
Low cost finger tracking for a virtual blackboard

Eugenio Rustico
Dipartimento di Matematica e Informatica

Image Processing Laboratory

Università di Catania

Viale Andrea Doria, 6

95125, Catania, Italy

rustico@dmi.unict.it

Abstract

This paper presents a complete and inexpensive system to track the movements of a physical pointer on a flat surface. Any

opaque object can be used as a pointer (fingers, pens, etc.) and it is possible to discriminate whether the surface is being touched

or just pointed at. The system relies on two entry-level webcams and it uses a fast scanline-based algorithm. An automatic

wizard helps the user during the initial setup of the two webcams. No markers, gloves or other hand-held devices are required.

Since the system is independent from the nature of the pointing surface, it is possible to use a screen or a projected wall as a

virtual touchscreen. The complexity of the algorithms used by the system grows less than linearly with resolution, making the

software layer very lightweight and suitable also for low-powered devices like embedded controllers.

Keywords: Finger, pointer, tracking, optical, video, webcam, camera, scanline, virtual touchscreen, Human-Computer

Interaction.

1 INTRODUCTION

Among the existing graphical input devices, computer

users love especially touchscreens. The reason is that

they reflect, as no other device does, the way we use to

get in touch and interact with the reality around us: we

use to point and touch directly with our hands what we

see around us; touchscreens allow to do the same with

our fingers on computer interfaces. This preference is

confirmed by a strong trend in the industry of high-

end platforms (e.g. Surface and Touchwall from Mi-

crosoft) and in the market of mobile devices: Apple, LG

and Nokia, to cite only a few examples, finally chose a

touch-sensible display for their leading products, while

the interest for this technology is growing also for de-

sign studios, industrial environments and public infor-

mation points like museum kiosks and ATMs. Unfortu-

nately, touchscreen flexibility is low: finger tracking is

impossible without physical contact; it is not possible

to use sharp objects on them; large touch-sensible dis-

plays are expensive because of their manufacturing cost

and damage-proneness.

In [FR08] we presented a low-cost tracking system

capable of turning any static surface in a tablet, and

any kind of display - even very large ones, like pro-

jected walls - in a touchscreen. That paper focused

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

its attention mostly on the mapping algorithm and pro-

vided only a description of an early stage of the sys-

tem reported here. In this paper, instead, we introduce

a more efficient and mature system, exploiting an im-

proved pointer detection but computationally and eco-

nomically cheap as the previous one. Among the im-

provements we made:

• two proximity constraints in the pointer detection

help to reduce the number of false positives;

• a convolution-based algorithm is used to locate the

presence of a pointer;

• the gap from the reference backgrounds is kept un-

der control to detect camera movements;

• the calibration phase is faster, and the system gra-

phically shows the points to touch;

• iterative algorithms are used to solve the linear sys-

tems instead of direct formulas.

2 RELATED WORK

Research in computer interfaces is turning back to the

human body, trying to adapt the way we communicate

with computers to our natural way of move and behave.

Speech-driven interfaces, gesture-recognition softwares

and facial expression interpreters are just some exam-

ples of this recent trend. There is a growing interest in

the ones that involve real-time body tracking, especially

if no expensive hardware is required and the user does

not need to wear any special equipment. The simplest

and cheapest choice is to use optical devices to track a

specific part of the body (head, eyes, hands or even the

nose [GMR02]); we focus on finger tracking systems

WSCG 2009 Full papers proceedings 81 ISBN 978-80-86943-93-0

that do not require lasers, markers, gloves or hand-held

devices [SP98, DUS01, Lee07].

The main application of finger tracking is to move a

digital pointer over a screen, enabling the user to re-

place the pointing device (e.g. the mouse) with his

hands. While for eye or head tracking we have to direct

the camera(s) towards the users’s body, finger tracking

let us a wider range of choices.

The first possibility is to direct the camera towards

the user’s body, as for head tracking, and to translate

the absolute or relative position of the user’s finger to

screen coordinates. In [WSL00] an empty background

is needed; in [IVV01] the whole arm position is re-

constructed, and in [Jen99] a combination of depth and

color analysis helps to robustly locate the finger. Some

works tried to estimate the position of the fingertip re-

latively to the view frustum of the user; this was done

in [CT06] with one camera and in [pHYssCIb98] with

stereovision, but both had strong limits in the accuracy

of the estimation.

The second possibility is to direct the camera towards

the pointing surface, which may be static or dynamic.

Some works require a simple black pad as pointing sur-

face, making it easy to locate the user’s finger with

only one camera [LB04]; however, we may need ad-

ditional hardware [Mos06] or stereovision [ML04] to

distinguish if the user is just hovering the finger on it

or if there is a physical contact between the finger and

the surface. A physical desktop is an interesting sur-

face to track a pointer on. Some works are based on the

DigitalDesk setup [Wel93], where a overhead projector

and one or more cameras are directed downwards on a

desk and virtual objects can interact with physical doc-

uments [Ber03, Wil05]; others use a similar approach

to integrate physical and virtual drawings on vertical

or horizontal whiteboards [Wil05, vHB01, ST05], and

one integrates visual informations with an acoustic tri-

angulation to achieve better accuracy [GOSC00]. These

works use differencing algorithms to segment the user’s

hands from the background, and then shape analysis

or finger templates matching to locate the fingertips;

they rely on the assumption that the background sur-

face is white, or in general of a color different than

skin. Other approaches work also on highly dynamic

surfaces. It is possible to robustly suppress the back-

ground by analyzing the screen colorspace [Zha03] or

by applying polarizing filters to the cameras [AA07];

in the first the mouse click has to be simulated with a

keystroke, while in the latter a sophisticated mathemat-

ical finger model allow to detect the physical contact

with stereovision. Unfortunately, these two techniques

cannot be applied to a projected wall. Directing the ca-

mera towards the pointing surface implies, in general,

the use of computationally expensive algorithms, espe-

cially when we have to deal with dynamic surfaces.

A third possible approach, which may drastically re-

duce the above problems, is to have the cameras watch-

ing sidewise - i.e. laying on the same plane of the sur-

face; using this point of view we do not have any prob-

lem with dynamic backgrounds both behind the user or

on the pointing surface, and this enables us to set up

the system also in environments otherwise problematic

(e.g. large displays, outdoor, and so on). Among the

very few works using this approach, in [QMZ95] the

webcam is on the top of the monitor looking towards

the keyboard, and the finger is located with a color seg-

mentation algorithm. The movement of the hand along

the axis perpendicular to the screen is mapped to the

vertical movement of the cursor, and a keyboard button

press simulates the mouse click. However, the posi-

tion of the webcam has to be calibrated and the verti-

cal movement is mapped in an unnatural way. Also in

[WC05] we find a camera on the top of a laptop display

directed towards the keyboard, but the mouse pointer is

moved accordingly to the motion vectors detected in the

grayscale video flow; a capacitive touch sensor enables

and disables the tracking, while the mouse button has

to be pressed with the other hand. In [Mor05], finally,

the “lateral” approach is used to embed four smart ca-

meras into a plastic frame that is possible to overlap on

a traditional display.

The above approaches need to process the entire im-

age as it is captured by the webcam. Thus, every of

the above algorithms is at least quadratic with respect

to resolution (or linear with respect to image area). Al-

though it is possible to use smart region finding algo-

rithms, these would not resolve the problem entirely. In

[FR08] we proposed a different way to track user move-

ments keeping the complexity low. We drastically de-

creased the scanning area to a discrete number of pixel

lines of two uncalibrated cameras. Our system requires

a simple calibration phase that is easy to perform also

for non-experienced users.

The proposed technique only regards the tracking of

a pointer, and it is not about gesture recognition. The

output of the system, at present, is directly translated

into mouse movements, but may be instead interpreted

by a gesture recognition software.

3 SYSTEM DESCRIPTION

We propose to use two off-the-shelf webcams posi-

tioned sidewise so that the lateral silhouette of the hand

is captured into an image like figure 1. After a quick

auto-calibration, the software layer will be able to inter-

pret the image flow and translate it into absolute screen

coordinates and mouse button clicks; the corresponding

mouse events will be simulated on the operative sys-

tem in a completely transparent way for the application

level. We call pointing surface the rectangle of surface

to be tracked; as pointing surface we can choose a desk,

a lcd panel, a projected wall, etc.. An automatic region

WSCG 2009 Full papers proceedings 82 ISBN 978-80-86943-93-0

stretching is done to map the coordinates of the point-

ing surface to the target display. Any opaque object can

be used to point or touch the surface: the system will

track a finger as well as a pencil, a chalk or a wooden

stick.

Scanlines

We focus the processing only on a small number of

pixel lines from the whole image provided by each we-

bcam; we call these lines scanlines. Each scanline is

horizontal and ideally parallel with the pointing sur-

face; we call touching scanline the lowest scanline (the

nearest to the pointing surface), and pointing scanline

every other one. The calibration phase requires to grab

a frame before any pointer enters in the tracking area;

these reference frames (one per webcam) will be stored

as reference backgrounds, and will be used to look for

runs of consecutive pixels different from the reference

background. We will see later howwe detect such scan-

line interruptions (fig.1). The detection of a finger only

in pointing scanlines will mean that the surface is only

being pointed, while a detection in all the scanlines will

mean that the user is currently touching the surface. To

determine if a mouse button pressure has to be simu-

lated, we can just look at the touching scanline: we as-

sume that the user is clicking if the touching scanline is

occluded in at least one of the two views.

Figure 1: Visual representation of scanlines within

the view field of each camera.

During the calibration phase the number of scanlines

of interest may vary from a couple to tens; during the

tracking, three or four scanlines will suffice for an ex-

cellent accuracy. A detailed description of the calibra-

tion will be given later.

Noise reduction

We detect the presence of a physical pointer in the view

frustum of a webcam by comparing the current frame

with the reference background. This is simple in ab-

sence of noise; unfortunately, the video flow captured

from a CMOS sensor (the most common type of sen-

sor in low cost video devices) is definitely not ideal and

presents a bias of white noise, salt and pepper noise

and motion jpeg artifacts. This makes pointer detection

more difficult, especially when the pointer is not very

close to the camera and its silhouette is therefore only

a few pixels wide. To keep the overall complexity low

we avoid to apply any post-elaboration filter on each of

the grabbed frames and adopt two simple strategies in

order to reduce the impact of noise on our algorithm.

The first strategy is to store, as a reference back-

ground, not just the first frame but the average of the

first b frames captured (in current implementation,

b = 4). The average root mean square deviation of

a frame from the reference background, after this

simple operation, decreases from ~1.52 to ~1.26 (about
−17%).

The second strategy is to apply a simple convolution

to the scanlines we focus on. The matrix we use is




0 0 0

1 1 1

0 0 0





with divisor 3. This is equivalent to say that we re-

place each pixel with the average of a 1 pixel neigh-

borhood on the same row; it is not worth increasing the

neighborhood of interest because by increasing it we

decrease the tracking accuracy.

Finally, we keep track of the Root Mean Square Er-

ror (RMSE) with respect to the reference frames; if the

RMSE gets higher than a threshold, this is probably due

to a disturbing entity in the video or to a movement of

the camera rather than to systematic noise. In this case,

the system automatically stops tracking and informs the

user that a new reference background is about to be

grabbed.

Fast pointer detection

Although some noise has been reduced, we cannot rely

only a binary differencing algorithm. A set of pixels

different from the reference frame is meaningful if they

are close to each other; we apply this spatial contigu-

ity principle both horizontally and vertically. This ap-

proach imitates the so called Helmholtz principle1 for

human perception.

The first goal is to find a run of consecutive pixels

significantly different from the reference; what we care

is the X coordinate of the center of such interruption.

We initialize to zero a buffer of the same size of one

row, then we start scanning the selected line (say l). For

each pixel p= (px, pl), we compute the absolute differ-

ence δp from the correspondent reference value; then,

for each pixel q= (qx,ql) in a neighborhood long n, we
add this δp multiplied by a factor m inversely propor-

tional to |px−qx|. Finally we read in the buffer a peak

1 The Helmholtz principle states that an observed geometric structure

is perceptually meaningful if its number of occurrences would be very

small in a random situation (see [MmM01]).

WSCG 2009 Full papers proceedings 83 ISBN 978-80-86943-93-0

Figure 2: The buffer used for the analysis of the

green row shows a clear peak

value correspondent to the X coordinate of the center

of the interruption (fig. 2); if no interruption occurred

in the row (i.e. pixels different from the reference were

not close to each other), we will have only “low” peaks

in the buffer. To distinguish between a “high” and a

“low” peak we can use a fixed or a relative threshold;

in our tests, a safe threshold was about 20 times greater

than the neighborhood length.

Now we have a horizontal proximity check, but not

a vertical one yet. As section 3 explains, each we-

bcam sees the pointer always breaking into the view

frustum by the upper side. The pointer silhouette may

be straight (like a stick) or curved (e.g. a finger); in

both cases, the interruptions found on scanlines close to

each other should not differ more than a given thresh-

old. This vertical proximity constraint gives a linear

upper bound to the curvature of the pointer, and helps

discarding interruptions caused by noise or other ob-

jects entering in the view frustum; in other words, the

system detects only pointers coming from above, and

keeps working correctly if other objects appear in the

view frustum from a different direction (e.g. the black

pen in fig. 3).

Figure 3: The system correctly detects only the

pointer coming from above.

These two simple proximity checks make the recog-

nition of the pointer an easier task. Fig.4 shows the cor-

rect detection of the pointer (a hand holding a pen) over

a challenging background. The lower end of the verti-

cal sequence of interruptions is marked with a little red

cross.

Figure 4: The vertical contiguity constraint of a

hand holding a pen.

Positioning the cameras

The proposed technique requires the positioning of two

webcams relatively to the pointing surface. The sim-

plest choice is to put them so that one detects only

movements along the X axis, while the other one de-

tects Y axis changes. This solution is the simplest to

implement, but requires the webcams to have their op-

tical axes perfectly aligned along the sides of the point-

ing surface. Moreover, the wider is the view field of a

webcam, the more we loose accuracy on the opposite

side of the surface. On the other hand, the narrower is

the view field of the webcams, the farther we have to

put them to capture the entire surface.

Figure 5: Example of a simple but inefficient

configuration.

In figure 5, for example, the webcam along Y axis of

the surface has a wide view field, but this brings resolu-

tion loss on segmentDC; on the other side, the webcam

WSCG 2009 Full papers proceedings 84 ISBN 978-80-86943-93-0

along X axis of the surface has a narrow view field, but

it has to be positioned far from the pointing surface to

cover the whole area. If the surface is a 2×1.5m pro-

jected wall and the webcam has a 45° view field, we

have to put the camera ~5.2 meters away to catch the

whole horizontal size.

A really usable system should not bother the final

user about webcam calibration, view angles and so on.

A way to minimize the calibration effort is to posi-

tion the webcams near two non-opposite corners of the

pointing surface, far enough to catch it whole and ori-

ented as the surface diagonals were about bisectors of

the respective view fields (figure 6). With this config-

uration there is no need to put the webcams far away

from the surface; this reduces the accuracy loss on the

“far” sides.

Figure 6: Suggested configuration to optimize the

use of view frustum of the cameras.

In the rest of this paper we will assume, for the sake

of clarity, that the webcams are in the same locations

and orientations as in figure 6. However, the proposed

tracking algorithm works with a variety of configura-

tions without changes in the calibration phase: the ca-

meras may be positioned anywhere around the surface,

and we only need that they do not face each other.

Calibration phase

When the system is loaded, the calibration phase starts.

In this phase, after grabbing the reference backgrounds,

we ask the user to touch the vertices of the pointing

surface and its center. When a pointer is detected in

both views, we track the position of its lower end (the

red cross in fig. 4 and 3); if this position holds with a

low variance for a couple of seconds, the correspondent

X coordinate is stored. After we grabbed the position

of all the five points, we compute the Y coordinate of a

“special” scanline as the lowest row not intercepting the

pointing surface: during the tracking we will focus only

on this row to grab the position of the pointer, so that

the overall complexity will be linear with the horizontal

resolution.

Tracking algorithm

During the calibration phase we stored the X coordi-

nate of each vertex as seen by the webcams. The ba-

sic idea is to calculate the perspective transformation

that translates the absolute screen coordinates to abso-

lute coordinates in the viewed image. We store vertices

in homogeneous coordinates and use a 3x3 transforma-

tion matrixM:




l11 l12 l13
l21 l22 l23
l31 l32 l33



 ·V = P ·α

Since P is determined up to a proportional factor α
there is no loss of generality in setting one of the ele-

ments of M to an arbitrary non-zero value. In the fol-

lowing we set the element l33 = 1. To obtain all the

other elements of M, in principle the correspondence

between four pairs of points must be given. The pro-

posed application only needs to look at horizontal scan-

lines; for this reason there is no need to know the coef-

ficients l21,l22,l23 of M and we only have to determine

the values of l11,l12,l13,l31,l32.

The number of unknown matrix elements has been

decreased to five, so we only need the x coordinate

of five points (instead of the x and y of four points).

During the calibration phase, we ask the user to touch

the four vertices of the pointing surface and its center.

This setup greatly simplifies the computation of the un-

known coefficients. Indeed points A,B,C,D and the cen-

ter E (see fig.6) have screen coordinates respectively:

A = (0,0)
B = (0,H)
C = (W,H)
D = (W,0)
E = (W/2,H/2)

when the display resolution isW ×H.

If Q is a point on the surface, let Qxp be the x coor-

dinate of the corresponding projected point. The final

linear system to solve is:









0 H 0 −HBxp

W H −WCxp −HCxp

W 0 −WDxp 0

Ex Ey −ExExp −EyExp









·









l11
l12
l31
l32









=









Bxp−Axp

Cxp−Axp

Dxp−Axp

Exp−Axp









which makes easy to obtain l11, l12, l13, l31, l32 for

each camera.

During the tracking phase we face a somehow inverse

problem: we know the projected x coordinate in each

view, and from these values (let them be Xl and Xr) we

would like to compute the x and y coordinates of the

correspondent unprojected point (that is, the point the

user is touching). Let li j be the transformation values

for the first camera, and ri j for the second one; the linear

system we have to solve in this case is

WSCG 2009 Full papers proceedings 85 ISBN 978-80-86943-93-0















l11xl + l12yl + l13zl = Xl

l31xl + l32yl + zl = 1

r11xr + r12yr + r13zr = Xr

r31xr + r32yr + zr = 1

It is convenient to divide the first two equations by

zl and the latter two by zr, and rename the unknown

variables as follows:

x =
xl

zl
=

xr

zr

y =
yl

zl
=

yr

zr

z′l =
1

zl

z′r =
1

zl

so that the final system is









l11 l12 −Xl 0

l31 l32 −1 0

r11 r12 0 −Xr

r31 r32 0 −1









·









x

y

z′l
z′r









=









−l13
−1

−r13
−1









This is a determined linear system, and it is possible

to prove that in the setting above there is always one

and only one solution. By solving this system in x and

y we find the absolute coordinates of the point that the

user is pointing/touching on the surface.

We can solve this system in a very fast way by com-

puting once a LU factorization of the coefficient ma-

trix, and by using it to compute x and y for each pair

of frames; we can also use numerical methods, such

as Single Value Decomposition, or direct formulas. In

the previous version of the system direct formulas were

used, while now a LU factorization is implemented.

Resolution accuracy

Let’s consider now how accurate is the tracking system

depending on display and webcam physical character-

istics. Let t = (xt ,yt) be a point on the pointing surface,
XD×YD the display resolution (i.e. the resolution of the

projector for a projected wall) and XW1
×YW1

the reso-

lution of a webcam W1; let βW1
be the bisector of the

view frustum ofW1, and let the upper left corner of the

surface be the origin of our coordinate system (with Y

pointing downwards, like in fig.7). We assume for sim-

plicity that the view frustum of the camera is centered

on the bisector of the coordinate system, but the fol-

lowing considerations keep their validity also in slightly

different configurations.

The higher is the number of pixels detected by the

webcam for each real pixel of the display, the more ac-

curate will be the tracking. Thus, if we want to know

how accurate is the detection of a point in the pointing

surface, we could consider the ratio between the length

in pixels of the segment χt , passing by t and perpen-

dicular to βW1
, and the number of pixels detected by

the webcam W1. We define resolution accuracy of W1

in t and we call σ(W1,t) this ratio. It is clear that we

only care about the horizontal resolution of W1, which

is constant in the whole view frustum of the camera (fig.

7)

Figure 7: We define “resolution accuracy ofW1 in

t“ the ratio between the length of χt and the

number of pixels detected byW1.

Because pixels are approximatively squares, the

number of pixels along the diagonal of a square is

equal to the number of pixels along an edge of the

square; thus, the length of χt will be equal to the

distance from the origin of one of the two points that χt

intercepts on the X and Y axes. For every point p ∈ χt

is xp + yp = k; then, its length will be equal to the

y-intercept of the line passing by t and perpendicular

to βW1
. So we have |χt | = xt + yt; hence, the resolution

accuracy ofW1 in t is

σ(W1,t) =
Xw

xt + yt

One of the most interesting applications of the system

is to projected walls, so that they become virtual black-

boards. A very common projector resolution is nowa-

days 1024× 768 pixels, while one of the maximum

resolutions that recent low-cost webcams support is

1280×1024pixels at 15 frames per second. In this con-

figuration, the resolution accuracy in t = (1024,768) is

σ(W1,t) =
1280

1024+768
≈ 0.71

This is the lowest resolution accuracy we have with

W1 in the worst orientation; if we invert the X axis to

get the accuracy forW2 (supposing thatW2 is placed on

the upper right corner of the surface), σ(W2,t)≈ 1.7. In
the central point u = (512,384) of the display we have

WSCG 2009 Full papers proceedings 86 ISBN 978-80-86943-93-0

σ(W1,u) = σ(W2,u) ≈ 1.4; it is immediate that, in the

above configuration, the average resolution accuracy is

higher than 1:1 (sub-pixel).

Algorithm complexity

The number of scanlines is constant and in the track-

ing phase it is not useful to use more than 3 or 4 of

them. For each scanline we do a noise reduction (in lin-

ear time), we apply a linear convolution filter (in linear

time too) and then we do a linear search for a peak. Fi-

nally, we solve the system (in constant time). The total

complexity is therefore linear with the horizontal reso-

lution of the webcams.

4 EXPERIMENTAL SETTINGS AND

SYSTEM PERFORMANCE

The webcams we used for testing are two Philips

SPC1000NC, with a native SXGA video sensor; their

2008 price has been of about 40BCeach, and they are ca-

pable of producing a SXGA video at about 15fps, and

a VGA one at 60fps. There is a mature Video4Linux2

compliant driver (uvcvideo) available for GNU/Linux.

Our prototype has good resolution accuracy and ex-

cellent time performances: less than 10 milliseconds

are needed to elaborate a new frame and compute the

pointer coordinates. Two USB webcameras connected

to the same computer can usually send less than 20

frames per second simultaneously, while the software

layer could elaborate hundreds more.

We implemented the tracking system in C++ in a

GNU/Linux environment; in the relatively small source

code (less than 4000 lines) all software layers are

strictly separated, so that it is possible to port the whole

system to different platforms with very little changes

in the source.

A demonstrational video is available for download

at http://svg.dmi.uni
t.it/iplab/download/FingerTra
king/. At the same URL is available

a demonstrative video of a previous version of the

presented system.

5 CONCLUSIONS AND FUTURE

WORK

We presented a low cost system for bare finger track-

ing able to turn lcd displays into touchscreens, as well

as a desk into a design board, or a wall into an in-

teractive whiteboard. Many application domains can

benefit from the proposed solution: designers, teachers,

gamers, interface developers. The proposed system re-

quires a simple calibration phase.

Future works will be devoted to improve the robust-

ness of the calibration and the pointer-detection subsys-

tems; moreover, suitable evaluation procedures to test

the empirical accuracy of tracking will be addressed.

Adding multitouch support will also be considered.

ACKNOWLEDGEMENTS

Thanks to prof. G.Gallo for the invaluable guidance

offered during this research and dr. G.M.Farinella

for his support and assistance in the set up of the

previous version of the system. We also thankit.s
ienza.matemati
a newsgroup for their

precious tips.

REFERENCES

[AA07] Chandraker M. Blake A. Agarwal A.,

Shahram Izadi S. High precision multi-

touch sensing on surfaces using over-

head cameras. In Horizontal Interac-

tive Human-Computer Systems, 2007.

TABLETOP ’07. Second Annual IEEE

International Workshop on, pages 197–

200, 2007.

[Ber03] F. Berard. The magic table: Com-

puter vision based augmentation of a

whiteboard for creative meetings. IEEE

International Conference in Computer

Vision, 2003.

[CT06] Kelvin Cheng and Masahiro Takat-

suka. Estimating virtual touchscreen

for fingertip interaction with large

displays. In OZCHI ’06: Pro-

ceedings of the 20th conference of

the computer-human interaction spe-

cial interest group (CHISIG) of Aus-

tralia on Computer-human interaction:

design: activities, artefacts and envi-

ronments, pages 397–400, New York,

NY, USA, 2006. ACM.

[DUS01] Klaus Dorfmüller-Ulhaas and Dieter

Schmalstieg. Finger tracking for in-

teraction in augmented environments.

Augmented Reality, International Sym-

posium on, 0:55, 2001.

[FR08] G.M. Farinella and E. Rustico. Low

cost finger tracking on flat surfaces.

In Eurographics Italian chapter 2008,

2008.

[GMR02] D. Gorodnichy, S. Malik, and G. Roth.

Nouse ’use your nose as a mouse’ - a

new technology for hands-free games

and interfaces, 2002.

[GOSC00] Christophe Le Gal, Ali Erdem Ozcan,

Karl Schwerdt, and James L. Crowley.

A sound magicboard. In ICMI ’00:

Proceedings of the Third International

Conference on Advances in Multimodal

WSCG 2009 Full papers proceedings 87 ISBN 978-80-86943-93-0

Interfaces, pages 65–71, London, UK,

2000. Springer-Verlag.

[IVV01] Giancarlo Iannizzotto, Massimo Vil-

lari, and Lorenzo Vita. Hand tracking

for human-computer interaction with

graylevel visualglove: turning back to

the simple way. In PUI ’01: Proceed-

ings of the 2001 workshop on Percep-

tive user interfaces, pages 1–7, New

York, NY, USA, 2001. ACM.

[Jen99] Cullen Jennings. Robust finger tracking

with multiple cameras. In In Proc. of

the International Workshop on Recog-

nition, Analysis, and Tracking of Faces

and Gestures in Real-Time Systems,

pages 152–160, 1999.

[LB04] Julien Letessier and François Bérard.

Visual tracking of bare fingers for in-

teractive surfaces. In UIST ’04: Pro-

ceedings of the 17th annual ACM sym-

posium on User interface software and

technology, pages 119–122, New York,

NY, USA, 2004. ACM.

[Lee07] Johnny Chung Lee. Head tracking for

desktop VR displays using the Wii re-

mote. //www.
s.
mu.edu/~johnny/proje
ts/wii/. 2007.
[ML04] Shahzad Malik and Joe Laszlo. Vi-

sual touchpad: a two-handed gestural

input device. In ICMI ’04: Proceedings

of the 6th international conference on

Multimodal interfaces, pages 289–296,

New York, NY, USA, 2004. ACM.

[MmM01] Lionel Moisanm and Jean michel

Morel. Edge detection by helmholtz

principle. Journal of Mathematical

Imaging and Vision, 14:271–284, 2001.

[Mor05] Gerald D. Morrison. A camera-based

input device for large interactive dis-

plays. IEEE Computer Graphics and

Applications, 25(4):52–57, 2005.

[Mos06] Tomer Moscovich. Multi-finger cursor

techniques. In In GI ’06: Proceedings

of the 2006 conference on Graphics in-

terface, pages 1–7, 2006.

[pHYssCIb98] Yi ping Hung, Yang Yao-strong, Yong

sheng Chen, and Hsieh Ing-bor. Free-

hand pointer by use of an active stereo

vision system. In in Proc. 14th

Int. Conf. Pattern Recognition, pages

1244–1246, 1998.

[QMZ95] F. Quek, T. Mysliwiec, and M. Zhao.

Fingermouse: A freehand computer

pointing interface, 1995.

[SP98] Joshua Strickon and Joseph Paradiso.

Tracking hands above large interactive

surfaces with a low-cost scanning laser

rangefinder. In Proceedings of CHI’98,

pages 231–232. Press, 1998.

[ST05] Le Song and Masahiro Takatsuka.

Real-time 3d finger pointing for an aug-

mented desk. In AUIC ’05: Pro-

ceedings of the Sixth Australasian con-

ference on User interface, pages 99–

108, Darlinghurst, Australia, Australia,

2005. Australian Computer Society,

Inc.

[vHB01] Christian von Hardenberg and François

Bérard. Bare-hand human-computer

interaction. In PUI ’01: Proceedings of

the 2001 workshop on Perceptive user

interfaces, pages 1–8, New York, NY,

USA, 2001. ACM.

[WC05] AndrewD. Wilson and Edward Cutrell.

Flowmouse: A computer vision-based

pointing and gesture input device. In In

Interact ’05, 2005.

[Wel93] Pierre Wellner. Interacting with paper

on the digitaldesk. Communications of

the ACM, 36:87–96, 1993.

[Wil05] Andrew D. Wilson. Playanywhere:

a compact interactive tabletop

projection-vision system. In Patrick

Baudisch, Mary Czerwinski, and

Dan R. Olsen, editors, UIST, pages

83–92. ACM, 2005.

[WSL00] Andrew Wu, Mubarak Shah, and

N. Da Vitoria Lobo. A virtual 3d black-

board: 3d finger tracking using a sin-

gle camera. In In Fourth IEEE Interna-

tional Conference on Automatic Face

and Gesture Recognition, pages 536–

543, 2000.

[Zha03] Zhengyou Zhang. Vision-based in-

teraction with fingers and papers.

In Proc. International Symposium on

the CREST Digital Archiving Project,

pages 83–106, 2003.

WSCG 2009 Full papers proceedings 88 ISBN 978-80-86943-93-0

	!_WSCG2009_FULL_final_NUMBERED.pdf
	B47-full

