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ABSTRACT

A large number of processes in computer vision are based on the image motion measurement, which is the projection of the
real displacement on the focal plane. Such a motion is currently approximated by the visual displacement field, called optical
flow. Nowadays, a lot of different methods are commonly used to estimate it, but a good trade-off between execution time and
accuracy is hard to achieve with standard integrations. This paper tackles the problem by proposing a parallel implementation
of the well-known pyramidal algorithm of Lucas & Kanade, in a Graphics Processing Unit (GPU). It is programmed using the
Compute Unified Device Architecture from NVIDIA corporation, to compute a dense and accurate velocity field at about 15 Hz

with a 640 x 480 image definition.
Keywords:

1 INTRODUCTION
1.1 Context

The perception of the environment is a necessary pro-
cess in many robotic tasks. Indeed, it is used as well for
navigation and obstacle detection in intelligent trans-
port systems [2], which was the original context of
this work, as for automatic video monitoring. To this
end, monocular vision is a convenient solution since
the camera is a low cost sensor providing rich two-
dimensional information contained in a single frame.
Also, the depth of each image point can be estimated
from the study of two or more successive frames. The
first step in any process, whatever it deals with obstacle
detection [9] or object tracking, is the optical flow com-
putation, that is an estimation of the apparent motion
or the matching points between different images. Thus,
we will focus on determining a dense subpixelic opti-
cal flow by only using two consecutive frames from a
video sequence, so that the velocity field could be used
by most of processes.

In addition, recent developments of Graphics
Processing Units (GPUs) for High Performance Com-
puting (HPC) were the main motivation of this work.
Thanks to the Compute Unified Device Architecture
(CUDA) from NVIDIA corporation, phenomenal en-
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hancement have been performed (up to a one hundred
factor [15]) by offloading computationally-intensive
activities from the CPU to the GPU. The main re-
quirement in order to use this promising solution is
to have a highly parallelizable algorithm. In brief,
this study is looking forward to provide an optical
flow respecting the previously described constraints by
taking advantage of parallel computing performs on a
GPU.

The paper is organized as follows. The rest of this
section presents some optical flow estimation methods
commonly used in real-time robotic systems. Then,
section 2 describes in detail the chosen algorithm while
section 3 explains its parallel computing scheme. Fi-
nally the last section presents experimental results and
proposes a comparison tool for real-time optical flow
algorithms.

1.2 Optical flow

Definition  Optical flow is an approximation of im-
age motion, that is the exact two-dimensional displace-
ment given by the projection of real motion on the fo-
cal plane. Actually, the only information we have with
a camera is the level of intensity of light received on
cell sensor, so the gray value at each pixel. The opti-
cal flow computation consists in matching image points
using this information in order to build a visual dis-
placement field. Most estimation methods are so based
on the brightness constancy assumption between two
successive frames of a sequence. Given an image se-
quence I(x,7) : Q@ — R that associates for each point
x = (x,y)7, its intensity at time ¢, the gray value con-
stancy is written:

Ix+w,t+1)—1(x,)=0,
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where @ = (u,v)T describes the apparent image ve-
locity. The problem can also be expressed under the
differential form which leads to:

dix(0).y(@)) _ ldx ALy I _ o
dt ~dxdt dydt It
that is equivalent to the optical flow equation:
(VDTw+1,=0, )

with (VI) = (II,)", the intensity spatial gradient and
I; its temporal derivative. This problem is ill-posed so
that with the single Eq. (2), we are not able to compute
the two-component optical flow. From there, a lot of
methods propose different additional hypothesis in or-
der to regularize the system. The most commonly used
in robotic application, are presented in the following
paragraphs without exhaustivity.

Block Matching method This is the historical algo-
rithm and probably the simplest. Considering a Region
Of Interest in first image (a block), the purpose is to
find the displacement of this ROI in the next one. To
this end, we compare the correlation scores between the
original block and a family of candidates into a search
area Qgpy, in the second frame. Among the correla-
tion criteria of the most often used, one can find some
well-known cost functions to minimize, as the sum of
absolute differences (SAD) or the sum of squared dif-
ferences (SSD):

SSD = ¥ (I(xyt) = I(x+uy+vi+1)
Qror

SAD = Y |[I(x,y,t) = I(x+u,y+v,t+1)]
Qror

To avoid exhaustive search in Q and speed up the
process, a lot of exploration algorithms have been
developed [4]. However, the main problem of such
a method remains its pixelic accuracy. Working on
over-sampled images is a way to solve this issue, but
also increases the amount of computation.

Variational Methods The methods based on the dif-
ferential approach consists in an optimization problem
resolution (local or global) by minimizing a functional
containing the term (2) with an additional constraint.
The historical global differential method has been de-
veloped by Horn & Schunck [4]. It aims to minimize
on the whole image domain € the following functional:

Q

JHSZ./ (VDT @+1)* + a((Vvi)* + (Vvy)?)dxdy.

This criteria is based on the idea that the adjoining ve-
locities are very similar (continuity constraint). There
exists other versions of this method, using different reg-
ularization operators [2]. The main problems of that
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kind of methods are its high noise sensibility and the
lack of accuracy: global method implies global move-
ment so that small local displacements are not well
tracked. This can be very harmful for processes that
aims to detect small moving objects.

Also, local differential methods use an additional as-
sumption on a small domain of the image to particular-
ize the computed optical flow. The most famous local
method is the algorithm of Lucas & Kanade [5] : the
velocity is supposed constant on a neighborhood Qgp;.
Then we minimize on this domain the following func-
tional built with the optical flow Eq. (2):

Jixk = Z (VI.O)-FI;)Z.

Qgror

This is equivalent to the least square estimation on the
neighborhood Qgp;. Such a method is very interesting
because of its robustness to the noise, and the local
assumption makes the small motions trackable.

Ruled out methods Frequency-based methods, using
the Fourier transform version of Eq. (2), have been de-
veloped. They go by tuned families of filter, phase [7]
or wavelet models [8]. But all these methods provide
sparse velocity fields or over-parametrized approaches.

2 ALGORITHM

The algorithm we choose according to the previously
described requirements is the pyramidal implementa-
tion of the Lucas & Kanade algorithm with iterative and
temporal refinement.

2.1 Lucas and Kanade tracker

The basis idea of the Lucas & Kanade algorithm has
already been presented in section 1.2, and the optical
flow estimation is based on the least-square resolution
method. Considering a patch of size n with an uniform
velocity, and centered on the considered pixel. Thanks
to Eq. (2), its displacement @ = (u,v)” can be written
as following:

[ . } = (ATA)'ATb, (3)
with:
Ly Iy I
Ly Ip I
A=| . . |[,b=]| . |. “4)
L Iyn Iy,

In order to improve the robustness of the resolution
(the least square matrix can be singular), we propose
to use the regularized least-square method with the L2
norm. This finally yields:

[ Z ] = (ATA+al) 'ATb, (5)
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Figure 1: Pyramidal implementation.

with 0 < & < 1073 and I the identity matrix. This tech-
nique avoid matrix singularity problems since the de-
terminant is always different from zero.

2.2 Pyramidal Implementation

Pyramidal implementation, in a coarse-to-fine scheme
enables the algorithms to track all kind of displacement.
In this way, the largest movements can be identified in
the lowest resolution while the original image size al-
lows to determine the finest components of the optical
flow. Let us describe briefly how this computation is
performed.

In a first step, a gaussian pyramid should be built for
each of two consecutive frames of the video by their
successive sub-sampling. The level O of each pyramid
is filled with the original image, the level n is then built
with the image of level n-1 sub-sampled by a factor 2,
and so on until the maximum level is reached. The num-
ber of levels should be determined by the resolution of
the original images: typically, 3 or 4 levels represent
common values for a 640 x 480 sequence. Then, the
implementation is as follows: the optical flow is com-
puted at the lowest resolution (i.e. the highest level)
before being over-sampled by a factor 2, with bilin-
ear interpolation, to be used at the lower level as initial
value for a new estimate. To this end, the new research
area is translated as the displacement vector previously
calculated. This process continues until the O level is
reached.

2.3 Iterative & Temporal Refinement

Iterative refinement is performed at every level of the
pyramid. It consists in minimizing the difference be-
tween the considered frame, warped by the displace-
ment field sought, and the next image, by executing the
algorithm and transforming the destination image with
the last computed flow, and this iteratively. Transform-
ing the image means moving each point of the image
with the corresponding displacement previously com-
puted. If the displacement is not an integer, bilinear in-
terpolation is performed to respect the real sub-pixelic
motion.
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The temporal optimization consists in the reusing of
the computed velocity field between images N — 1 and
N as an initial value for the computation of optical flow
between images N and N + 1.

The final algorithm combines all the before-
mentioned elements : pyramidal implementation of the
Lucas & Kanade algorithm with iterative and temporal
refinement. Fig. 2 shows an execution example with 3
pyramid levels.

Iterative refinement

Image under sampling

=
Bilinear interpolation

PN

Iterative refinement

Vemwane

i

Figure 2: Execution sample on three levels

2.4 Parameters

The method we use has three parameters to set up : the
number of levels, the number of refinement iterations
per level and the size of the patch where the velocity
is supposed constant. There is often a lack of informa-
tion in the literature concerning parameters tuning. We
propose to base the parameters according to the min-
imization of angular (AEE) and norm errors, respec-
tively measured such as:

1 Uty +vev,+1
—Za.rccos
Q|5 V22 +1) (W2 +v2+1)

and:

|IQ|§\/(MC — i)+ (ve—v)2.

where (u,,v,)" and (uc,ve)” mean real and computed
displacements. This is done using some synthetic se-
quences with complex motions, like Yosemite (Fig. 5).
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Figure 3: Optical flow error.

Thanks to the results illustrated in Fig. 3(a), 4 itera-
tions is a good compromise in term of accuracy, in or-
der not to unnecessarily increase the execution time. A
larger value does not improve much the flow. Also, the
optimal patch size is from 9 x 9 to 11 x 11 (Fig. 3(b)).
Concerning the number of pyramid levels, for a reso-
lution of 300 x 200 it is useless to go over 3 levels.
Bouguet [6] gives the following formula expressing the
maximum trackable displacement gain related to the
number of levels /:

gaiNay = (2’+1 —1).

For the 640 x 480 resolution we can use up to 4 levels.
In the rest of the paper the following parameters will
be used: 4 levels of pyramids, a patch size of 10 x 10
pixels and 3 refinement iterations.

2.5 Results on synthetic and real se-
quences

The previously described algorithm has been assessed
on both synthetic (Fig. 5) and real sequences (Fig. 6).
In order to represent the computed optical flow, each
velocity vector is encoded according to the color map

Figure 4: Color map representation equivalent vector
field.
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illustrated Fig. 4: the color gives the angle while the
brightness represents the norm of the considered dis-
placement. The main advantage of this representation
comes from the possibility of drawing a dense optical
flow, whereas a vector field representation can mask
or highlights some absurd points due to its sampling.
Thus, Fig. 5 illustrates the motion field performs on
the Yosemite sequence with an average angular error
of 2.13deg.

The real sequence we choose involves an embedded
camera taking 640 x 480 pictures of another car mov-
ing towards the vehicle (Fig. 6). There is obviously
no ground truth for this sequence, so the comparison is
made with the OpenCV implementation [6] of the same
algorithm, which performs an angular error of 2.61 deg
on the Yosemite sequence. The spatial aliasing present
in the final OpenCV motion field, due to a bad passing
through the pyramid levels, disappears from our results
thanks to the bilinear interpolation, indeed while the ra-
dian flow is well retrieved. Moreover, the coming vehi-
cle has clear borders which is promising for a detection
application for example. All these aspects validate the
accuracy of the chosen method.

3 PARALLEL IMPLEMENTATION

Nevertheless the execution time remains about 7 sec-
onds with an optimized sequential implementation in
C, on a 3 GHz mono-core processor. That is why in or-
der to reach 15 Hz, or 67 ms, parallel computing must
be used.

3.1 GPU and scientific processing

Until recently, programming was sequential with a Sin-
gle Input Single Output (SISO) architecture. The devel-
opment of parallel architectures is relatively new, and
includes particularly the General Purpose computing
on GPU (GPGPU), that is to say using existing graph-
ical chipsets, based on a Single Input Multiple Data
(SIMD) architecture, to perform intensive computation
of highly parallelizable algorithms. The growing im-
portance of such approaches has motivated NVIDIA to
produce graphical chipsets allowing an access to their
multi-processors as well as their registries, via a Com-
pute Unified Device Architecture (CUDA) [10].

3.2 CUDA

Generalities CUDA makes possible to write software
compatible with the next GPU generations. Du to
technical considerations, such programs have to be
organized into three levels of abstraction: elementary
sequential instructions, called threads, are clustered
in different blocks which are themselves divided into
grids. All threads contain the same sequential instruc-
tions that are executed on different data. Each block
is executed on one multiprocessor which can alternate
with several other blocks in order to hide latencies
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(a) Synthetic sequence

(a) Real sequence

(b) Ground truth

Figure 5: Real flow and computed flow on the Yosemite synthetic sample.

(b) OpenCV (CPU) version

(c) Our result

i i JR——

(c) CUDA (GPU) version

Figure 6: OpenCV and our results, on a real video sequence (green and red arrows give dominant motions).

due to some not-cached memory access. Whenever
the number of blocks is higher than the number of
multiprocessors available, the remaining blocks are
queued. Obviously, performances depend of hardware
specifications, like the number of multiprocessors or
the cached memory quantity, that affect the optimal
size of blocks. But an efficient implementation allows
to write a program GPU-independent since the block
size has not to be hard written. In that way, the only
changes in executing a CUDA program on a new GPU,
will be the size of blocks and their distribution over all
the multiprocessors.

Constraints The GPU used in this study is a
Tesla C870 (G80 type) consisting in 128 gathered
multiprocessors and 1.5 GB of global (not cached)
memory. Concerning memory into the NV G80 chipset,
each thread accesses only 32 registers and each block
commands 16 KB of shared (cached) memory common
to all these threads. Furthermore, as memory transfers
between CPU and GPU are very time consuming, it is
preferable to perform all the calculations on data stored
in the global memory.

About the execution, the major constraint comes
from that only one kernel per GPU should be active
at any time. There are also many memory constraints
to consider. A Tesla card guaranties 8192 registers,
which means there should be only 256 threads active at
a time. Moreover the number of threads per block has
to be set up, between 64 and 512, to optimize the block
distribution and avoid latency. Finally, all blocks has to
fit into 16 KB of shared memory.

WSCG 2009 Full papers proceedings

3.3 Algorithm parallelization

The key idea behind the parallelization of the algorithm
described in section 2, is that the optical flow com-
putation at one pixel is independent from each other,
computed at the same time. More precisely, there are
four parallelizable parts in the algorithm : building the
pyramids, computing the derivatives, interpolating (size
doubling) the velocity fields and computing the visual
displacement for each image point. Building the pyra-
mids is both a sequential and parallel activity: it is
indeed necessary to compute successively the under-
sampling of the images but at each level the value in
the considered pixel only depends on the lower level
and not on its neighborhood. The same reasoning can

GPU time (psec.)

51905 = Image loading
= Down-samping
444389 mm Reset variables
mm Derivative
37074~ = LK Optical flow
mm Bilinear interpolation
29659 -
22244
14829
7414

1 3 S 7 9 11 13 15 17 19
Kernel iteration

Figure 7: GPU time for the real sequence.
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be applied to the interpolation (passing from one pyra-
mid level to another) and to the derivative computation.

Finally, the computation itself is only performed with
the derivatives information and so the calculation in
each pixel is independent from the neighboring pixels
that is why we can use one CUDA thread per pixel.
The implementation is divided into different kernels:
the initialization (memory allocation), the iterative loop
on the pyramid levels and the iterative refinement inside
each pyramid level, which are launched sequentially by
the CPU (Fig. 7). The figure 8 sums up the paralleliza-
tion scheme. We can see there is not any exchange of
memory between CPU and GPU during the entire pro-
cess, except for loading the input images

4 RESULTS

Execution time

With the CUDA implementation we obtain the same re-
sults than described in section 2.5. Execution time on
the 316 x 252 Yosemite sequence is 21 ms per frame (47
frames per second). On the real 640 x 480 sequence, the
execution time is exactly 67 ms per frame (15 frames
per second), or an increase by a factor of 100 compared
to the CPU implementation.

Building of the pyramids
(null optical flow initialization)

!

Velocity field interpolation » Derivative computation

(level = level-1)
t }

Optical flow refinement

.

Yes
/ Sequential CPU Cuda kernel
instruction (GPU)

Figure 8: CUDA implementation.
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AAE Time per pixel | ETATO

(deg) (us) (us.deg)
Bruhn | 2.63deg 0.68us 1.785
HSCuda | 4.36deg 2.5us 10.9
LKCuda | 2.34deg 0.226us 0.53

Table 1: Compared results

Trade-off measurement

In order to compare the different implementations for
the calculation of optical flow in connection with the
double problem of execution time and accuracy, we
propose a measurement of the Execution Time and Ac-
curacy Trade-Off (ETATO). This number is obtained by
the product of the calculation time per pixel and the an-
gular error obtained on the well-known Yosemite se-
quence:

ETAT O = exeTime/ pixel AngError

The best (theoretical) result that can be achieved is 0.
Obviously, the less ETATO is, the best the trade-off will
be.

A few authors have already addressed the problem
of providing a real-time estimation of optical flow that
can be use in embedded systems. The best CPU re-
sult is obtained by Weickert, Bruhn & al [12] with a
dense variational method. They perform the dense op-
tical flow for the 316 x 252 Yosemite sequence in 54 ms
per frame with an angular error of 2.63deg, so their
ETATO is 1.78us.deg. A CUDA attempt has also been
made with the implementation of the Horn & Schunck
method [14]. Finally, our method (LKCuda) achieves a
0.53 ETATO level. All these results are listed in Tab. 1.

S CONCLUSION

The well-known and heavy used Lucas and Kanade
optical flow algorithm has been described in this
study. The parallel CUDA programming model has
been presented along with the parallelization of this
algorithm. The obtained results are outperforming
the previous attempts on real time optical flow. We
achieved 15 velocity field estimations per second on
640 x 480 images. This opens a new way in image
processing since high resolutions are not any more a
constraint with parallel approaches. Though, this study
uses a G8O card released at the end of year 2006. The
currently most powerful GPU (type GT200, released
on summer 2008) has double power and registries so
that we can expect half execution times and even more
in the future, always with the same CUDA program.
The optical flow implementation developed in this
work is voluntary unfiltered in order to be used as
a basis for different image processing processes, as
obstacle detection [9] for example. Finally, our work is
freely available on the form of a library on the CUDA
zone [15], or directly at http://www.nvidia.
com/object/cuda_home.html#state=home.
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Figure 9: Video sample and its corresponding optical flow.
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