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ABSTRACT 
A vertex-clustering simplification is a kind of model simplification. It is difficult for the vertex-clustering 
simplification to simplify complex models in real-time, although it is known as a very fast method. In addition, it 
is also difficult for the vertex-clustering simplification to control the number of faces. It synthesizes vertices in 
each cluster. Therefore, models sometimes consist of the unexpected number of faces. In recent years, Graphics 
Processing Units (GPUs) have grown so significantly in performance that both the computational speed and the 
computational accuracy improve spectacularly. GPUs have programmable units such as vertex shaders and 
geometry shaders. With shaders, GPUs can be used not only for graphics rendering but also for general purposes. 

In this paper, we propose a real-time simplification algorithm for complex models of 3D objects by using a 
GPU whose performance gets better these days. First, vertex-clustering information is stored to video memory on 
a GPU. Next, the faces are reduced by the vertex-clustering information using a programmable shader, depending 
on the level of detail which a user defined. We also discuss a method to control the number of faces easily. 
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1. INTRODUCTION 
In recent years, it has been easy to express complex 
models of 3D objects in product design, simulation, 
medicine and games electronically, due to 
progressive computer technology and progressive 
computer graphics. However, it is still difficult to 
render them in real time. Therefore technology is 
required to change the level of detail (LOD) of multi-
resolution representations of models according to a 
user’s needs. 

A vertex-clustering algorithm is known as a kind of 
model simplification. While the vertex-clustering 

algorithms feature low computational costs, they have 
2 disadvantages. One is that model simplification has 
traditionally not been viewed as a real-time rendering 
on CPU, the other is that it is difficult for a user to 
control the degree of the LOD. The vertex-clustering 
algorithm has been proposed by Rossignac and 
Borrel [Rossignac and Borrel 1993]. This is the 
method where a cell, which includes all the vertices 
that exist in 3D space, is uniformly divided; all 
vertices within each grid cell are collapsed to a single 
representative vertex, which may be one of the input 
vertices or some weighted combination of the input 
vertices. Some triangles degenerate to edges or points. 
A number of other vertex clustering algorithms have 
also been proposed. Low and Tan have proposed a 
modified vertex-clustering algorithm using floating 
cells rather than a uniform grid [Low and Tan 1997]. 
The floating-cell clustering leads to more consistent 
simplification. Since the importance of vertices 
controls the positioning of clustering cells, the 
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unpredictable simplification artifacts are greatly 
reduced. Luebke and Erikson have proposed the 
algorithm using a hierarchical grid in the form of an 
octree, which is called Tight Octree [Luebke and 
Erikson 1997]. This vertex tree allows for a dynamic, 
view-dependent adaptation of the level of detail. 
Kanaya and Kobori have proposed the improved 
Tight Octree algorithm allowing for cell size [Kanaya 
and Kobori 2002]. This method is easier to control 
the LOD level. Lindstrom has used QEM(quadric 
error metrics) [Garland 1999] to improve the 
positioning of the representative vertices [Lindstrom 
2000]. Shaffer and Garland have proposed BSP-Tree 
partitioning to control the LOD level [Shaffer and 
Garland 2001], and have also used QEM to improve 
the positioning of the representative vertices [Garland 
and Shaffer 2002]. Mesh simplification has been a 
slow, CPU-limited operation performed as a pre-
process on static meshes. 

In recent years, GPUs have grown so significantly 
in performance that the computational speed and the 
computational accuracy improve spectacularly. 
Additionally, a general–purpose GPU, such as 
numerical calculation, modeling, have been studied 
by a Programmable Shader’s appearance. 

[DeCoro and Tatarchuk 2007] is famous as a 
model simplification using GPU. This method is 
based on [Lindstrom 2000] adopted to the novel GPU 
pipeline. Additionally, they have proposed the 
algorithm for variable level-of-detail, called 
probabilistic octree. This method is much faster than 
CPU-based algorithm. 

We present an algorithm overcoming the 2 
disadvantages of vertex-clustering algorithms. For 
this, we present a novel general-purpose data 
structure designed for a GPU. At the same time, we 
present a method to linearize a relationship between a 
level which a user defined and the number of faces. 
As a result, our algorithm is faster and the number of 
faces is easier to control. 

2. Our algorithm 
We outline our algorithm, which consists of the 
following five steps: 

1. The space division algorithm. 
2. Synthesis of vertices in each cluster. 
3. Updating level for controlling the number of 

faces. 
4. Storing the clustering information in a GPU. 
5. Generating the simplified models. 

The above procedures (1) to (2) are performed on the 
CPU; the procedures (3) to (5) are performed on the 
GPU. 

2.1 Space division algorithm 
We applied the algorithm of [Kanaya and Kobori 
2002], which we have proposed, to an arbitrary 3-D 
space division. The space division algorithm consists 
of the following five steps: 

1. A cell, which includes all the vertices that 
exist in 3D space, is generated. The cell is a 
minimized cuboid, which is divided by 
domain parallel to the planes of the x-y 
coordinate, the y-z coordinate, and the z-x 
coordinate so that two or more vertices can 
be included. 

2. The cell is equally divided by eight, and then 
eight cuboids are made. 

3. The degree of the LOD (level of details) is 
determined by the longest edge of each 
cuboid. This is estimated by the following 
equation. 

 )(logINT_ max
2

currentLength
Lengthleveli =   (1) 

where, INT() is an integral function. The 
Length max is the longest length of cell that 
envelops all vertices. The Length current is the 
longest length of the considered cell. The 
i_level is integer value. 

4. The number of vertices belonging to each 
cuboid is equally divided into eight; dividing 
will end if the number of the vertices, which 
exists in the cuboid, is only one. 

5. Otherwise, each remaining cuboid is 
changed into a cell and processing returns to 
step 2. 

By this procedure, a tree can be generated as shown 
in Figure 1. This tree is an octree, since a cell is 
always divided by eight. Considering the degree of 
the LOD in this octree, the root node is an i_level 0 
and the degree of the LOD becomes larger as the 
node is closer to a leaf node. The octree is clustering 
information.  
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Figure 1. A generated octree using a 
spatial partitioning. ( In 2D space) 

(a) The space division. (b) An octree of (a). 
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2.2 Synthesis of vertices in cluster 
A method for the synthesizing of vertices in cluster is 
based on [Kanaya and Kobori 2002]. This is why we 
simply want to compare CPU-based algorithms with 
GPU-based algorithms. It is possible to use 
[Lindstrom 2000] instead of Kanaya and Kobori for 
accuracy improvement. 

2.3 Updating level for controlling the 
number of faces 
To make it easier for the user to define the number of 
faces, we propose a way of linearizing a relationship 
between a level which a user defined and the number 
of faces as follow. 

First, we cluster the internal nodes which i_level is 
same. However, the longest length of cell varies 
according to cell in spite of the same i_level. The 
internal nodes are arranged in descending order of the 
length in each cluster which has the same i_level. 
Then, we call the level which has the rank in 
descending order in each cluster “r_level”. The 
r_level is a real number. The r_level of each internal 
node m “r_levelm” is calculated by equation (2). 

k
number

levelilevelr
i

beforem ×+=
1__   (2) 

where, i_levelbefore is the i_level of each internal node. 
k is a rank of  each internal node after arranging in 
descending order. numberi is the number of internal 
node in arbitrary i_leveli. The leaf level is not 
updated. 

2.4 Storing the clustering information in a 
GPU 
The clustering information which was generated by 
the above process is stored in a texture on the GPU as 
texture. We prepare 2 kinds of textures for storing the 
clustering information. One texture is called “Tree-
buffer”; the other texture is called “Leaf-buffer”. The 
Tree-buffer stores the information of the internal 
nodes in an octree. The Leaf-buffer stores the 
information of the leaf nodes. We illustrate the way to 
store the information of nodes in textures in Figure 2. 

First, we describe a method used for storing the 
internal nodes in the Tree-buffer. Each texel of the 
Tree-buffer stores the synthesized coordinate of 
vertices and the r_levelm as shown in Figure 3, while 
arbitrary internal nodes with parent-child relationship 
arrange a column parallel to the v axis, as shown in 
Figure 2. 

Next, we describe a method used for storing the 
leaf nodes in the Leaf-buffer. Each texel of the Leaf-
buffer stores a coordinate of vertices of leaf node in 
the octree and a pointer whose value refers directly to 

the parent node in the Tree-buffer as shown in Figure 
4, in order from the bottom left as shown in Figure 2. 
For example, as we show in Figure 2, the leaf node 1, 
2 hold a pointer whose value refers directly to the 
internal node A which is the parent for both nodes, 
respectively. As a result, it is easy to refer to a node 
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Figure 2. A stored state in the Tree-buffer 
and the Leaf-buffer. 
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RGBA={xa, ya, za, fractionala} 

x, y, z: x, y, z coordinate of vertex of internal node 
fractional: fractional part of r_levelm 

RGBA={xb, yb, zb, fractionalb} 

RGBA={xc, yc, zc, fractionalc} 

RGBA={xd, yd, zd, fractional d} 

Figure 3. Method used for storing 
information in the Tree-buffer. 
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RGBA={xa, ya, za, pa} 

x, y, z: x, y, z coordinate of vertex of leaf node 
p: a pointer to the Tree-buffer 

RGBA={xb, yb, zb, pb} 

RGBA={xc, yc, zc, pc} 

RGBA={xd, yd, zd, pd} 

Figure 4. Method used for storing 
information in the Leaf-buffer. 
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of a level a user wants, when the texture coordinate of 
the terminal internal node is known. 

2.5 Generating the simplified models 
We describe the way for simplifying models by using 
the Tree-buffer and the Leaf-buffer on a GPU.  First, 
we outline the generating procedure of the simplified 
model. 

1. Calculate “r_level” of the number of faces 
“f_count” which a user wants. 

2. Search the Leaf-buffer and the Tree-buffer 
for the coordinate of vertices associated 
with r_level. 

3. Output each triangle consisted of the above 
coordinate of vertices. 

 
(Pass 1) Calculate the level of detail of f_count. 
We illustrate a way of calculating r_level of the 
number of faces a user wants in Figure 5. The r_level 
is the degree of the LOD, which is associated with a 
user-defined number of faces, in an octree. f_countmax 
in Figure 5 is the number of faces constructing the 
original model. 

First, we search i_level i which is the maximum 
number of faces within f_counti, i_level i+1 which is 
the minimal number of faces over f_counti+1. It is 
easy to set up the number of faces of the simplified 
model by counting these levels respectively in 
advance. Next, we calculate r_level corresponding to 
the f_count. In general, a model consists of nearly 

uniform faces in 3D-CG. Therefore, we can think that 
the change in the number of faces is nearly constant, 
each time a vertex is deleted. We suggest the 
following equation for calculating the r_level. 

ii

i

countfcountf
countfcountfilevelr

__
___

1 −
−

+=
+

 (3) 

We can generate the simplified models consisting of 
faces whose number is nearly equal to the user-
defined number by using the r_level. 

(Pass 2) Select coordinate of vertices. 
Each coordinate of vertices is selected by r_level on a 
vertex shader of a GPU. We illustrate the selecting 
way with an example in Figure 6.  

 
We describe how to calculate a texture coordinate 

of a parent node associated with a leaf node on the 
Tree-buffer, when we assume r_level is equal to “4.4”. 

 First, an arbitrary leaf node is selected. In this case, 
we assume that P1 is selected. When the pixel of P1 in 
the Leaf-Buffer is referred, it stored a pointer whose 
value refers directly to the parent node Pa according 
to Table 1. We can calculate the texture coordinate of 
Pa in the Tree-buffer by the pointer. 
 
Table 1. Table of referenced nodes in each leaf node. 
 
 
 
 
 
 
 
 

Next, we calculate a node associated with r_level 
by nodes whose parent node is located on the same 
axis of v. As described above, all parent nodes which 
are able to be traced from arbitrary internal nodes are 
arranged a column of the Tree-buffer texture. 
Therefore, we calculate the location storing the target 
node with difference d between r_level and levell. 

levelrleveld l _−=   (4) 

where, levell is level of leaf node. 
However, the target node can not always be 

calculated by equation (4), because both r_level and 
level which internal nodes have are real numbers. 
Therefore, we consider the following 3 cases 
according to d. These are (Case 1) 0≤d , (Case 2) 

0.10 ≤< d , (Case 3) 0.1>d . In (Case 1), the 
three world coordinates of an arbitrary vertex in the 

Leaf node levelm 

P1 
Pa (5.633) P2 

P3 
P4 Pb (4.382) 
P5 
P6 Pc (3.457) 

Figure 6. An example of a texture in an octree. 
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r_level 

i_level 

The number of faces 

Figure 5. A computation of r_level. 
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leaf node are selected, because the level of the leaf 
node is too small for the r_level. In (Case 2), if a 
level of the parent node for the leaf node is larger 
than the r_level, the three world coordinates of an 
arbitrary vertex of the leaf node are selected; 
otherwise, the three world coordinates of an arbitrary 
vertex of the parent node are selected. In (Case 3), 
when each level of 2 internal nodes closest to the 
r_level is compared with the r_level, the three world 
coordinates of an arbitrary vertex of the internal node 
whose level is larger than the r_level are selected. In 
Figure 4, levell is 6, r_level is 4.4. d is equal to 1.6 by 
equation (4). As a result, this is selected as Case 3. 
The candidate internal nodes are Pa and Pb. The 
selected node is Pa because r_level (4.4) is greater 
than the level of Pb (4.382). 

As described above, the access number of times to 
texture is 3 tops. It is quicker to search in the octree. 
(Pass 3) Generate triangles for meshes. 
The above process selects each coordinate of vertices 
for triangles. This pass determines if each triangle is 
generated in geometry shader. The geometry shader 
calculates normal vectors of triangles. If the size of 
the normal vector is not equal to 0, triangle is 
rendered; otherwise, triangle is not rendered. 

3. Experiment and Results 
To evaluate the performance of our algorithm, we 
made 3 experiments. The first experiment is 
associated with processing time, the second is 
associated with controlling the number of faces. 
Figure 7 shows 2 original models and the simplified 
models whose number of faces are one tenth of 
original models, respectively. We use “s_level” 

instead of the number of faces, where s_level is 
degree of LOD. The range of s_level a user defines is 
from 1 to 1,000. That is, when s_level is 1,000, the 
number of faces is that constructing the original 
model. When s_level is 1, the simplified model 
consists of one thousandth the number of faces for the 
original model. All simplifications were performed 
on a PC with a Core2 Duo CPU (2.66GHz), 2GB of 
RAM and an NVIDIA GeForce 8800GTX (768MB) 
GPU, collected on Windows XP Professional. 

3.1 Experiment associated with 
processing time. 
We compare our algorithm with a CPU-based 
algorithm. The CPU-based algorithm is [Kanaya and 
Kobori 2002]. Figure 8 shows the comparison of 2 
algorithms. The horizontal axis shows the s_level and 
the vertical axis shows processing time. Our 
algorithm is up to 17 times quicker than the CPU-
based algorithm, as shown in Figure 8. Additionally, 
it is found that the processing time is almost constant 
at every s_level. 

3.2 Experiment associated with control-
ling the number of faces 
We verify that when a user defines an s_level, the 
simplified models consist of the number of faces 
he/she expected. The range of s_level a user defines 

(a) Model A 
 (2,208,936) 

(b) The simplified model 
of A (226,866) 

(c) Model B 
 (3,745,150) 

(d) The simplified model 
of B (377,278) 

Figure 7. Experimental models and 
Simplified results. 

CPU-based algorithm 

Our algorithm 

CPU-based algorithm 

Our algorithm 

Figure 8. Comparisons of our algorithm 
and CPU-based algorithm. 

(a) Processing Time of Model A  

(b) Processing Time of Model B  
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is from 1 to 1,000. That is, when s_level is 1,000, the 
number of faces is that constructing the original 
model. When s_level is 1, the simplified model 
consists of one thousandth the number of faces for the 
original model. Figure 9 shows a result of model A 
simplified by using our algorithm. The horizontal axis 
shows the s_level and the vertical axis shows the 
number of faces. 

A relationship between s_level and the number of 
faces is almost linearized according to Figure 9. 
However, the difference between the numbers of 
faces we have expected and actual results were 
accurate within 4.7%, because we calculated r_level 
of s_level by linear approximation. However, it is 
easy to get the number of faces a user wants by using 
our method. 

4. Conclusions 
We have presented a method for model simplification 
on the GPU programmable shader and demonstrated 
how triangle decimation becomes practical for real-
time use. We have applied a vertex-clustering 
algorithm to the GPU and we have presented how to 
store the clustering information.  

We introduced “r_level” that is a real number, for 
the purpose of generating the simplified models 
which consisted of the number of faces a user 
expected. We introduced 2 buffers “Tree-buffer” and 
“Leaf-buffer” for faster access and efficient storage. 
Additionally, the experiment results showed efficacy. 

We have not compared our algorithm with the 
algorithm based GPU [DeCoro and Tatarchuk 2007]. 
We would like to compare our algorithm with the 
algorithm in the future work. 
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