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ABSTRACT

We present a Visualization, Simulation, And Graphical debugging Environment (vIsage) for distributed systems. Time-varying
spatial data as well as other information from different sources can be displayed and superimposed in a single view at run-time.
The main contribution of our framework is that it is not just a tool for visualizing the data, but it is a graphical interface for a
simulation environment. Real world data can be recorded, played back or even synthesized. This enables testing and debugging
of single components of complex distributed systems. Being the missing link between development, simulation and testing,
e.g., in robotics applications, it was designed to significantly increase the efficiency of the software development process.
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1 INTRODUCTION
In many of today’s applications, the processing of time-
varying spatial data is distributed among various com-
puters and architectures. This is the case for many
scenarios such as scientific computing, massive multi-
player online gaming or mobile robotics. With increas-
ing complexity, the need to visualize the whole system’s
state as well as the need to debug single components in
an isolated environment becomes evident.

We present a visualization, debugging and simula-
tion environment that has been used in the context of
the CarOLO project, where an autonomous vehicle has
been developed. The vehicle participated in the finals
of the Urban Challenge 2007. Initially designed as a
stand-alone visualization client, our software is also ca-
pable of recording and synthesizing data, so that it can
be used as a visual debugging tool as well. The paper
is organized as follows: After giving an overview of re-
lated work in the area of visual debugging and monitor-
ing in Section 2, the core idea of vIsage as a visualiza-
tion client for distributed systems is presented in Sec-
tion 3. Afterwards, the extensions to a simulation and
debugging environment are explained in Section 4. The
technical aspects of the overall software are regarded in
detail in Section 5. The impact of the visual debugging
tool on the software development process is discussed
in Section 6 before we conclude our work in Section 7.

2 RELATED WORK
Our visual debugging system is related to the following
previous work.
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Visualizations of algorithms for debugging purposes
extend the functionality of traditional text-based
debuggers by showing data in processes in a graphical
manner. The Balsa visualization tool by Brown and
Sedgewick [BS84] names several participants in the
visual debug process: the algorithm designer, the
animator and the user. The Zeus-framework [BCA91]
introduces a system which allows different views of
the same data structure and the operating algorithms.
The Tango Framework [Sta90] defines important parts
of a debugging visualization, which are the image, its
location, its path and a transition.
These approaches concentrate on debugging single
processes and operate on a very elementary level.
From a conceptual point of view, they are quite close
to classical source code debuggers. In contrast to that,
vIsage fulfills the need to visualize and debug complex
distributed systems during run-time.

Visualizations of concurrent systems take into
account that various objects coexist in different threads
or systems. Although they are able to observe the
internal states of these objects, their main focus lies
on the information exchange among them. Jacobs
et al.[JM03] applied abstraction techniques for UML
diagrams are presented that try to reduce an object
oriented system to its essential parts. Another object
oriented debugging approach is proposed by Laffra
et al. [LM94]. It displays instances of classes as an
arrangement of animated squares. Method invocations
are made visible by a change of color. The approach
proposed by Vion-Dury et al. [VDS94] maps object
instances to various geometric bodies and arranges
them in a unique fashion. The visualization and debug-
ging of distributed multi-agent systems are presented
by Ndumu et al.[NNLC99]. Different tools are used

1

WSCG 2009 Full papers proceedings 1 ISBN 978-80-86943-93-0

Skala
Obdélník



Figure 1: Components of a distributed system: Our application scenario of vIsage is autonomous driving. Several
computers are controlling a vehicle. A vIsage client connects to the distributed system and visualizes the data. Data
may be recorded or created synthetically using a simulator and support the development and debugging process.

to create different views on the data, so that users
can concentrate on inspecting message interchange,
agent tasks, internal states of the agents and statistics.
Multi-agent systems may also be explored by exploit-
ing the third dimension to visualize time [ISMT07].
Furthermore, a trade-off between completeness and
clearness of presentation has to be considered when
single agents are hidden from the user.
These approaches succeed in visualizing complex
distributed systems, however, they do not offer any
possibility to simulate interaction among them. vIsage
enables the developers to work within a simulated
environment without the need to access the actual
working system.

Virtual or augmented reality tools are in use
for debugging in the field of robotics. As robotics
software processes primarily spatial data, it may be
argued that this kind of software is designated for
visual debugging. A selection of robotic development
tools is presented by Tick[Tic06], the most recent one
being the Microsoft Robotics Studio [CS07] which
focuses on an easily accessible development interface
and an integrated simulation environment. Robotic
development tools are also used in the RoboCup
competition, one of them is described by Penedo et
al.[PPNC03]. Collet et al.[CM06] describe a shared
perceptual space between an autonomous system and
humans, e.g. developers. In this space an augmented
reality is established, e.g. by enriching the video
stream of an input camera with projected sensor data
from the system. Obstacles can also be augmented into
a camera image to assist human drivers, [TLWK07]
uses laser scanners to detect objects in front of the car.
In automotive design the idea of a virtual dashboard
has been examined [BDGP+04], where several moni-
torable values, e.g. velocity, tire pressure and engine
temperature, are displayed on an LCD-screen mounted
at the conventional dashboard of a car. In the case of
an emergency, e.g. when a distance sensor detects a
possible impact, a warning message becomes visible

on the virtual dashboard.
The augmented and virtual reality tools mentioned
above can be seen as quite sophisticated and advanced,
because they offer the possibility to visualize complex
data in a virtual environment and may even simulate
processes. However, they lack the ability to combine
visualization, debugging, testing and simulation efforts
into one coherent workflow. vIsage is a part of a
toolchain that realizes this development paradigm.

Other aspects of the software development pro-
cess and the algorithms used in the CarOLO project
can be found in [BBR07], [LSB+08] and [BLL+08].

3 MONITORING DISTRIBUTED SYS-
TEMS

In automotive computer systems the need for a central
monitoring and visualization tool has emerged in order
to keep pace with the amount of data transferred among
distributed components. By regarding only a single
process in the system at a time, one will in most cases
fail to detect the complex cause of erroneous behavior.
In order to monitor the whole system, all relevant data
that represent the communication among the single
components and their internal processes have to be
observed. vIsage offers the possibility to visualize all
network data packages that are exchanged as well as
arbitrary information about the internal state of single
components. As all systems are synchronized in time
via ntp, the system is able to put all incoming data
packages into a well-defined temporal order. Out of
vIsage’s various possibilities to visualize data, the most
frequently used ones are as follows.

Birds-eye view with external data. All data
with a geometrical context can be displayed and
superimposed in one bird’s-eye view, Fig. 4. In our
application, this includes position, orientation and
velocity of the car, different sensor data and meta-data
about the predefined road graph. Additional input, such
as aerial or satellite photographs which match the car’s
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GPS position can be displayed as a background image.
WGS84 encoded data such as the car’s road network
graph are projected into a local Cartesian coordinate
system. As the test areas were limited to a few square
kilometers, projection errors have been negligible.

Log message view. System log messages of any
computer can be observed with vIsage. As text
messages are the most basic possibility to compile
debugging data, the log message view is frequently
used in early development stages. A global glimpse of
the current system processes can easily be deducted by
relating each computer’s log messages.

Camera image view. Downsampled input im-
ages of currently connected cameras are shown in
different widgets. While, developers can quickly assess
the quality of the camera output, the general user can
get a better understanding of the current situation.

CAN bus message view. Similar to the com-
puter system log messages additional communication
protocols such as the car’s CAN-bus can be monitored
in a text window view with vIsage.

Graphical representation of artificial intelli-
gence voting process. Internal processes within the
artificial intelligence system, such as the evaluation of
different steering wheel rotations or the determination
of the current speed, are represented graphically.

In order to satisfy all developers’ needs, each
data source can be displayed in several media. E.g.,
for developing the actorics software, precise numerical
values for velocity and throttle are required. For
developers of other systems, a simplified graphical
representation, such as an arrow of variable length or
color are more beneficial.
The visualization of different data can interactively be
turned on or off by the user. For some complex ob-
jects, additional information, such as acceleration and
distance to other objects, can be displayed by clicking
on their graphical representation, Fig.2. Since the
system is able to access more than a dozen data sources
that can be directed to the bird’s-eye view, a different
selection of displayed information is necessary for
each individual developer. Furthermore, developers
can define and save these visualization of the data they
want to inspect at run-time.

Watchdog functionality. Due to the probability of
faults in single hardware and software components, a
watchdog system observes the status of all vital com-
puters and processes. Local watchdog applications
monitor all vital processes on every computer and their
connected devices which have to send a so-called heart-

(a) original view (magnified)

(b) additional information (magnified)

Figure 2: By clicking on certain objects, additional in-
formation is revealed

beat in regular intervals. A dedicated watchdog com-
puter keeps contact to the local instances and detects
application crashes, application freezes and the overall
availability of each computer. The watchdog’s status
evaluation is graphically accessible via vIsage, it even
provides the possibility to manually restart the system
or its components. Other meta information such as cy-
cle times of certain processes and CPU load can also be
monitored.

4 VISUAL DEBUGGING
So far, means for monitoring and visualization have
been presented. For later development stages, more
functionality is required for an efficient workflow,
Fig.6. The visualization engine is extended as follows.

Monitoring and visualizing, as described in chapter
3, are the core functionalities of vIsage and help the
developers to identify erroneous or odd behavior.
However, the reasons for failure may not be apparent
at first sight. As the access to the working system may
be limited or expensive, solving the problem in the
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(a) Car (magnified) (b) Road Graph (mag-
nified)

(c) Lane (magnified) (d) Obstacle (magni-
fied)

Figure 3: Different entities are represented through dif-
ferent visualization layers: e.g. a car (red rectangle in
a), a road network with traffic priorities (b), lane mark-
ings (c) and obstacles (d)

Figure 4: The vehicle’s sensor data visualized in a
bird’s-eye view with satellite data. The red box repre-
sents the vehicle, the dotted lines recognized lane mark-
ings (cf. to Fig. 3)

lab can be very helpful. vIsage has been designed to
be used as an interface for a virtual testing environment.

Recording all the data that are visualized with
vIsage is also possible. Dedicated testers collect these
data in case of odd or unexplainable behavior and
analyze the data offline to find an explanation of the
situation. If a problem remains unresolved, the data
recordings are handed to the responsible developers,
along with a description of the problem.

(a) Reduced Complexity

(b) Full Complexity

Figure 5: The information complexity in the top view
can be interactively adjusted by disabling (a) or en-
abling (b) particular sensor data.

Playback of the recorded data to the isolated compo-
nents, e.g., the artificial intelligence computer, may
enable the developers to debug their software more
efficiently. In combination with classical debugging
tools, they use the recorded data as input to their system
and try to discover the reasons for the behavior of their
system. To ensure that the problem was solved entirely,
the developers convert the actual data to a synthetic
what-if scenario.

What-if scenarios can be created with vIsage
and passed to the simulation framework. vIsage can be
used to synthesize spatial data such as static obstacles
and manually control dynamic objects, such as driving
vehicles, during run-time. The developers create
scenarios similar to the one recorded and provide for
a robust handling of the given situation. In contrast
to recorded data, these scenarios create the input data
for the system dynamically so that alternative decision
paths of the artificial intelligence can be examined.
The resulting behavior of the simulation is visualized
with vIsage.
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Figure 6: vIsage is the key link in the software develop-
ment process. During real world tests monitoring and
recording of the (odd) system behaviour are performed
within vIsage. For bugfixing and system adjustment de-
velopers use the offline playback function. Finally com-
plex what-if scenarious are created with vIsage in order
to simulate them.

Automatic Acceptance Tests are created and ex-
ecuted by the simulator to ensure that the system will
still cope with these situations during later development
stages. If necessary, the automatic simulation can be
inspected with vIsage.

It is important to note that the usage of vIsage does
not replace conventional source code debuggers. It es-
tablishes a very efficient and problem-oriented work-
flow that does not depend on or interfere with any de-
velopment environment.

5 SYSTEM OVERVIEW
The main reasons for the system concept, Fig.8 are the
requirement to access the data through a TCP connec-
tion and to allow the user to define which data are vi-
sualized in which view. To achieve these goals the
communication is handled through a local data source
which broadcasts on demand. An arbitrary number of
vIsage clients receives the data from data sinks. A data

(a) Zoom in

(b) Zoom out

Figure 7: The scale of the view can be adjusted in order
to get more detailed information (a) or to get the big
picture (b).

sink is a process running on every computer, it is ac-
cessed by the individual applications, e.g., the sensor,
artificial intelligence or actorics applications. Only the
requested data is sent over the TCP connection. This
enables a basic visualization on clients which are not
connected via a broadband connection. For each differ-
ent type of data there exists an individual filter which
transforms the data into displayable objects. These can
be either texts or geometric primitives which are dis-
played in the assigned views.

The user has the opportunity to adjust the display of
information. He may scroll or zoom the bird’s-eye view
7, data sources can be hidden or revealed via context
menus 5.

vIsage was implemented on a Debian Linux system
using the QT framework, but it can be easily ported to
other operating systems. Even on low-end laptops, the
vIsage system achieves real-time framerates.

6 RESULTS
vIsage was designed as a visual debugging and simu-
lation tool for arbitrary distributed systems. As it was
used in the CarOLO project, whose main goal was to
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Figure 8: A simplified depiction of the architecture.
Data sources stream their output to a data sink class,
which is accessed by separate filters. The filters
transform the received data into visualizable primitives
which are then sent to their adjacent views.

develop an autonomous car, results from this particular
software development process are given to show how
the different functionalities of vIsage are integrated in
the development toolchain. The developers of the vehi-
cle’s software system implemented the data structures
that were exchanged over the network. They used vIs-
age as a front-end for visualization and development in
the simulation environment. The testing team used vIs-
age to monitor vehicle test runs and to record single ses-
sions. The vIsage developers implemented filters and
views for all data objects and provided means to create
what-if scenarios for the simulation environment.

The first impact of vIsage on the development pro-
cess was observed in winter 2006/2007 during the early
stages of the CarOLO project. During first tests with
rather unstable software systems and hardware config-
urations, monitoring of distributed processes and com-
puters was essential for debugging. Even when the soft-
ware became more mature, hardware crashes occurred,
e.g. due to harsh weather conditions. While testing on
an abandoned military base in Germany during winter-
time, several PCs crashed due to the low temperatures.
Similar occurrences were observed on another testing
site in Texas, when the air conditioning of the vehicle
failed to sufficiently cool down the computers. In both
cases, vIsage was vital for monitoring the heartbeats of
the system and to tell apart system crashes from more
complex error sources.

Figure 9: A qualification test of the DARPA Urban
Challenge was recreated with vIsage, other dynamic
vehicles (white rectangles) were added. The concrete
barriers (red and white) were recreated using their orig-
inal positions. The red triangles indicate that they were
identified as obstacles on our vehicle’s driving lane.

Recording of data became vital when multiple soft-
ware systems worked stable and new functionality was
developed in short intervals. The time assigned to each
developer to operate on the actual vehicle was brief and
many bugs had to be found off-line. E.g., it could be
observed that the vehicle changed its driving lane mul-
tiple times without any obvious reason. Both systems
involved, i.e. the lane detection system and the artificial
intelligence, did not yield any signs of wrong behavior
when being debugged in the lab. When the testing team
recorded a session showing the erroneous lane changes,
an analysis using vIsage revealed that the error occurred
due to a receiver’s misinterpretation of the so-called
lane shift flag, that was exchanged between these two
systems. The artificial intelligence interpreted a lane
change to the left as a change to the right and tried to
get back to its original lane.

In the final project phase during fall 2007, the use
of the simulation environment in combination with vIs-
age became vital. The last and most important soft-
ware change in the project was made possible by vIs-
age, when the vehicle entered the National Qualifica-
tion Event of the DARPA Urban Challenge 2007. On
one test course the vehicle kept changing from the
outer to the inner lane, drove into oncoming traffic and
changed to the reverse driving gear unexpectedly. This
situation was recreated using vIsage and the erroneous
behavior was reproduced. The artificial intelligence de-
velopers discovered a combination of unfortunate cir-
cumstances. The concrete borders of that course were
too close to the outer lanes, so that the artificial intelli-
gence interpreted them as static obstacles. In addition,
the lanes were quite narrow and the high traffic density
diminished the vehicle’s possible paths too much. Sev-
eral parameter alterations were made so that the vehicle
managed to cope with this and similar situations. An
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automatic acceptance test was tailored to this particu-
lar situation. Together with previous acceptance tests it
ensured that this particular and other known situations
could be handled with the most recent parameter set-
tings.

7 CONCLUSION AND FUTURE
WORK

vIsage is a valuable tool for the visualization and de-
bugging of distributed systems that process spatial data.
It ensured the success of the CarOLO project, where
an autonomous vehicle was developed that participated
in the finals of the DARPA Urban Challenge. The
CarOLO project showed that complex systems require
more than a plain visualization tool. With the new tech-
nical features, e.g. monitoring distributed heartbeats of
the system parts and the record and replay of monitored
data, vIsage differs from state-of-the-art visualization
frameworks and is able to support the software devel-
oper in every stage of the software lifecycle.

A lot of possibilities exist when designing and ex-
tending an application such as vIsage. One question
that arose during the design phase was about the use
of three dimensional visualization modes. We decided
against it, because most data can be more easily read
and layered in two dimensions. By extending our sys-
tem to visualize three dimensional data, objects like
height fields from a laser scanner can be represented in
a more intuitive manner. In addition, different views of
the data can be realized and augmented with data such
as the camera images.

One benefit of vIsage was the display of aerial pho-
tographs composed with the live data. This enables the
use of vIsage as a tool for public demonstrations, as
many people are familiar with these kinds of images
from services like Google maps.

A very promising approach will be to extend the
system so that more sensor inputs can be simulated
in a realistic way. However, a complete simulation,
including data simulating laser scanners and cameras,
would enable a basic development of such systems
without the need of an actual hardware setup. The
time and ressource consuming test runs on the concrete
hardware, e.g. on a vehicle, can start after a mature
software revision is reached and different sensor setups
have been evaluated.

Although it was mainly used for supporting the soft-
ware development process in the CarOLO project, vIs-
age however is applicable in any geospatially related
scenario, e.g. monitoring and debugging robot systems
at the RoboCup, or integrating sensor network data,
e.g. from distributed embedded devices like Smart-Its
[BG03], into a global data map.
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