserving a distribution that matches the original function elsewhere. The
overall distribution approximates the original function and guarantees that there are no parts of the spherical domain which
remain unsampled. This property makes the scheme suitable for use in unbiased Monte Carlo rendering.
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1 INTRODUCTION

Spherical harmonics are a set of functions ym
l (θ ,φ)

which form a basis of square-integrable functions de-
fined over the spherical domain. Thus, any such func-
tion can be represented as a series of coefficients in this
basis. In addition, spherical harmonics have some in-
teresting properties, such as support for rotations and
convolutions, which may favor them over other sim-
ilar bases. This lends to many applications in com-
puter graphics, where functions defined over the sphere
or hemisphere are very common. BRDFs ([4]), pre-
computed radiance transfer ([8]) and irradiance envi-
ronment maps ([6]) are examples of such functions.

Recently, an efficient strategy for importance sam-
pling of functions given as spherical harmonics coef-
ficients has been introduced in [3]. The ability to effec-
tively produce high quality sample distributions broad-
ens the scope of applications of spherical harmonics
to other fields of computer graphics such as unbiased
Monte Carlo rendering.

Spherical harmonics are not without limitations,
though. The projection of a band-unlimited function
to spherical harmonics will yield an infinite sequence
of non-zero coefficients, which for practical purposes
needs to be truncated. This step introduces errors to the
reconstructed function, which manifest themselves as
the so-called ringing artifacts. Specially, for a strictly
positive function f , its reconstruction f̂ can have parts
with negative values. The importance sampling scheme
of Jarosz et al. is particularly sensitive to this kind
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of problem, because the hierarchical warping process
used to generate the samples is undefined for negative
values (negative values can’t be used to construct a
valid PDF1). Simple clamping of the negative values
to zero will lead to bias as there will be parts of the
function’s domain which won’t receive any samples.
The authors recommend adding a positive offset to the
function, but it is not clear how to find a suitable value
for the offset. If the offset is set too high, it will prevent
negative reconstruction issues but at the same time it
will degrade the quality of the resulting distribution (it
will tend towards globally uniform distribution).

On the other hand, some applications might not need
a sample distribution that exactly matches the recon-
structed function. During our work on unbiased Monte
Carlo rendering, we faced the problem of importance
sampling a local radiance estimate stored as a set of
spherical harmonic coefficients. Here, the function we
are trying to sample is inaccurate anyway, so an approx-
imate sampling strategy is sufficient.

The contribution of this paper is a modification of
the sampling scheme of Jarosz et al., which overcomes
the reconstruction problems without function offset-
ting. Our method doesn’t always generate samples that
match the sampled function closely, but avoids bias
from negative reconstruction values.

2 RELATED WORK
2.1 Background
Real spherical harmonic basis functions are defined by:

1 Probability density function
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ym
l (θ ,φ) =

{
Km

l P|m|l (cosθ)cos |m|φ , for m≥ 0

Km
l P|m|l (cosθ)sin |m|φ , for m < 0,

(1)
where Km

l are constants and Pm
l are the associated Leg-

endre polynomials. For a detailed description of spher-
ical harmonics and their properties, see [7] or [2].

Due to orthogonality, the coefficients of a function
f projected onto the spherical harmonic basis can be
obtained from:

cm
l =

∫∫
4π

f (θ ,φ)ym
l (θ ,φ)dθ dφ (2)

For practical purposes, we truncate the series by set-
ting ym

l = 0 for l >N, where N is a pre-determined max-
imum band. During reconstruction, we approximate
the original function by summing the basis functions
weighted by the coefficients cm

l :

f (θ ,φ)≈ f̂ (θ ,φ) =
N

∑
l=0

l

∑
m=−l

cm
l ym

l (θ ,φ). (3)

Mathematically, truncated spherical harmonics ex-
pansion can be shown to be the minimizer of the least
squares error functional:

∫
4π

( f (Ω)−
N

∑
l=0

l

∑
m=−l

cm
l ym

l (Ω))2 dΩ. (4)

Minimizing the square of the error allows the result
to oscillate about the original function which gives rise
to the so called ringing artifacts. There are a number
of techniques how to reduce this effect, for example fil-
tering the resulting coefficients, using constrained least
squares projection or offsetting the function before its
projection. A survey of these techniques along with a
rigorous mathematical description of the problem can
be found in [5], [1] and [7].

However, none of these techniques can guarantee
a non-negative reconstruction f̂ for an arbitrary non-
negative function f and arbitrary maximum band N in
general.

2.2 Hierarchical sampling
Here, we give a brief overview of the sampling
scheme introduced in [3]. The process starts with a
uniform sample distribution over the whole surface of
the sphere. In the second step, we split the domain
into four quadrants and compute the integrals of the
function over these sub-domains. The four computed
values serve as an importance function, which is used
to warp to sample set. This step is then recursively
repeated on the four quadrants.

Technically, the warping step is accomplished by do-
ing a warp along the vertical axis first and then along

the horizontal axis. For a domain T and its quadrants
A,B,C,D (see Figure 1), this means we compute the in-
tegrals I1 = IA+ IB and I2 = IC + ID of the reconstructed
function and warp the set of the samples according to
probabilities pAB = I1

IT
and 1− pAB. Warping along the

horizontal axis is analogous. The effect of the warping
step is that more samples are placed in areas with large
values of f̂ .

Figure 1: Left: definition of quadrants and integrals of
the corresponding domains used in the text. For visual-
ization purposes, we have mapped the spherical surface
domain to a square. T denotes the union of all A, B, C,
D. Right: one of the possible scenarios where some of
the integrals are negative.

Warping continues in this fashion recursively up to a
predefined maximum warping depth. The PDF of each
sample is then computed from the ratio of the integral
over the node containing the sample and the integral
over the whole sphere.

This method generates samples that are distributed
exactly proportionally to values of the reconstructed
function f̂ as long as the reconstruction is positive.
However, once we encounter negative values for the in-
tegrals, we cannot perform the warping step and the
scheme breaks. The authors propose adding a posi-
tive offset to the function before projection, but finding
a suitable value for this parameter automatically is an
open problem.

3 OUR APPROACH
Instead of trying to avoid negative reconstructed values
completely, we use different rules during the warping
process so that it can handle them in an unbiased way.

3.1 Warping step
The basic warping step is similar to [3]. First, the
samples are warped along the vertical axis and then
along the horizontal axis. As opposed to the original
approach, we don’t use the values of the integrals I1,
I2, and corresponding probabilities pAB = I1

IT
, pCD =

1− pAB directly, but rather we use the values

p̂AB, p̂CD = 1− p̂AB (5)

, where

p̂AB is pAB clamped to the [ε,1− ε] range (6)

for 0 < ε ≤ 1
2 . Warping along the second axis is analo-

gous.
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Our observation is that this enables us to continue
warping even if some of the integrals IA, IB, IC, ID are
negative, but only as long as the total integral IT is pos-
itive. In effect, we modify the function we are trying
to sample so that it has positive values of the respective
integrals. If the total integral IT is negative, we termi-
nate the recursion immediately, which leaves the sam-
ple uniformly distributed in the domain of T as we have
no suitable definition of corresponding sample distribu-
tion in this case.

Our scheme guarantees that we always get valid sam-
ple distributions and that there are no areas completely
without any samples. This follows from the fact that
at each warping level, the probability of each quadrant
is at least ε2, so for K levels of recursion, we have
pX ≥ ε2K > 0 for all respective sub-regions X of f̂ .
This along with the fact that we can compute the PDF
of each sample exactly means that the importance func-
tion is nonzero over the whole domain and the Monte
Carlo estimator remains unbiased for any ε ∈ (0, 1

2 ].

3.2 Sample PDF
The PDF of each sample after the warping step can no
longer be computed simply as the integral of the con-
taining node divided by the total integral. This is be-
cause our clamping rule diverts the PDF of generated
samples from the original function. Instead of the orig-
inal calculation, we compute the final PDF incremen-
tally during the recursion. Each warping step modifies
the probability of a given quadrant from the original 1

4
to p̂h p̂v for the respective horizontal and vertical prob-
abilities computed from f̂ . Therefore, we need to scale
the sample PDF by the factor p̂h p̂v

1
4

for each warping

level.
If we start with a PDF of a uniform distribution over

the whole spherical domain, the final PDF of the sample
(after k levels of warping) will be:

1
4π

k

∏
l=1

p̂h p̂v
1
4

=
4k

4π

k

∏
l=1

p̂h p̂v (7)

3.3 The role of ε

The value of ε generally affects the uniformity of the
resulting distribution.

Setting ε near zero will yield a distribution, whose
PDF matches the original function very closely, but
very few samples will be in the regions of negative re-
construction. In the limit case of ε = 0, our method
will return the same sample distribution as the original
method of Jarosz et al. for functions which do not ex-
hibit negative reconstruction issues.

On the other hand, setting ε = 1
2 will yield globally

uniform distribution, as the probabilities will be equal
in each warping step.

In our rendering system, where we sample functions
that approximate local radiance estimates, we use a

value of ε = 0.01 so that the sample distributions match
the functions closely.

Figure 2: The original non-negative function (before
projection) used for evaluation of our method. The
blocky behavior and discontinuities are particularly dif-
ficult for spherical harmonics and severe ringing arti-
facts can be expected upon projection and reconstruc-
tion of this function.

4 RESULTS
Figure 3 shows distributions obtained with our method
and with the original method from [3] with offsetting.
The same number of generated samples is shown for
both methods. After reconstruction, our function from
Figure 2 exhibits ringing artifacts and has parts with
negative values. Note that function offsetting causes
the distribution to be much more uniform than the dis-
tribution from our method.

In our case, where we used the proposed method
for importance sampling of local radiance estimates,
the distribution generated with our method resulted in
faster convergence, because fewer samples were sent to
insignificant directions.

5 CONCLUSION
In our paper, we introduced a method for sampling
functions given in terms of spherical harmonic coeffi-
cients, which, unlike previous methods, is robust in the
presence of reconstruction errors.

The distribution generated with our method will be
warped according to the sampled function in its regions
of positivity, and will be uniform in its negative regions.
Also, there is virtually no memory requirements or per-
formance penalty associated with our modifications.
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(a) The function reconstructed from projec-
tion to spherical harmonics using six bands.

(b) Reconstructed function along with sam-
ples generated by our scheme with ε = 0.1.

(c) Negative (red) and positive (blue) parts of
the reconstructed function.

(d) Reconstructed function with offsetting.
The minimum offset required to make the re-
construction positive across the whole spheri-
cal domain was determined by trial and error.

(e) Reconstructed function with offsetting
along with samples generated by the original
method of Jarosz et al.

(f) Negative (red) and positive (blue) parts of
the reconstructed function.

Figure 3: A comparison of our method and the original method of Jarosz et al. The first row shows results obtained
with our method. Note that the reconstructed function has large parts with negative values and that these regions
do receive a fraction of the samples. On the contrary, to achieve non-negativity of the reconstructed function with
the original method (the second row), a comparatively large offset value was needed, and the resulting distribution
is much more uniform as a result.
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