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ABSTRACT
Iterative inverse kinematics (IK) algorithms are commonly used in graphics animations involving goal-directed
motion of joint chains and articulated character models. A well-known algorithm is the Cyclic Coordinate
Descent. For certain joint chain configurations and target positions, iterative methods can generate undesirable
joint rotations. Similarly, certain target positions may require large number of iterations, or may not even be
reachable. This paper presents a novel concept called performance metric maps as a tool for visualizing and
analysing the performance characteristics of an iterative IK algorithm under parametric variations. The proposed
method is particularly useful in determining how well an algorithm converges within a given region of the
workspace. The paper presents the visualization aspects of the metric maps, and the results of comparative
performance analysis of two IK algorithms.
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1 INTRODUCTION
Animation of articulated character models and the goal-
directed motion of serial joint chains often require in-
verse kinematics (IK) algorithms that provide a con-
verging solution for both joint angles and the target
position [1],[6]. Cyclic Coordinate Descent (CCD)
is a well-known iterative algorithm used in computer
graphics and animation [3]. Even though the algorithm
is conceptually simple and easy to implement, certain
target positions may require a large number of itera-
tions before an acceptable solution is obtained. Similar
algorithms have been recently proposed either to im-
prove the convergence of the solution, or to eliminate
problems associated with large angle rotations [4],[5].
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The performance analysis of such methods will have to
take into account several factors that affect the param-
eterization of the joint chain in terms of angles, such
as number of joints, link lengths, and joint angle con-
straints.

Several types of metrics can be defined to evaluate the
performance of an iterative IK algorithm. Some of
these are outlined in [4]. However, the pattern of vari-
ation of these metrics changes with the configuration
of the joint chain. Given two target positions in the
work space, it is often difficult to predict the value of
the metric at an intermediate point. Metrics such as
the minimum number of iterations, distance traveled
by the end-effector, etc., do not have a linear relation-
ship to changes in target positions.

This paper proposes a novel method for representing
the values of performance metrics on a discretized pixel
coordinate space that is mapped to the joint chain’s
workspace. The map not only provides an exhaustive
set of values of a performance metric at all reachable
points, but also gives an image-based visualization of
its variation within the two-dimensional workspace. Here
we assume that every joint other than the root has a
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single degree-of-freedom given by a relative angle of
rotation about a fixed axis. We also assume that motion
to an arbitrary point in three-dimensional space can
be considered as a combination of (i) a rotation of the
chain about the root so that base, end-effector and the
target lie on a plane, followed by (ii) a solution of the
2D IK problem for the chain configuration and target
position on that plane. Thus a two-dimensional perfor-
mance metric map is adequate for the analysis of most
of the iterative IK algorithms used in computer anima-
tion. This paper gives a comparative analysis of iter-
ative IK algorithms using performance metric maps,
and shows the effectiveness of the method in analyz-
ing the workspace characteristics of a given algorithm
in terms of configuration dependent parameters.

The paper is organized as follows. The next section
gives a general overview of IK structures that we will
be dealing with in this paper. Section 3 looks at the
CCD algorithm and also introduces a new IK algo-
rithm that finds a solution where all joints are placed
along a circular arc. Section 4 introduces the con-
cept of performance metric maps. Section 5 gives a
comparative analysis of the CCD and the circular al-
gorithms and presents experimental results. Section 6
concludes the paper and outlines future research direc-
tions.

2 IK STRUCTURES
Common IK structures used in robotics and animation
are articulated bodies. An articulated body is simply a
list of joints linked end to end; forming a joint chain.
Each joint in the chain has a length and an angle offset
from its parent joint. One end of the joint chain is the
base, and is fixed in some frame of reference, and the
other end is the end-effector. In the case of a robotic
arm the end-effector would be the manipulator or hand
(Fig. 1). A joint chain can be described as a list of
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Figure 1: Joint Chain with length n = 3

lengths l and a corresponding list of angles q such that

l = [L1, L2, . . . , Ln]
q = [θ1, θ2, . . . , θn]

(1)

The state of a joint chain is given by q. To perform
forward kinematics on a joint chain, that is given l,
q and the base coordinates b, find the location of the
end-effector e then it follows that[
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However, to perform inverse kinematics on a joint chain,
a function is needed that takes the desired location of
the end-effector e and computes a valid state q. Find-
ing a valid state for a given joint chain configuration
can be a difficult process and there are numerous meth-
ods of computing valid states.

3 ITERATIVE IK ALGORITHMS
There are a number of common parameters that are
given to an inverse IK algorithm. These parameters
are

n The number of joints in the chain

i The maximum number of iterations

ε The threshold distance to which the end-effector can
be considered at the target location

Therefore, a typical parameter iterative IK algorithm
will be passed values for n, i and ε along with the joint
chain.

Cyclic Coordinate Descent
The CCD algorithm uses a heuristic approach to find a
solution by iteratively rotating the links so that the end-
effector moves closer to the target. Each iteration per-
forms a sequence of rotations of links i, starting from
the end-effector towards the root, trying to minimize
the angle θi between the vector from the link joint to-
wards the end-effector and the vector towards the tar-
get [2] (Fig. 2).

Δθ2

target

end-e�ector

L2

Figure 2: Joint angle rotations in a CCD algorithm

Joint angle rotations for a CCD algorithm can be eas-
ily computed and implemented in graphics applica-
tions. However, the method suffers from primarily
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three types of problems: (i) certain target positions
within the workspace require a large number of itera-
tions, (ii) a solution may involve large angle rotations,
and (iii) target positions near the base of the chain may
result in self-intersecting configurations. Examples of
these cases are shown in Fig. 3.

(i) (ii) (iii)

Figure 3: Limitations of the CCD algorithm

Because the CCD algorithm must visit each joint in the
chain for each iteration it can be shown that the CCD
algorithm has a computational complexity of O(n) for
each iteration.

Circular Alignment Algorithm
A few methods have been recently proposed ([4],[5])
to circumvent the limitations of the CCD algorithm.
In this section, we propose a new algorithm that can
be considered as a further improvement of the method
proposed in [5].

If d denotes the distance of the target t from the base
of a joint chain, then there exists a unique circumscrib-
ing circle with radius r along which all nodes can be
positioned (Fig. 4).

d d
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Figure 4: Circular alignment of joints

In the following, we make the assumption that all joints
have the same length. If there are n joints in the chain
then the chain contains n+1 nodes. If θ is the segment
angle of a joint of length a in the circumscribing circle
with radius r then it follows that

a = 2rsin

(
θ

2

)
(3)

And therefore we can define the relationship between
lengths a and d as
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We seek the solution of the above equation for θ, by
defining the function

f(θ) = dsin
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)
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with the derivative
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The solution for θ is obtained using Newton-Raphson
iteration

θi+1 = θi −
f(θi)

f ′(θi)
(7)

with initial condition

θ0 =
2π

n
(8)

This givens the initial configuration that the joint chain
is curled around so the end-effector is at the base, such
that the length d = 0. As the angle θ approaches 0 the
chain opens up until d is within the threshold distance
ε of the target t.

When the joints are aligned along a circular path, the
joint angles will automatically assume values in an ac-
ceptable range, and there is no possibility of the chain
intersecting itself. The Newton-Raphson method yields
fast convergence for the parameter θ, from which the
joint angles that are all equal, can be computed.

Because the Circular Alignment Algorithm (CAA) method
does not need to visit each joint during an iteration it
can be shown that the CAA method has a computa-
tional complexity of O(1) for each iteration.

4 PERFORMANCE METRIC MAPS
Metric maps allow easy visualization and analysis of
otherwise complex or dense data. A common example
of metric maps are terrain or elevation maps. In these
metric maps the terrain height at any point on the map
is represented as a color shade. They also often include
contour lines at designated elevation intervals to help
us visualize the layout of the terrain represented by the
map.

This basic principal can be generalized to display many
other types of data. We will show how using metric
maps can greatly simplify the visualization and anal-
ysis of the behavior of various iterative inverse kine-
matic algorithms.
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In order to generate a performance metric map of the
workspace of a given joint chain we need to encap-
sulate the whole workspace in an image. Because the
workspace is a circle we need a square image and if we
set the base of the chain to be the center of the image
then the length of the joint chain becomes the radius.
An example of this can be seen in Fig. 5.

workspace

initial con�guration

image

Figure 5: Joint Chain Workspace

From this initial configuration we can now iterate over
each pixel in the image using the pixel’s coordinates
relative to the image center as the target point for the
joint chain. For each of these targets we simply run
an iterative inverse kinematic algorithm over the joint
chain and record the desired metric, for example, the
number of iterations taken to move the end-effector to
within ε of each pixel can be seen in Fig. 6. Where
black indicates that the algorithm failed to reach that
pixel, red indicates that algorithm successfully reached
the pixel on the last attempt and in hue scale down to
blue which indicates that the pixel was reached in a
single iteration.

It is interesting to note in Fig. 6 the dark blue (single
iteration) region separates the remaining iso-surfaces
into two disjoint regions. These properties and pat-
terns cannot be analytically derived but by using met-
ric maps these properties can be observed.

Other metrics can also be measured using the same
method. An example of plotting the distance traveled
by the end-effector can be seen in Fig. 7.

5 COMPARATIVE ANALYSIS
Using metric maps to help visualize the behavior of a
iterative IK algorithm on a joint chain gives a much
clearer picture of problem areas. In Fig. 6 it can been
seen that the CCD method fails to place the end-effector
at target locations in and around the initial end-effector
location. The existence of this large void is somewhat
unintuitive but can be clearly seen using a metric map.
It is also can been seen that CCD algorithm in general
requires more iterations to reach targets further from
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Figure 6: Metric Map of Iterations (n = 2, i = 10, ε =
0.01)

the base of the chain but covers most of the possible
workspace.

However, as we increase the number of joints in the
chain and plot their corresponding metric maps a num-
ber of interesting properties can be observed (Fig. 8).
The observed structure of the metric map becomes more
complex and the inclusion of more voids is evident.
A interesting observation that can be made using met-
ric maps is that the workspace coverage of the joint
chain diminishes as the number of joints increases. In-
tuitively it could be thought that increasing the num-
ber of joints in the chain would allow the chain more
freedom to move the end-effector to the target location
and thus increase the workspace coverage. However it
appears that adding more than three joints to a chain
decreases the chain’s coverage. This can been seen in
Fig. 9.

An interesting optimization can be done to the workspace
coverage by altering the lengths of the joints in the
chain. If the lengths of the joints are set so that, start-
ing from the end-effector, each joint is the equal to the
sum of lengths before it, then the coverage is largely
unaffected by the increase in the number of joints (Fig.
10). For example, if we have a joint chain where n = 6
then the the length ratios are l = [16, 8, 4, 2, 1, 1].

Using metric maps we can compare the two algorithms,
CCD and CAA for iterations and workspace coverage
(Fig. 12).

We can clearly see through the use of metric maps the
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Figure 7: Metric Map of Distance Traveled (n =
5, i = 10, ε = 0.01)

differences in behavior between the two algorithms.
In this example the CCD method has 67% workspace
coverage and clearly uses up to the maximum number
of iterations, colored red, to reach various target posi-
tions.

However, with exactly the same configuration we can
see that the CAA method has 100% coverage and at no
position needs to use up to the maximum number of
iterations. In fact, the CAA method only uses a max-
imum of 5 iterations to reach every target point in the
workspace. On closer evaluation of the CAA method
we can see that the number of iterations required to
completely cover the workspace is solely dependent on
the size of the threshold ε. A comparison of the com-
putational efficiency also shows that the CCD has an
O(n) computational complexity while the CAA oper-
ates in O(1). An example of this can be seen in Figure
11.

6 CONCLUSION AND FUTURE
WORK

We have shown how the use of metric maps can aid
greatly in visualizing and analyzing the behavior of in-
verse kinematic problems. By generating metric maps
for a popular iterative IK method, CCD, we were able
to easily discover and identify the algorithm’s vari-
ous properties, including helping to formulate a new
method, CAA, to address some of the negative perfor-
mance aspects of the CCD method.

Although generating these metric maps can be some-

Figure 8: Clockwise from top left, n = 3, n = 4, n =
5 and n = 6
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Figure 9: CCD coverage with joints of equal length
(ε = 0.01)

what computationally expensive, as essentially they are
an exhaustive search of workspace, the generation lends
itself well to parallel computational techniques. Even
without parallel techniques our implementation gener-
ated 300 by 300 sample images in only a couple of
seconds (see figure 11).

The CCA method shows promise as a high performance
iterative but relies on some important assumptions that
may not be practical in some situations. We would like
to expand the CAA method to be able to incorporate
chains with joints of different lengths.
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Figure 10: CCD coverage (i = 5, ε = 0.01)
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Figure 11: Performance (4x Multi-threaded) for a
300x300 metric map (i = 20, ε = 0.01)
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