






into new buffers Im and Zm while projecting the pre-

vious depth buffer Zm−1 onto the scene. A fragment

p gets rejected if its depth zp has the same or smaller

depth than the previously rendered fragment, stored in

Im−1 and Zm−1. This means that only previously oc-

cluded fragments are stored in Im and Zm. This is done

iteratively until M layers are retrieved. If a fragment is

rejected, it is “peeled away,” revealing objects behind

the first layer. Although there are faster peeling meth-

ods (e.g., [23]), we rely on [11], because peeling can be

done iteratively from front to back.

3.2 Scene decomposition

The input images I0 . . . IM−1 are decomposed into K lay-

ers L0 . . .L(K−1) by matting functions ω(z) and ω̇:

Lk =
(

I0 ·ωk(Z0)
)

⊕

(

I1 · ω̇k(Z1)
)

. . .

⊕

(

IM−1 · ω̇k(ZM−1)
)

. (2)

The functions ωk(z) and ω̇k(z) denote the matting func-

tion for the layer Lk and A⊕B denotes alpha-blending

A over B.

3.2.1 Matting functions

The matting function ωk was introduced in [18] and

guarantees a smooth transition of objects between lay-

ers, while ω̇k retains a hard cut at the back layer bound-

aries to avoid situations where background fragments

would be blended over foreground layers. The formu-

las are

ω̇k(z) =











z−zk−2

zk−1−zk−2
for zk−2 < z < zk−1,

1 for zk−1 ≤ z ≤ zk,

0 otherwise,

(3)

and

ωk(z) =

{

zk−z
zk−zk+1

for zk < z < zk+1,

ω̇k(z) otherwise,
(4)

where zk−2 to zk+1 defines anchor points for the layer

boundaries. A plot of the functions is shown in figure

4. Special care has to be taken when matting the front

L0 and back LK−1 layer, where the boundaries are set to

z−2 = z−1 = z0 =−∞ and zK−1 = zK = ∞, respectively.

3.2.2 Layer boundaries

The layer matting relies on anchor points. Similarly to

[18], the boundaries are spaced according to the filter

size of the blurring method (further explained in sec-

tion 3.3). Potmesil’s formula for calculating the CoC

(equation 1) can be rearranged to calculate a depth z

based on a given CoC d. Since dcoc is non-injective,

there are two possible results of this inversion:

d−1
coc(d) =

(

D1(d),D2(d)
)

(5)

0

1

zk−2 zk−1 zk zk+1

ω
k
(z
)

z
0

1

zk−2 zk−1 zk zk+1

ω̇
k
(z
)

z

(a) (b)

Figure 4: The matting functions ωk (a) and ω̇k (b) with exemplary

depth coordinates zk−2 to zk+1.

with

D1(d) =
zfocus · f 2

f 2 +d ·N · (zfocus − f )
, (6)

D2(d) =
zfocus · f 2

f 2 −d ·N · (zfocus − f )
. (7)

With equation 5, the depth of anchor points can be cal-

culated by using dcocas input parameter, calculated by

the filter size of the blurring method. Note that D2(d),
d ∈ R

+ is only applicable as long as

d <
f 2

N · (zfocus − f )
. (8)

The anchor point furthest away from the camera, zK−1,

is limited by this constraint. An anchor pointzk is placed

at the average CoC of the layers Lk and Lk+1. Thus

zk =







D1

(

dk+dk+1

2

)

for k < kfocus,

D2

(

dk+dk+1

2

)

for k ≥ kfocus,
(9)

where kfocus is the index of the layer in focus and dk

and dk+1 are the CoCs of the layers Lk and Lk+1 respec-

tively. The layer’s CoC dk is given by the blur radius for

a discrete layer Lk, determined by the blurring method

(see section 3.3).

3.2.3 Determining the number of layers

The depth of rendered fragments in the scene should

lie within the depth range of the closest and furthest

anchor points (zK−1 and z0). Therefore enough an-

chor points to cover the scene have to be generated.

This can be done manually or automatically. One naive

automatic approach would be to use the near and far

clipping planes, resulting in the highest possible depth

range, which usually is not present in a scene. A better

approach is to use hierarchical N-Buffers for determin-

ing the minimum and maximum depth values within the

view frustum [9].

3.3 Blurring and Composition

We use Gaussian filters for blurring, because they can

be separated, recursively applied and produce smooth

results. The mapping from CoC to the standard devia-

tion σ of a Gaussian kernel is chosen empirically as

dpix = 4σ . (10)
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our (DP/matting/blur) Total (DP/ray-traversal) Total accum.

cascaded non-cascaded 256 128 32 rays 256 views

Homunculus (74k tri.) (46/5/51)102 (46/5/95)146 (58/1290)1348 (48/643)691 (48/140)188 4809

Dragons (610k tri.) (40/7/51)98 (40/8/85)133 (69/1374)1443 (69/685)754 (59/152)211 4163

Table 1: Performance comparisons, in ms, of our method (cascaded and non-cascaded blurring) with the ray-traversal method ([20]) and

the accumulation-buffer method for the scenes Homunculus and Dragons. Renderings have the resolution 1024× 1024 and 4 Depth-peeling

iterations (DP) have been used.

5 CONCLUSION AND FUTURE

WORK

We have presented a depth-of-field post-processing

method with the aim of overcoming the partial occlu-

sion artifact. The contribution of this work is a simple,

efficient and GPU-friendly method. We combine

depth-peeling with improved matting functions to

avoid the overhead of rendering to a high number

of depth layers. Furthermore we use high-quality

Gaussian filters in a recursive way, which has not been

done—to our knowledge—in DoF methods before.

With the usage of Gaussian filters, high blur radii can

be simulated, where even the reference methods start

to produce sampling artifacts. We have shown that

those DoF effects can be produced at frame rates that

are significantly higher than previous methods, making

high-quality DoF available for interactive applications.

One important step for the correct handling of partial

occlusion is depth peeling, which is frequently used to

resolve transparency issues, thus making the method

hardly usable for interactive applications like games.

Currently we use Gaussian filters, which are separa-

ble and can be computed efficiently while delivering

artifacts-free images. The usage of cascaded filters

while composing the DoF effect slightly alters the pro-

duced image, but results in better performance. If

higher frame rates are needed and visual quality can be

sacrificed faster blurring methods (e.g., box, pyramid

filters) can be used.

The composition by alpha-blending is simple and effi-

cient, thus leading to faster results when compared to

current methods like [20]. Layering discretization arti-

facts known from other methods are mostly avoided by

matting, depth peeling and normalization.

Wide-spread anti-aliasing methods (i.e., MSAA)

cannot be easily enabled for our method. However,

image-based anti-aliasing methods (such as MLAA or

FXAA)—which are becoming more popular due to the

wide usage of deferred shading—can be applied.

Currently, layers are split based on the dcoc of fragments

and on the chosen blurring method. This might result

in empty layers. Decomposition could be optimized by

using clustering methods, such as k-means clustering,

as proposed in [21, 16]. With the use of clustering, layer

borders could be tailored to the pixel density in scenes

and empty layers could be avoided. However, cluster-

ing is a costly process and therefore only applicable for

off-line rendering.

One further field of investigation would be the impact

of correct partial occlusion rendering on human percep-

tion. We think that a correct handling of partial oc-

clusion in combination with gaze-dependent focusing

(e.g., with an eye-tracker) would result in deeper im-

mersion of the user.
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