

A Method for Storing Clustering Information of

Model Simplification in GPUs

Takayuki Kanaya
Hiroshima International University

555-36, Kurose Gakuendai
Higashi Hiroshima, Hiroshima

 Japan (739-2695)
t-kanaya@hw.hirokoku-u.ac.jp

Koji Nishio

Osaka Institute of Technology
nishio@is.oit.ac.jp

Tomoaki Taniguchi
Osaka Institute of Technology

1-79-1, Kitayama
Hirakata, Osaka

Japan (573-0196)
taniguchi@ggl.is.oit.ac.jp

Kenichi Kobori

Osaka Institute of Technology
kobori@is.oit.ac.jp

Yuji Teshima
Sasebo National College of

Technology
1-1, Okishinchou

Sasebo, Nagasaki
Japan (857-1171)

teshima@post.cc.sasebo.ac.jp

ABSTRACT
A vertex-clustering simplification is a kind of model simplification. It is difficult for the vertex-clustering
simplification to simplify complex models in real-time, although it is known as a very fast method. In addition, it
is also difficult for the vertex-clustering simplification to control the number of faces. It synthesizes vertices in
each cluster. Therefore, models sometimes consist of the unexpected number of faces. In recent years, Graphics
Processing Units (GPUs) have grown so significantly in performance that both the computational speed and the
computational accuracy improve spectacularly. GPUs have programmable units such as vertex shaders and
geometry shaders. With shaders, GPUs can be used not only for graphics rendering but also for general purposes.

In this paper, we propose a real-time simplification algorithm for complex models of 3D objects by using a
GPU whose performance gets better these days. First, vertex-clustering information is stored to video memory on
a GPU. Next, the faces are reduced by the vertex-clustering information using a programmable shader, depending
on the level of detail which a user defined. We also discuss a method to control the number of faces easily.

Keywords
Simplification, GPU, Vertex-Clustering, Real-Time rendering

1. INTRODUCTION
In recent years, it has been easy to express complex
models of 3D objects in product design, simulation,
medicine and games electronically, due to
progressive computer technology and progressive
computer graphics. However, it is still difficult to
render them in real time. Therefore technology is
required to change the level of detail (LOD) of multi-
resolution representations of models according to a
user’s needs.

A vertex-clustering algorithm is known as a kind of
model simplification. While the vertex-clustering

algorithms feature low computational costs, they have
2 disadvantages. One is that model simplification has
traditionally not been viewed as a real-time rendering
on CPU, the other is that it is difficult for a user to
control the degree of the LOD. The vertex-clustering
algorithm has been proposed by Rossignac and
Borrel [Rossignac and Borrel 1993]. This is the
method where a cell, which includes all the vertices
that exist in 3D space, is uniformly divided; all
vertices within each grid cell are collapsed to a single
representative vertex, which may be one of the input
vertices or some weighted combination of the input
vertices. Some triangles degenerate to edges or points.
A number of other vertex clustering algorithms have
also been proposed. Low and Tan have proposed a
modified vertex-clustering algorithm using floating
cells rather than a uniform grid [Low and Tan 1997].
The floating-cell clustering leads to more consistent
simplification. Since the importance of vertices
controls the positioning of clustering cells, the

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.

1) 2)

3)

2) 2)

WSCG 2011 Communication Papers 121

unpredictable simplification artifacts are greatly
reduced. Luebke and Erikson have proposed the
algorithm using a hierarchical grid in the form of an
octree, which is called Tight Octree [Luebke and
Erikson 1997]. This vertex tree allows for a dynamic,
view-dependent adaptation of the level of detail.
Kanaya and Kobori have proposed the improved
Tight Octree algorithm allowing for cell size [Kanaya
and Kobori 2002]. This method is easier to control
the LOD level. Lindstrom has used QEM(quadric
error metrics) [Garland 1999] to improve the
positioning of the representative vertices [Lindstrom
2000]. Shaffer and Garland have proposed BSP-Tree
partitioning to control the LOD level [Shaffer and
Garland 2001], and have also used QEM to improve
the positioning of the representative vertices [Garland
and Shaffer 2002]. Mesh simplification has been a
slow, CPU-limited operation performed as a pre-
process on static meshes.

In recent years, GPUs have grown so significantly
in performance that the computational speed and the
computational accuracy improve spectacularly.
Additionally, a general–purpose GPU, such as
numerical calculation, modeling, have been studied
by a Programmable Shader’s appearance.

[DeCoro and Tatarchuk 2007] is famous as a
model simplification using GPU. This method is
based on [Lindstrom 2000] adopted to the novel GPU
pipeline. Additionally, they have proposed the
algorithm for variable level-of-detail, called
probabilistic octree. This method is much faster than
CPU-based algorithm.

We present an algorithm overcoming the 2
disadvantages of vertex-clustering algorithms. For
this, we present a novel general-purpose data
structure designed for a GPU. At the same time, we
present a method to linearize a relationship between a
level which a user defined and the number of faces.
As a result, our algorithm is faster and the number of
faces is easier to control.

2. Our algorithm
We outline our algorithm, which consists of the
following five steps:

1. The space division algorithm.
2. Synthesis of vertices in each cluster.
3. Updating level for controlling the number of

faces.
4. Storing the clustering information in a GPU.
5. Generating the simplified models.

The above procedures (1) to (2) are performed on the
CPU; the procedures (3) to (5) are performed on the
GPU.

2.1 Space division algorithm
We applied the algorithm of [Kanaya and Kobori
2002], which we have proposed, to an arbitrary 3-D
space division. The space division algorithm consists
of the following five steps:

1. A cell, which includes all the vertices that
exist in 3D space, is generated. The cell is a
minimized cuboid, which is divided by
domain parallel to the planes of the x-y
coordinate, the y-z coordinate, and the z-x
coordinate so that two or more vertices can
be included.

2. The cell is equally divided by eight, and then
eight cuboids are made.

3. The degree of the LOD (level of details) is
determined by the longest edge of each
cuboid. This is estimated by the following
equation.

)(logINT_ max
2

currentLength
Lengthleveli = (1)

where, INT() is an integral function. The
Length max is the longest length of cell that
envelops all vertices. The Length current is the
longest length of the considered cell. The
i_level is integer value.

4. The number of vertices belonging to each
cuboid is equally divided into eight; dividing
will end if the number of the vertices, which
exists in the cuboid, is only one.

5. Otherwise, each remaining cuboid is
changed into a cell and processing returns to
step 2.

By this procedure, a tree can be generated as shown
in Figure 1. This tree is an octree, since a cell is
always divided by eight. Considering the degree of
the LOD in this octree, the root node is an i_level 0
and the degree of the LOD becomes larger as the
node is closer to a leaf node. The octree is clustering
information.

1 2 3

4

5 6 7

8 9

i_level 0

i_level 1

i_level 2

i_level 3
1 2

3

5

7

4

8
9

6

Figure 1. A generated octree using a
spatial partitioning. (In 2D space)

(a) The space division. (b) An octree of (a).

WSCG 2011 Communication Papers 122

2.2 Synthesis of vertices in cluster
A method for the synthesizing of vertices in cluster is
based on [Kanaya and Kobori 2002]. This is why we
simply want to compare CPU-based algorithms with
GPU-based algorithms. It is possible to use
[Lindstrom 2000] instead of Kanaya and Kobori for
accuracy improvement.

2.3 Updating level for controlling the
number of faces
To make it easier for the user to define the number of
faces, we propose a way of linearizing a relationship
between a level which a user defined and the number
of faces as follow.

First, we cluster the internal nodes which i_level is
same. However, the longest length of cell varies
according to cell in spite of the same i_level. The
internal nodes are arranged in descending order of the
length in each cluster which has the same i_level.
Then, we call the level which has the rank in
descending order in each cluster “r_level”. The
r_level is a real number. The r_level of each internal
node m “r_levelm” is calculated by equation (2).

k
number

levelilevelr
i

beforem ×+=
1__ (2)

where, i_levelbefore is the i_level of each internal node.
k is a rank of each internal node after arranging in
descending order. numberi is the number of internal
node in arbitrary i_leveli. The leaf level is not
updated.

2.4 Storing the clustering information in a
GPU
The clustering information which was generated by
the above process is stored in a texture on the GPU as
texture. We prepare 2 kinds of textures for storing the
clustering information. One texture is called “Tree-
buffer”; the other texture is called “Leaf-buffer”. The
Tree-buffer stores the information of the internal
nodes in an octree. The Leaf-buffer stores the
information of the leaf nodes. We illustrate the way to
store the information of nodes in textures in Figure 2.

First, we describe a method used for storing the
internal nodes in the Tree-buffer. Each texel of the
Tree-buffer stores the synthesized coordinate of
vertices and the r_levelm as shown in Figure 3, while
arbitrary internal nodes with parent-child relationship
arrange a column parallel to the v axis, as shown in
Figure 2.

Next, we describe a method used for storing the
leaf nodes in the Leaf-buffer. Each texel of the Leaf-
buffer stores a coordinate of vertices of leaf node in
the octree and a pointer whose value refers directly to

the parent node in the Tree-buffer as shown in Figure
4, in order from the bottom left as shown in Figure 2.
For example, as we show in Figure 2, the leaf node 1,
2 hold a pointer whose value refers directly to the
internal node A which is the parent for both nodes,
respectively. As a result, it is easy to refer to a node

ROOT

8 9

Figure 2. A stored state in the Tree-buffer
and the Leaf-buffer.

Tree-buffer

Leaf-buffer

Z

I

H

F G

A B C D E

1 2 3 5 6 7 4

2 3 4 5 6 1
8 9 7

B C D E A
F F F D G

H H H H H
I I I I I

Z Z Z Z Z

u

v

na nb

nc

nd

RGBA={xa, ya, za, fractionala}

x, y, z: x, y, z coordinate of vertex of internal node
fractional: fractional part of r_levelm

RGBA={xb, yb, zb, fractionalb}

RGBA={xc, yc, zc, fractionalc}

RGBA={xd, yd, zd, fractional d}

Figure 3. Method used for storing
information in the Tree-buffer.

na nb

nc

nd

RGBA={xa, ya, za, pa}

x, y, z: x, y, z coordinate of vertex of leaf node
p: a pointer to the Tree-buffer

RGBA={xb, yb, zb, pb}

RGBA={xc, yc, zc, pc}

RGBA={xd, yd, zd, pd}

Figure 4. Method used for storing
information in the Leaf-buffer.

WSCG 2011 Communication Papers 123

of a level a user wants, when the texture coordinate of
the terminal internal node is known.

2.5 Generating the simplified models
We describe the way for simplifying models by using
the Tree-buffer and the Leaf-buffer on a GPU. First,
we outline the generating procedure of the simplified
model.

1. Calculate “r_level” of the number of faces
“f_count” which a user wants.

2. Search the Leaf-buffer and the Tree-buffer
for the coordinate of vertices associated
with r_level.

3. Output each triangle consisted of the above
coordinate of vertices.

(Pass 1) Calculate the level of detail of f_count.
We illustrate a way of calculating r_level of the
number of faces a user wants in Figure 5. The r_level
is the degree of the LOD, which is associated with a
user-defined number of faces, in an octree. f_countmax
in Figure 5 is the number of faces constructing the
original model.

First, we search i_level i which is the maximum
number of faces within f_counti, i_level i+1 which is
the minimal number of faces over f_counti+1. It is
easy to set up the number of faces of the simplified
model by counting these levels respectively in
advance. Next, we calculate r_level corresponding to
the f_count. In general, a model consists of nearly

uniform faces in 3D-CG. Therefore, we can think that
the change in the number of faces is nearly constant,
each time a vertex is deleted. We suggest the
following equation for calculating the r_level.

ii

i

countfcountf
countfcountfilevelr

__

1 −
−

+=
+

 (3)

We can generate the simplified models consisting of
faces whose number is nearly equal to the user-
defined number by using the r_level.

(Pass 2) Select coordinate of vertices.
Each coordinate of vertices is selected by r_level on a
vertex shader of a GPU. We illustrate the selecting
way with an example in Figure 6.

We describe how to calculate a texture coordinate

of a parent node associated with a leaf node on the
Tree-buffer, when we assume r_level is equal to “4.4”.

 First, an arbitrary leaf node is selected. In this case,
we assume that P1 is selected. When the pixel of P1 in
the Leaf-Buffer is referred, it stored a pointer whose
value refers directly to the parent node Pa according
to Table 1. We can calculate the texture coordinate of
Pa in the Tree-buffer by the pointer.

Table 1. Table of referenced nodes in each leaf node.

Next, we calculate a node associated with r_level
by nodes whose parent node is located on the same
axis of v. As described above, all parent nodes which
are able to be traced from arbitrary internal nodes are
arranged a column of the Tree-buffer texture.
Therefore, we calculate the location storing the target
node with difference d between r_level and levell.

levelrleveld l _−= (4)

where, levell is level of leaf node.
However, the target node can not always be

calculated by equation (4), because both r_level and
level which internal nodes have are real numbers.
Therefore, we consider the following 3 cases
according to d. These are (Case 1) 0≤d , (Case 2)

0.10 ≤< d , (Case 3) 0.1>d . In (Case 1), the
three world coordinates of an arbitrary vertex in the

Leaf node levelm

P1
Pa (5.633) P2

P3
P4 Pb (4.382)
P5
P6 Pc (3.457)

Figure 6. An example of a texture in an octree.

Tree-buffer

Leaf-buffer

Pa
Pb
Pc

P1 P2 P3 P4 P5
P6

Pa

Pb

Pc

P1 P2 P3

P6

P5 P4

i_level 6

i_level 5

i_level 4

i_level 3

f_countmax

f_counti+1

f_count

f_counti

i i+1 r_levelmax
r_level

i_level

The number of faces

Figure 5. A computation of r_level.

WSCG 2011 Communication Papers 124

leaf node are selected, because the level of the leaf
node is too small for the r_level. In (Case 2), if a
level of the parent node for the leaf node is larger
than the r_level, the three world coordinates of an
arbitrary vertex of the leaf node are selected;
otherwise, the three world coordinates of an arbitrary
vertex of the parent node are selected. In (Case 3),
when each level of 2 internal nodes closest to the
r_level is compared with the r_level, the three world
coordinates of an arbitrary vertex of the internal node
whose level is larger than the r_level are selected. In
Figure 4, levell is 6, r_level is 4.4. d is equal to 1.6 by
equation (4). As a result, this is selected as Case 3.
The candidate internal nodes are Pa and Pb. The
selected node is Pa because r_level (4.4) is greater
than the level of Pb (4.382).

As described above, the access number of times to
texture is 3 tops. It is quicker to search in the octree.
(Pass 3) Generate triangles for meshes.
The above process selects each coordinate of vertices
for triangles. This pass determines if each triangle is
generated in geometry shader. The geometry shader
calculates normal vectors of triangles. If the size of
the normal vector is not equal to 0, triangle is
rendered; otherwise, triangle is not rendered.

3. Experiment and Results
To evaluate the performance of our algorithm, we
made 3 experiments. The first experiment is
associated with processing time, the second is
associated with controlling the number of faces.
Figure 7 shows 2 original models and the simplified
models whose number of faces are one tenth of
original models, respectively. We use “s_level”

instead of the number of faces, where s_level is
degree of LOD. The range of s_level a user defines is
from 1 to 1,000. That is, when s_level is 1,000, the
number of faces is that constructing the original
model. When s_level is 1, the simplified model
consists of one thousandth the number of faces for the
original model. All simplifications were performed
on a PC with a Core2 Duo CPU (2.66GHz), 2GB of
RAM and an NVIDIA GeForce 8800GTX (768MB)
GPU, collected on Windows XP Professional.

3.1 Experiment associated with
processing time.
We compare our algorithm with a CPU-based
algorithm. The CPU-based algorithm is [Kanaya and
Kobori 2002]. Figure 8 shows the comparison of 2
algorithms. The horizontal axis shows the s_level and
the vertical axis shows processing time. Our
algorithm is up to 17 times quicker than the CPU-
based algorithm, as shown in Figure 8. Additionally,
it is found that the processing time is almost constant
at every s_level.

3.2 Experiment associated with control-
ling the number of faces
We verify that when a user defines an s_level, the
simplified models consist of the number of faces
he/she expected. The range of s_level a user defines

(a) Model A
 (2,208,936)

(b) The simplified model
of A (226,866)

(c) Model B
 (3,745,150)

(d) The simplified model
of B (377,278)

Figure 7. Experimental models and
Simplified results.

CPU-based algorithm

Our algorithm

CPU-based algorithm

Our algorithm

Figure 8. Comparisons of our algorithm
and CPU-based algorithm.

(a) Processing Time of Model A

(b) Processing Time of Model B

WSCG 2011 Communication Papers 125

is from 1 to 1,000. That is, when s_level is 1,000, the
number of faces is that constructing the original
model. When s_level is 1, the simplified model
consists of one thousandth the number of faces for the
original model. Figure 9 shows a result of model A
simplified by using our algorithm. The horizontal axis
shows the s_level and the vertical axis shows the
number of faces.

A relationship between s_level and the number of
faces is almost linearized according to Figure 9.
However, the difference between the numbers of
faces we have expected and actual results were
accurate within 4.7%, because we calculated r_level
of s_level by linear approximation. However, it is
easy to get the number of faces a user wants by using
our method.

4. Conclusions
We have presented a method for model simplification
on the GPU programmable shader and demonstrated
how triangle decimation becomes practical for real-
time use. We have applied a vertex-clustering
algorithm to the GPU and we have presented how to
store the clustering information.

We introduced “r_level” that is a real number, for
the purpose of generating the simplified models
which consisted of the number of faces a user
expected. We introduced 2 buffers “Tree-buffer” and
“Leaf-buffer” for faster access and efficient storage.
Additionally, the experiment results showed efficacy.

We have not compared our algorithm with the
algorithm based GPU [DeCoro and Tatarchuk 2007].
We would like to compare our algorithm with the
algorithm in the future work.

5. REFERENCES
[DeCoro and Tatarchuk 2007] DeCoro, D. and

Tatarchuk, N., Real-time Mesh Simplification
Using the GPU. Symposium on Interactive 3D
Graphics (I3D) 2007, pp. 6, April 2007.

[Garland and Shaffer 2002] Garland, M., and
Shaffer, E., A multiphase approach to efficient
surface simplification. In VIS ’02: Proceedings of
the conference on Visualization ’02, IEEE
Computer Society, Washington, DC, USA, 117–
124, 2002.

[Garland 1999] Garland, M., Quadric-based
polygonal surface simplification. PhD thesis,
Carnegie Mellon University. Chair-Paul Heckbert,
1999.

 [Kanaya and Kobori 2002] Kanaya, T., and Kobori,
K., A Method of Model Simplification Using
Spatial Partitioning. In the journal of the Institute
of Image Information and Television Engineers
56(4), 636-642, 2002.

 [Lindstrom 2000] Lindstrom, P., Out-of-core
simplification of large polygonal models. In
SIGGRAPH ’00: Proceedings of the 27th annual
conference on Computer graphics and interactive
techniques, ACM Press/Addison-Wesley
Publishing Co., New York, NY, USA, 259–262,
2000.

[Low and Tan 1997] Low, K.-L., and Tan, T.-S.,
Model simplification using vertex-clustering. In
SI3D ’97: Proceedings of the 1997 symposium
on Interactive 3D graphics, ACM Press, New
York, NY, USA, 75–82, 1997.

[Luebke and Erikson 1997] Luebke, D., and
Erikson, C., View-dependent simplification of
arbitrary polygonal environments. In
SIGGRAPH ’97: Proceedings of the 24th annual
conference on Computer graphics and interactive
techniques, ACM PRESS/Addison-Wesley
Publishing Co., New York, NY, USA, 199–208,
1997.

[Rossignac and Borrel 1993] Rossignac, J., and
Borrel, P., Multi-resolution 3d approximations for
rendering complex scenes. In Geometric
Modeling in Computer Graphics, Springer-Verlag,
New York, NY, USA, 455–465, 1993.

[Shaffer and Garland 2001] Shaffer, E., and
Garland, M., Efficient adaptive simplification of
massive meshes. In VIS ’01: Proceedings of the
conference on Visualization ’01, IEEE Computer
Society, Washington, DC, USA, 127–134, 2001.

Figure 9. Relationship between s_level and
the number of faces.

WSCG 2011 Communication Papers 126

	J07-full.pdf
	ABSTRACT
	Keywords
	1. INTRODUCTION
	2. Our algorithm
	2.1 Space division algorithm
	2.2 Synthesis of vertices in cluster
	2.3 Updating level for controlling the number of faces
	2.4 Storing the clustering information in a GPU
	2.5 Generating the simplified models

	3. Experiment and Results
	3.1 Experiment associated with processing time.
	3.2 Experiment associated with control-ling the number of faces

	4. Conclusions
	5. REFERENCES

