

Geometric Diversity for Crowds on the GPU

W. Lister

R. G. Laycock

School of Computing Sciences
University of East Anglia
Norwich, NR4 7TJ, UK

A. M. Day

{ w.lister, Robert.Laycock, Andy.Day } @uea.ac.uk

ABSTRACT
Pure geometric techniques have emerged as viable real-time alternatives to those traditionally used for rendering
crowds. However, although capable of drawing many thousands of individually animated characters, the potential
for injecting intra-crowd diversity within this framework remains to be fully explored. For urban crowds, a
prominent source of diversity is that of clothing and this work presents a technique to render a crowd of clothed,
virtual humans whilst minimising redundant vertex processing, overdraw and memory consumption. By adopting
a piecewise representation, given an assigned outfit and pre-computed visibility metadata, characters can be
constructed dynamically from a set of sub-meshes and rendered using skinned instancing. Using this technique,
many thousands of independently clothed, animated and textured characters can be rendered at 40 fps.

Keywords
Crowd rendering, crowd diversity, GPU techniques.

1. INTRODUCTION
As real-time virtual environments continue to strive
towards photorealism, their enrichment with high-
quality and diverse crowds becomes essential for the
provision of a truly immersive experience. Applied
by urban simulations [CLM05, DHOO05, TLC02a]
and cultural heritage visualizations [dHCSMT05b,
RFD05] to populate otherwise sterile worlds, recent
work within the gaming industry has shown that
crowds need not be confined to passive roles but can
instead become fundamental to the success of a game
[Ubi07].

This work focuses purely upon the rendering aspect
of crowd simulation which typically requires three
criteria to be addressed; namely the quantity, quality
and diversity of characters. With current techniques
capable of rendering many thousands of agents, it can
be contended that the former objective has largely
been achieved and the principal problem is now that
of how to increase the individuality and fidelity of
 each. However many previous works are constrained

by their dependency upon pre-computation; memory
limitations naturally restrict the number of impostors
and baked-meshes that can be stored.

To this end, skinned instancing (discussed in Section
3) has recently emerged as a viable alternative to the
hybrid techniques traditionally employed by real-time
simulations. The capability of skinned instancing to
render large numbers of animated characters has been
demonstrated on both current-generation graphics
hardware [Dud07] and future architectures supporting
a tessellation pipeline [SBOT08]. However, besides
colour modulation and multi-texturing, the potential
for intra-crowd diversity is yet to be explored.

Within an urban setting, a prominent source of crowd
diversity is that of clothing and ideally each agent
should be individually dressed. However, for crowds
comprised of impostors and baked-geometry, this is
inhibited by pre-computation which typically serves
to consolidate characters and clothing into a single
representation. Thus, the opportunities for variety are
limited to image-space techniques since if a different
outfit is required then an alternative set of impostors
and baked-meshes must be provided. In contrast, our
approach decouples characters from clothing and
defers outfit assignment until rendering.

The contributions of this work can be summarised as
follows.

• A method is presented to add geometric diversity
to urban crowds through the addition of clothing.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.

WSCG 2009 Full papers proceedings 113 ISBN 978-80-86943-93-0

Given a skinned template mesh and a selection of
pre-fitted outfits, characters can be independently
clothed by assigning a different outfit to each at
run-time. The technique is memory efficient and
fully compatible with skinned instancing.

• Rendering clothing directly over a character leads
to redundant vertex processing and overdraw. To
address this, a piecewise representation is adopted
whereby a character is divided into a set of sub-
meshes and the visibility of each is tagged for all
outfits as a pre-process. This metadata can then be
used to construct characters dynamically during
rendering whilst ensuring that only visible regions
are drawn, irrespective of the clothing assigned.

2. RELATED WORK
Recent years have witnessed the problem of real-time
crowd generation receiving significant research
interest. In the following, prominent rendering and
intra-crowd diversity techniques are discussed.

With the geometric complexity of a typical crowd
scene being prohibitively high for graphics hardware
of the time, many early works explored image-space
techniques as a means to accelerated rendering. In
[ABT00], the application of dynamic impostors was
proposed. In this approach, a character is animated,
rendered into a texture and then mapped onto a
camera-oriented quad to be displayed in place of the
original model. By exploiting temporal coherency,
the cached image (impostor) may be reused in
subsequent frames until sufficient variation in posture
or viewing angle evokes an update of the texture.

Subsequent work by Tecchia et al. [TLC02a]
describes a system within which impostor generation
is performed as a pre-process by sampling from the
surface of a hemisphere at 32 positions and at 8
elevations. For each frame of animation, samples are
stored within a compressed texture and the most
appropriate is selected during rendering, dependent
upon the current viewport and animation frame.
Variety is achieved using colour modulation together
with multi-pass rendering whereby the alpha channel
of an impostor texture is used to mask the regions of
a character shaded by each pass. Later work
described in [TLC02b] considers both normal
mapping and shadow generation.

The primary advantage of impostors over the
alternative techniques discussed by the remainder of
this section is their efficiency of rendering. An
implementation by Millan et al. [MR07] using
pseudo-instancing [NVI04a] achieves interactive
framerates for crowds in excess of one million
individuals, suggesting impostors to be ideal for
large-scale applications such as within stadia.

However, this performance comes at the expense of
memory consumption, image-quality and diversity.
For example, despite using texture compression, the
system of Tecchia et al. [TLC02a] requires 256 KB
of memory per-impostor, per-frame. Consequently,
they limit the resolution to a maximum of 2562 texels
and permit only ten frames of animation.

For applications requiring higher fidelity rendering,
Ulicny et al. [UdHCT04] introduces the concept of
baked-geometry and describes how an animation can
be cached on the GPU as a set of pre-computed
meshes. By providing a separate mesh for each frame
and sorting for temporal locality, efficient rendering
is achieved using display lists. In a novel method,
crowd variety can be introduced through interactive
authorship of a scene.

Dobbyn et al. [DHOO05] builds upon the work
described in [UdHCT04] to construct a hybrid system
within which crowds are comprised predominantly of
impostors and enriched by baked-geometry. Through
the introduction of LOD, this enables the efficient
rendering of a crowd whilst affording increased
quality for agents local to the viewer. A ‘pixel-to-
texel’ ratio is used to switch between representations
when an impostor becomes sufficiently close such
that a single texel maps to more than one pixel on the
screen. In the spirit of Tecchia et al. [TLC02a],
crowd variety is introduced by encoding the
customisable regions of an impostor within the alpha
channel of its texture. However, afforded by the
luxury of shaders, colour modulation can be applied
in a single pass by using region identifiers to address
a one-dimensional palette texture. Additional textures
allow impostors to be clothed in different outfits and
normal mapping is used to increase shading accuracy.
The later work of Coic et al. [CLM05] notes that the
visual disparities between impostor and geometry
representations are often sufficient as to induce
artifacts during LOD transitions. Consequently, Coic
et al. introduced an intermediate LOD through the
adaptation of layered impostors [Sch98].

Motivated by the rapid evolution of graphics
hardware, recent research has increasingly sought to
remove the limitations imposed by pre-computation
and focused upon the development of dynamic,
geometry-based crowd rendering systems capable of
running primarily on the GPU. As the first work
within this area, Gosselin et al. [GSM04] developed
several techniques, many of which were to later
become fundamental to the current state-of-the-art
[Dud07, SBOT08]. Of particular interest, Gosselin et
al. implemented a limited form of instancing to
reduce the API overhead associated with rendering
thousands of meshes, performed skeletal-subspace
deformation (SSD) within a vertex shader (hardware
skinning) and promoted the use of 3x4 matrices for

WSCG 2009 Full papers proceedings 114 ISBN 978-80-86943-93-0

storing bone transformations. Applied to a crowd of
soldiers, variety is achieved through the standard
approach of colour modulation and masking
although, in contrast to the work described in
[DHOO05], a two-dimensional palette texture is used
whereby texels on adjacent rows denote the range of
tints that may be applied to a given character. Further
diversity is added through the application of decals
and image-quality addressed by the use of pre-
computed ambient occlusion, normal mapping and
pre-generated shadow maps. In [dHCSMT05a],
together with geometric LOD, hardware skinning is
later used to animate a crowd of Romans within a
cultural heritage simulation.

At the forefront of current research, work described
in [Dud07, SBOT08] demonstrates how geometry
instancing [Car05] can be used to apply hardware
skinning across a crowd of characters with far greater
efficiency than was possible at the time of [GSM04].

3. INSTANCED CROWD RENDERING
Previous work has demonstrated the emergence of
skinned geometric crowds as a viable alternative to
those traditionally realised by impostor and baked-
geometry systems. Efficient rendering can be
achieved by instancing a crowd from a limited set of
template meshes and using shaders to perform
skinning, world-space transformations and variety
introduction on a per-agent basis. However, within
this framework, the incorporation of visual diversity
remains a challenging problem and current methods
operate predominantly at the fragment level through
the adoption of image-space techniques such as
masked colour modulation and multi-texturing.

Whilst this is sufficient for the work described in
[Dud07, SBOT08], which both consider crowds of
animated fantasy characters, within an urban setting
the incorporation of geometric diversity is necessary
to enable characters to be individually clothed. Such
is the focus of this section which, following a review
of skinned instancing, presents a compatible method
for the rendering of clothed, real-time crowds.

Skinned Instancing
Skinned instancing is a hybrid rendering technique
that uses geometry instancing to apply skeletal-
subspace deformation (SSD) [MTLT88] across a
large number of characters. The former refers to a
mechanism through which an application can render
multiple instances of a template mesh using a single
draw call. When applied to the problem of crowd
simulation, this high-level functionality can relieve a
CPU from the burden of issuing expensive rendering
instructions for every agent. Instead, a buffer object
containing per-instance parameterizations is bound

and used by the GPU to customise the template mesh
for each instance.

uTTwx
k

i
ioii 






= ∑
−

=

−
1

0

1
, (1)

Presented formally by (1), SSD transforms each
vertex, u, of an animated mesh by a weighted blend,
w, of the bone transformations, TiTo,i

-1, from which it
receives influence. As shown in [Dud07, SBOT08],
this can be mapped to current-generation GPUs by
multiplying the inverse pose-space transformation,
To,i

-1, of each bone by the corresponding bone
transformation, Ti, for each keyframe and storing the
results within a floating-point texture. This is
illustrated in Figure 1. If all transformations are
assumed to be affine then it is only necessary to store
the upper three rows of each matrix.

Figure 1. Skinned instancing animation texture.

Adding Diversity through Clothing
Given a skinned template mesh and a set of pre-fitted
clothing, this section seeks to use the template as the
basis for a crowd and inject diversity by assigning a
different outfit to each character. Conceivably, this
can be achieved in three ways.

3.1.1 Naïve
An initial approach, conceptually similar to that of
[Dud07], is to create a list of the characters which use
a given outfit, instance the template mesh for each
character and then for each outfit, draw the required
number of instances. Although simple to implement,
this method is inefficient since large regions of the
template are occluded by clothing. Clearly, outfits
should be drawn first to minimise overdraw but a
more significant problem is that of having to process
the occluded faces at all. This implies the redundant
transformation of skinned vertices which is especially
undesirable given their high cost of evaluation.

WSCG 2009 Full papers proceedings 115 ISBN 978-80-86943-93-0

3.1.2 Pre-fitted
An alternative technique could instead embed a copy
of the template mesh within each outfit and remove
hidden faces as a pre-process. However, this requires
additional memory since a near-complete version of
the mesh is stored for each outfit and much of the
resulting geometry arises from duplication.

3.1.3 Tagged
The method proposed by this work is to segment the
template mesh into sub-sections and as a pre-process,
determine the visibility of each for all of the outfits
provided. This metadata can be used during rendering
to ensure that only the visible regions of a character
are drawn, irrespective of the clothing assigned.

Naturally, there are many ways in which the template
mesh can be segmented and most of the impostor
works discussed previously allude to the use of
anatomical divisions when defining the image-space
masks used by colour modulation techniques. By
contrast, for geometric rendering, meshes are often
divided into a minimum set of sub-regions as a result
of material assignments. This is illustrated by the
leftmost image in Figure 2 and provisionally these
regions are used to avoid further mesh fragmentation.

As is illustrated by the center and rightmost images in
Figure 2, sub-region boundaries are typically not in
direct correspondence with those of the clothing and
as a result, some segments are partially occluded. In
this case, the entire region could be drawn but this is
undesirable for those where only a small proportion is
visible. Instead, a copy of the sub-region is provided,
specific to the outfit, with the occluded faces
removed. This allows redundant vertex processing to
be minimised whilst having only a modest impact on
memory usage since, in contrast to the previous
method, only visible regions which differ from those
of the template are stored. The approach naturally
emits a piecewise representation whereby the
majority of a character is rendered using sub-meshes
from the template mesh and for partially visible
segments, outfit specific sub-meshes are used.

Content Preparation
The character and clothing models used throughout
this work are intended primarily for offline use and as
a consequence, are too highly tessellated for real-time
rendering. However, for the character, multiple LODs
are available and that used by our implementation
contains 3.3K faces. All clothing is fitted to this mesh
using software provided by [DAZ08]. After rigging
and skeletal animation, a copy of the character mesh
is embedded within each outfit and occluded faces
are removed.

Our tagging algorithm processes this data to generate
a set of unique sub-meshes and the corresponding

region visibility metadata for each outfit. For all of
the clothed characters, each sub-region is compared
to the corresponding region on the generic template
and if the same numbers of faces are present then it is
known to be fully visible. Conversely, if a sub-region
of the template is absent in the outfit specific mesh
then it is known to be fully occluded. For the case
where a sub-region is found but the number of faces
differs, the sub-region is only partially occluded and
the specialised copy is stored. After tagging, for each
outfit there is a list of the fully visible template mesh
regions and a set of dedicated sub-meshes for those
which are partially occluded.

Figure 2. Left: Character template mesh with color-
coded sub-regions and fitted clothing.

Figure 3. Left: Fully visible sub-meshes for the
corresponding outfit. Center: Outfit specific sub-
meshes determined by visibility. Right: The final

composite character.

WSCG 2009 Full papers proceedings 116 ISBN 978-80-86943-93-0

4. RENDERING
On the CPU, this work represents a crowd as a list of
characters and stores a 3x4 world matrix, an outfit
identifier and an animation time offset for each.

Every frame, the world matrices and animation time
for a maximum of n characters are consolidated and
stored within a constant buffer on the GPU. As
described in [Dud07], n is bound by the GPU
constant buffer size of 4,096 float4 vectors. We use a
total of four float4 vectors per character and this
permits agents to be rendered in batches of up to
1,024 at a time.

From the preceding section, the renderer receives a
set of sub-meshes and metadata specifying those that
should be rendered for characters wearing a given
outfit. To each sub-mesh, an empty list of character
identifiers is assigned. Render queues can then be
generated by iterating through the CPU character list
and for each, appending its position within the list to
that of each sub-mesh used by the character. After all
characters have been processed, for each sub-mesh it
is known how many instances should be drawn and
for each instance, the position of its per-character
data within the constant buffer on the GPU.

Sub-mesh Character IDs

Head (generic) { 0, 1 }

Hands (generic) { 0, 1 }

Feet (generic) { 0, 1 }

Arms (generic) { 0 }

Arms (jumper) { 1 }

Torso (generic) { }

Torso (dress) { 0 }

Torso (skirt) { 1 }

Legs (generic) { }

Legs (dress) { 0 }

Legs (skirt) { 1 }

Dress { 0 }

Jumper { 1 }

Skirt { 1 }

Table 1. Render queue generation.

As an example, in reference to Table 1, consider the
two characters shown previously in Figure 3. The
first, is wearing a dress and the second, a jumper and
skirt. The head and hands of both characters are fully
visible and so their character IDs are appended to the
corresponding generic sub-mesh lists. For the first
character, the arms are also fully visible whereas the

legs are partially occluded. Thus, the character ID is
appended to the generic arms and dress-specific sub-
meshes. For the second character, the arms and legs
are both partially occluded and use the jumper and
skirt specific sub-meshes respectively. The former
case is noteworthy since if a dedicated mesh was not
provided, the entire generic arms mesh would need to
be drawn even though only a small segment is visible.

The crowd is rendered by iterating through each sub-
mesh in turn, uploading character IDs to a constant
buffer on the GPU and then drawing the appropriate
number of instances; this is given by the length of the
character IDs list. Within a shader, each instance use
the character ID buffer to map the instanceID system
variable generated by the GPU to the corresponding
per-character data in the buffer shown in Figure. 1.
The world transformation matrix and attributes can
then be retrieved and skinned instancing implemented
as described in Section 3.

The additional layer of indirection is necessary since,
due to the piecewise construction, instance x of each
sub-mesh does not necessarily belong to the same
character. For example, in the case described above,
instance 0 of the skirt sub-mesh belongs to character
1, not character 0. As a consequence, addressing the
per-character buffer using instanceID directly would
access the attributes for an unintended character.

5. RESULTS
To appraise our technique, we compare it to those
described in Section 3 with respect to both rendering
performance and memory consumption. As the
models used by this work are relatively complex, only
crowds up to a maximum of 5,000 characters are
evaluated. The test system is a 2.4 GHz Intel Core 2
Duo with 2 GB of memory and a Nvidia GeForce
8800 GTX graphics card.

0

10

20

30

40

50

1000 2000 3000 4000 5000

Number of Characters

F
ra

m
es

 p
er

 S
ec

o
n

d

Naïve Pre-fitted / Tagged

Figure 4. Performance tests for the three techniques.

WSCG 2009 Full papers proceedings 117 ISBN 978-80-86943-93-0

Figure 4 compares the three rendering techniques as
applied to crowds of up to 5,000 characters. Our test
scene is illustrated in Figure 5. As anticipated,
performance is increased by removing occluded faces
although there is negligible difference as to whether
this is accomplished as a pre-process or using the
tagged approach of this work.

Occlusion
Technique

Total Number of Faces Stored

Template C1 C2 C3 Total

Naïve 3266 2486 3568 2550 11,870

Pre-fitted n/a 5024 5739 5001 15,764

Tagged 3266 2745
(259)

3788
(220)

2785
(234)

12,583

Table 2. The number of faces stored by each
technique for three arbitrary outfits: C1, C2 and C3.
Those quoted in brackets denote how many of each
total belong to dedicated sub-meshes. C1 and C2

correspond to those outfits illustrated in Figure 3 (top
and bottom of figure respectively).

However, the principal advantage of our method is
the reduced amount of memory required to attain the
same performance. As shown in Table 2, for the pre-
computed approach a generic template is unnecessary
and a specialised copy for each outfit with the
occluded faces removed is stored instead. For the
examples presented, this raises memory consumption
by 33% over the naïve approach. In contrast, the
tagged method increases memory requirements by
just 10% since the only additional mesh data stored is
that of the specialised sub-meshes for partially
occluded regions.

Figure 5. A screenshot showing 1,000 characters
rendered with geometric diversity in real-time.

6. CONCLUSIONS
This work has presented a technique to render a
crowd of clothed, virtual humans whilst minimizing
redundant vertex processing, overdraw and memory
consumption. By adopting a piecewise representation,
given an assigned outfit and pre-computed visibility
metadata, characters can be constructed dynamically
from a set of sub-meshes and rendered using skinned
instancing. Using this technique, a geometric crowd
of 1,000 individually clothed, animated and textured
characters can be rendered in excess of 40 fps.

For the examples shown, culling the regions of a
character that are known to be occluded by clothing
increased rendering performance by approximately
20%. The advantage of the presented method is that
this can be achieved without the provision of a
dedicated character mesh for each outfit. In addition
to reducing memory requirements, this approach also
assists in the provision of supplementary content. For
example, if a new outfit was provided for an in-game
character, only clothing, replacement sub-meshes and
metadata would need to be downloaded. In contrast,
the pre-fitted method would use additional bandwidth
since a near-complete copy of the template mesh
would also be required.

Although the results from Section 5 demonstrate the
effectiveness of the technique, diversity is limited
since only three clothing sets are used. If diversity
was to be increased and ten outfits provided, using
the average sizes from Table 2 the total numbers of
faces can be extrapolated for both the pre-fitted and
tagged approaches. This is shown in Figure 6 and it
can be seen that the relative memory consumption of
the techniques is inversely proportional to diversity.
Our method becomes increasingly memory efficient
as additional diversity is introduced and at the limit,
requires just 59% of the memory used by pre-fitting.

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

Number of Unique Outfits

N
u

m
b

er
 o

f
F

ac
es

 (
x1

00
0)

0

20

40

60

80

100

120

140

M
em

o
ry

 U
sa

g
e

(%
)

Pre-fitted (left axis)

Tagged (left axis)

Relative memory usage (right axis)

Figure 6. Comparing the relative memory usage of
the tagged technique against the pre-fitted method.

WSCG 2009 Full papers proceedings 118 ISBN 978-80-86943-93-0

As enforced by this paper, geometric methods are a
viable way by which to render an urban crowd, even
for those comprised of relatively complex character
meshes. Although only a small crowd of 5,000 agents
was demonstrated, we anticipate that much larger
crowd will be possible since LOD techniques are yet
to be incorporated. Thus, future work will continue to
address both the quality and diversity of characters.
Morph targets coupled with hardware tessellation
may offer potential within this context.

7. ACKNOWLEDGMENTS
The models and textures illustrated by this work were
purchased from DAZ Productions [DAZ08]. This
programme of research is supported by EPSRC grant
EP/E035639/1.

8. REFERENCES
[ABT00] Aubel A., Boulic R., Thalmann D.: Real-

time display of virtual humans: Levels of detail
and impostors. IEEE Transactions on Circuits
and Systems for Video Technology 10, 2 (2000),
207-217.

 [Car05] Carucci F.: Inside geometry instancing. In
GPU Gems 2 (2005), Addison-Wesley, pp. 47-67.

[CLM05] Coic J.-M., Loscos C., Meyer A.: Three lod
for the realistic and real-time rendering of crowds
with dynamic lighting. Research Report, LIRIS,
Lyon University, France (2005).

[DAZ08] DAZ Productions: http://www.daz3d.com.
DAZ 3D (2008).

[dHCSMT05a] de Heras Ciechomski P., Schertenleib
S., Maim J., Thalmann D.: Real-time shader
rendering for crowds in virtual heritage. In VAST
’05: Proceedings of the 6th International
Symposium on Virtual Reality, Archaeology and
Cultural Heritage (2005).

[dHCSMT05b] de Heras Ciechomski P., Schertenleib
S., Maim J., Thalmann D.: Reviving the roman
Odeon of aphrodisiac: Dynamic animation and
variety control of crowds in virtual heritage. In
Proceedings of the 11th International Conference
on Virtual Systems and Multimedia (2005).

[DHOO05] Dobbyn S., Hamill J., O’Conner K.,
O’Sullivan C.: Geopostors: a real-time geometry/
impostor crowd rendering system. In Proceedings

of the 2005 Symposium on Interactive 3D
Graphics and Games (2005), pp. 95-102.

[Dud07] Dudash B.: Animated crowd rendering. In
GPU Gems 3 (2007), Addison-Wesley, pp. 39-52.

 [GSM04] Gosselin D., Sander P., Mitchell J.:
Drawing a crowd. In ShaderX 3: Advanced
Rendering with DirextX and OpenGL (2004),
Charles River Media, pp. 505-517.

 [MR07] Millan E., Rudomin I.: Impostors, pseudo-
instancing and image maps for gpu crowd
rendering. The International Journal of Virtual
Reality 6, 1 (2007), 35-44.

[MTLT88] Magnenat-Thalmann N., Laperrière R.,
Thalmann D.: Joint-dependent local deformations
for hand animation and object grasping. In
Proceedings on Graphics Interface ’88 (1988),
pp. 26-33.

 [NVI04a] NVIDIA: Technical report: Glsl pseudo-
instancing. In NVIDIA SDK 9.52 (2004).

[RFD05] Ryder G., Flack P., Day A. M.: A frame-
work for real-time virtual crowds in cultural
heritage environments. In VAST ’05: Short
Papers Proceedings (2005), pp. 108-113.

[SBOT08] Shopf J., Barczak J., Oat C., Tatarchuk
N.: March of the Froblins: simulation and
rendering massive crowds of intelligent and
detailed creatures on gpu. In SIGGRAPH ’08:
ACM SIGGRAPH 20008 Classes (2008), pp. 52-
101.

[Sch98] Schaufler G.: Per-object image warping with
layered impostors. In Proceedings of the 9th
Eurographics Workshop on Rendering (1998),
pp. 145-156.

[TLC02a] Tecchia F., Loscos C., Chrysanthou Y.:
Image-based crowd rendering. IEEE Computer
Graphics and Applications 22, 2 (2002), 36-43.

[TLC02b] Tecchia F., Loscos C., Chrysanthou Y.:
Visualizing crowds in real-time. Computer
Graphics Forum 21, 4 (2002), 753-765.

[Ubi07] Ubisoft: http://assassinscreed.uk.ubi.com.
Assassin’s creed. (2007).

[UdHCT04] Ulicny B., de Heras Ciechomski P.,
Thalmann D.: Crowdbrush: Interactive authoring
of real-time crowd scenes. In Proceedings of the
ACM SIGGRAPH/Eurographics Symposium on
Computer Animation (2004), pp. 243-252.

WSCG 2009 Full papers proceedings 119 ISBN 978-80-86943-93-0

WSCG 2009 Full papers proceedings 120 ISBN 978-80-86943-93-0

	!_WSCG2009_FULL_final_NUMBERED.pdf
	C19-full

