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ABSTRACT

We present a Monte Carlo method that generates a quadrilateral mesh from a point cloud. The proposed algorithm evolves an
initial quadrilateral mesh towards the point cloud which mesh is constructed by means of the skeleton of the input points. The
proposed technique proves to be useful in case of relatively complex point clouds that describe smooth and non-self-intersecting
surfaces with junctions/branches and loops. The resulted quadrilateral mesh may be used to reconstruct the surfaces by means

of tensor product patches such as B-spline or NURBS.
Keywords:

1 INTRODUCTION

Surface reconstruction from point clouds (scattered
data or unorganized set of points in space/plane) is
a key issue in several fields of geometric modeling,
such as reverse engineering or medical applications.
Most often, tensor product surfaces (e.g. NURBS
surfaces) are used to describe the surfaces, that require
organized point sets, i.e. points arranged into rows
and columns. Therefore, quadrilateral meshes has to
be extracted from the point cloud, or the cloud has
to be approximated by a quadrilateral mesh, then the
quadrilateral mesh can be interpolated or approximated
by tensor product surface patches.

The usual way to produce a quadrilateral mesh con-
sists of two steps. At first a triangular mesh is generated
from the point cloud, then the quadrilateral mesh from
the triangular one. There are numerous publications
dealing with triangular mesh generation from scattered
data, cf. [EM94], [HG97], [HDD'92], [K6s01] and
references therein. Concerning the triangular mesh to
quadrilateral mesh generation process the reader is re-
ferred to [TACSDO06] and references therein.

Our objective is to generate quadrilateral mesh from
a point cloud without a previous triangular mesh gen-
eration. There are some papers (cf. [BF02], [VHK99],
[GY95]) that generate quadrilateral mesh directly from
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unorganized set of points that represent surfaces of sim-
ple form (and topology). All of them use neural net-
works.

Our proposed Monte Carlo method allows more com-
plex geometry. We assume that a point cloud and its
topological graph (skeleton) are given. The method
consists of the following main steps:

e build an initial rough quadrilateral mesh around the
skeleton;

e refine the mesh;

e adjust the mesh to the point cloud using a Monte
Carlo method.

The resulted quadrilateral mesh can be interpolated
or approximated by tensor product surfaces.

The rest of the paper is organized as follows. In
Section 2 there is a short review of skeleton genera-
tion methods of spatial point clouds, Section 3 contains
our proposed MC method for quadrilateral mesh gener-
ation, in Section 4 some test results and examples are
presented and a section on future work concludes the

paper.

2 SKELETON OF SPATIAL POINT
CLOUDS

A skeleton (topological graph) is an abstraction of a 2D
or 3D object that represents the shape of the object. It
is a graph structure that represents the substantial parts
of the object and their relations. The edges of the graph
are the representation of such parts of the objects that
are roughly of the same thickness/diameter. Skeleton
can be considered as an approximation of the centerline
of the medial axis. A comprehensive study on skeletons
can be found in [CMSO07].
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Figure 1: (a) A T-shaped scattered point data set is presented together with its skeleton. (b) A prism is placed in
the T-junction. The prism consists of six face groups. (c) The right face group is extruded along its corresponding
bone. (d) The left face group is also extruded along its corresponding bone. (e) The bottom face group is extruded
along the T-leg, too. (f) The face group at the bottom of the T-leg is deleted. (g) All faces in face groups are split
in four smaller faces that form new face groups which replace the old ones. (h) The previous smoothing step is
repeated once again.
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There are several methods for the determination of
skeletons of 2D or 3D objects. These methods fall
into one of the following categories: voxel topology
([GS99], [BND99]), geometric ([DZ04], [AMI7],
[WML™03], [DS06]), implicit ((BKS01], [CSYBO05al,
[GGOO0]) and deformable model evolution ([SLSKO07]).
A detailed survey on these methods can be found in
[CSYBO5b].

This paper does not deal with the computation of the
skeleton. We assume that the skeleton of the point cloud
has been produced already.

3 PROPOSED MONTE CARLO
METHOD

Our approach to reconstruct a surface from an unorga-
nized (scattered) point set

P={peR’:i=12,.. N}

is based on a Monte Carlo (MC) method and a flexible
quadrilateral mesh data structure that consist of:

e rypes like vertices, oriented halfedges, counterclock-
wise oriented faces and face groups that consist of
four adjacent faces that have a common vertex (i.e.
a face group is a fan of quadrilateral faces);

e methods for fast neighborhood access, mesh
smoothing, face group scaling, rotating, extruding,
deleting and vertex merging.

MC methods are computational algorithms that pro-
vide approximate solutions to a variety of mathemati-
cal problems by performing statistical sampling exper-
iments on a computer. These methods are successfully
applied in computer graphics, e.g. in global illumina-
tion computing, a comprehensive study of which can be
found in [SK99]. Each MC method follow a particular
pattern:

o first, we need to define a domain of possible inputs;

e second, we generate inputs randomly from the do-
main and perform a deterministic computation on
them;

o finally, we aggregate the results of the individual
computations into the final result.

In what follows, we assume that the skeleton
S={(bj,A;)):j=1,2,....M}

of the point cloud P is known, where b; € R3 repre-
sents one of the two endpoints of a bone, while A; €
2 ({1,2,...,M}\{j}) is the adjacency list of the bone
node b;. Using adjacency lists A; (j = 1,2,...,M), one
is also able to create an adjacency matrix

A= layly iz, m € Aum({0,1}),
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where

o — 1, if bone node by, is connected to by,
K= 0, otherwise.

Naturally, the point cloud P corresponds to the do-
main of possible inputs. Based on the adjacency matrix
A of the skeleton, we are able to build a rough quadrilat-
eral mesh Q that will be evolved (i.e. spanned/stretched
to the point cloud) by the proposed MC method. Figure
1 presents the steps of the creation process of the rough
quadrilateral mesh that is based on the skeleton of a
T-shaped point cloud. The vertices q; (i = 1,2,...,n)
of the mesh Q can be considered as control points.
After the mesh Q has been created, one can evaluate
the average unit normal vectors n; (i = 1,2,...,n) that
are associated with control points q;. Later, after ev-
ery deformation of mesh Q, these unit normal vectors
will be reevaluated. The initial unit normal vectors of
the quadrilateral mesh associated with the previous T-
shaped point cloud are illustrated in Figure 2.

Note, in general Q is not a fixed sized quadrilateral
mesh, however, most of its parts can be decomposed
in smaller regular control nets that determine smooth
interpolating or approximating patches. The decompo-
sition is not possible around extraordinary points which
by definition are control points connected to other than
four edges. In the neighborhood of extraordinary points
one can use some kind of merging method, e.g. the
bicubic T-spline patch merging algorithm provided by
[SZBNO3]. Figure 3 illustrates two types of extraordi-
nary points.

Points of the cloud P will be organized in cells using
a (balanced) 3-dimensional kd-tree Tp which is a space-
partitioning data structure useful in case of applications
that involve range or nearest neighbor searches.

Consider the notations of Figure 4. The proposed
algorithm in each iteration step tends to span the ver-
tex q; = (qfc,q;,qé)T (i=1,2,...,n) along its unit nor-
mal vector n; to an optimal point 0;€ R* which approx-
imates the position of the yet unknown nearest cloud
point to q; as follows.

Let us denote by

Ol
=12 1=1.2,...,c
C

the half angles of a right circular cone sequence

{ ¢ :[0,00) x [0,27] — R3,
¢ (u,v) = (cf (u,v) ¢ (u,v),c (u7v))T,

that share the common axis n; and apex ;. The number
c of cones and the maximal half angle o.x are user-

defined parameters. If k' = n; = (K}, k), k. )T, j =K x

xRy Bz

T (g 4 T I P ¥
- X Jyr - - b
(1,0,0) (s dirdt)” and i = j' x K = (i}, 1)

X by iz
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then this cone sequence is defined by the matrix equa- Parameter r is also user-definable. We also introduce

tion the set of rays
] C;C(M,V) R:{rk(u):ue[Opo),
c(uv) ] | ¢ (uv) k=1,2,....c-(r+1)+1}
1 | cj (u,v) ={qi+u-n;, cy(u):
! [1=1,2,....c;
+/ -/ / [ ]
B Ty kf q} ucosy g=0,1,....r, uc[0,00)}
5y k gy | | usiny
I T S <A utan (5 —oy) |- the. elements of which may ‘intersect several adjacent
0 0 0 1 1 point cells around control point q;.

In case of each cone ¢; (I = 1,2,...,¢), let r+1
(r > 0) be the number of fixed and uniformly distributed
generators

281
¢ (u) =¢ (u,g),go,l,...,r, u € [0,00).
r

Figure 4: The image depicts a set of uniformly dis-
tributed rays (generators) of a sequence of right and
circular cones that share the common axis n; and apex
q;. The colored dots represent different cells of the 3-
dimensional kd-tree that was associated with the point
cloud

Let m > 1 either be a user defined or cell based num-
X ber of random point samples and consider the set of in-
quadrilateral mesh are presented dices K = {ky,ka, ...k} C{1,2,....c- (r+1)+ 1} for
which the ray ry; (= 1,2,...,7) intersects a point cell.
Note, m is much less than the number of possible input
points within a cell. Also, it is possible that different
rays intersect the same cell of input points. Each ray
ry; generates a minimal projection

Figure 2: Initial average unit normal vectors of a

d;= min {r0_~a }
I i m UKk

where the vector rgj is the unit direction of ray ry;
and points a; (I = 1,2, ..., m) are random sample points
from the cell which is intersected by the ray ry;.

Let
Figure 3: Two parts of a quadrilateral mesh are shown. D, = {dj : |dj| <g j=12,... ,Z}
The highlighted verti f th h traordi
p0§1 tslg tehted vertices OF The Meshh are extraor@inaly  be the set of feasible minimal projections, where € > 0

is also a user defined parameter which determines the
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maximal distance of the acceptable point cells from
control point q;. The average of feasible minimal pro-
jections

= 1

68 - Di Z 6
| € ‘ SeDe

determines the current optimal point

0;=qi+5m;

that will be the new position of ;. After repositioning
q; its average unit normal vector n; will also be reevalu-
ated. Such an iterative process is presented in Figure 5.

This generational process is repeated until a termina-
tion condition has been reached. Common terminating
conditions are: a fixed number of iterations is reached
or the error of the current solution (i.e. the quadrilat-
eral mesh) is at such a level that successive iterations
no longer produce better results.

The error of the evolving mesh Q can be calculated
as follows. Suppose, the 3-dimensional kd-tree Tp con-
sists of point cells

Z, = {Pzw = (XpgsYiws2) | 2w = 1»2,~~~7WI}7
[=1,2,...,L

Naturally, the point cells Z; (I =1,2,...,L) are disjoint
sets and the union of them results the point cloud P.

Let us denote by

1 T
g = 7 Z p:<gfmglwgi) €R3a
| l| P<EZ,;

the center of gravity of the cell Z; (I = 1,2,...,L) and
by

T
q:(ﬂﬂﬂ)eR3

xrtyrtz

the unit normal vector of the plane 7; that contains the
point g; and it is parallel to least square plane deter-
mined by the cell Z;. Components tfc, té and té are ob-
tained by solving the symmetric homogeneous system

o s 81717 [0
Boi Bii B n|=10 (D
By, Bl B t 0

with the constraint

() () + () =1,
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where
W
I _ 1 2
00 = Xiw —8x ) >
w=1
W
[ _ 1\?
1= Yiw =8y >
w=1

=

(
<

=
n

01 = Xiw — gx)
w=1
W
l 1
02 — (xlw _gx> (le gz> )
w=1
\1%,

]
5112 = Z ()’IW —g,lv) (le —gi) .
w=1
With this constraint, it is readily seen that the solution
to the system (1) is an eigenvalue problem. The three
eigenvectors are mutually orthogonal and define three
sets for components £/, t)l, and té. These three sets rep-
resents the best, intermediate and worst planes. In our
case, we want to choose for t; the eigenvector associ-
ated with the smallest eigenvalue. The cyclic Jacobi
numerical method can be used to find the eigenvalues
and the eigenvectors of the symmetric matrix appeared
in (1).
IfZ; (I € {1,2,...,L}) is the nearest cell to the con-
trol point q; (i € {1,2,...,n}), then

ei=[t-(q;—g)|

denotes the distance between q; and the plane 7;. Now,
the average value

=

e= e;

1
n;

Il
—_

is the error level of the current quadrilateral mesh Q.
In what follows, we examine the complexity
of the proposed algorithm. Building a static

kd-tree from point cloud P={po,pi,...,pn}
takes O ((N+1) log? (N + 1)) time if an
O((N+1)log(N+1)) sort is used to compute

the median at each level. The complexity is
O((N+1)log(N+1)) if a linear median-finding
algorithm such as the one described in [CLR90]
(Chapter 10) is used. A ray-shooting/tracing can be
done by an O (log (N + 1)) operation.

Thus, the runtime complexity of the algorithm is

O((N+1)log(N+1))
+O0((c-(r+1)+1)-log(N+1)-m

=12

+l max LWI—|—32> -n-I)

=O0((N+1+n-I)log(N+1)),
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Figure 5: Here we can follow-up the evolution of the quadrilateral mesh after successive iterations of the proposed

MC algorithm

where:

e [ is the number of iterations/steps performed by the
method;

e 1 is the number of control points within control net
Q;

e ¢ (r+1)+1 is the number of rays associated with
an evolving control point;

e m is the number of random point samples from a
point cell;

e max;—ip, .1 W <N+ 1is the maximum number of
cloud points within an arbitrary point cell;

e O(3?%) is the complexity of Jacobi cyclic method
that calculates the eigenvectors of a symmetric ma-
trix of dimension 3 x 3.

4 RESULTS AND EXAMPLES

Figure 6 shows the main steps of the algorithm for a
complex geometry. The parameters of the algorithm
were set as follows:

e the number of input points is 182274, the bound-
ing box of the model is [—6.8,6.8] x [—7.83,7.83] x
[—7.83,7.0];

e the maximal half angle is Otmx=7/18;
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o the number of cones is 4 while the number of fixed
generators/rays on each cone is 6;

e the maximal distance of acceptable point cells is € =
2;
e for each vertex of the mesh the number of random

samples is 10;

e the final error level is 0.056.

In case of the point cloud depicted in Figure 7 most
of the parameters of the algorithm were set as in the
previous example. The differences consist in:

e the number of input points is 413696,
while the bounding box of the model is
[—24.88,4.43] x [-17.25,10.91] x [—1.71,7.41];

e the maximal distance of acceptable point cells is € =
0.8;

e after approximately 20 iterations the error level of
the mesh is 0.051.

S CONCLUSION AND FUTURE
WORK

As itis illustrated in Section 4 the proposed algorithm is
able to generate a quadrilateral mesh from point clouds
that represent quite complex geometry. However, there
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Figure 6: The main steps of the algorithm in the case of a complex model

are several problems to be solved. At the moment,
the proposed algorithm is not able to generate a cor-
rect quadrilateral mesh in case of point clouds that ei-
ther describe very detailed surfaces or have junctions
the branches of which form very small acute angles.
In such cases, the resulted quadrilateral mesh will have
self intersections in the neighborhoods of arms due to
the fact that adjacent vertices of the evolving mesh in
vicinities of junctions are moved along their average
unit normal vectors. In this phase the initial rough
quadrilateral mesh is constructed manually by means
of the given skeleton. It is highly probable that an au-
tomatic initial mesh generation will cause undesired ef-
fects like twists, self intersections, etc.

In the immediate future we plan to improve the pre-
sented algorithm by introducing more constraints and
penalty functions to handle such disadvantages. Un-
fortunately/naturally, we have performance hits in case
of point clouds that belong to very detailed surfaces,
when the construction of the initial rough quadrilat-
eral meshes needs a large number of (local) smooth-
ing/refining steps that will raise exponentially the size
of the allocated memory and the duration of the evolu-
tion.
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