

GPU-only Terrain Rendering for Walk-through

Sunyong Park

Soongsil University
Sangdo-dong
Dongjak-gu

 156-743, Seoul, South Korea

aknyong@ssu.ac.kr

Kyoungsu Oh

Soongsil University
Sangdo-dong
Dongjak-gu

 156-743, Seoul, South Korea

oks@ssu.ac.kr

ABSTRACT
Accurate terrain representation takes a very significant role in making a scene more realistic. In this paper, we

present a full GPU-based real-time terrain rendering algorithm by ray-casting. Since it requires no geometrical

structure like a polygonal mesh, it doesn't need any LOD (Level-Of-Detail) policies. Most of them are processed

on CPU and may give much burden on the CPU. As a result, it enhances the whole performance of the system.

Our method grants a complete freedom to the view point and its direction, so objects can move around so freely

in the air or on the surface that it can be directly applied to any computer games and VR (Virtual Reality) system.

To better the rendering quality, we applied curved patches to the height field. On the way, we suggest a

simplification for evaluating a ray-patch intersection. We implemented all the processes on GPU, and obtained

tens to hundreds of frame rates with a variety of resolutions of height maps: 256ⅹ256~8192ⅹ8192 (texel
2
).

Keywords
Height field · Ray-casting · PDM (Pyramidal Displacement Mapping) · Quad-tree · GPU-based Rendering

1. INTRODUCTION
In computer graphics, accurate representation of

terrain plays an important role in making a scene

more realistic. We cannot imagine any world without

it at all. Its applications are, therefore, wide-ranged

over many areas from GIS to virtual reality and

computer games; None the less, terrain still remains a

challenging area to game or VR creators. To

represent or simulate terrain, we usually use the

height map, which is also called the height field as a

space. The height map is an image each pixel of

which contains a height value of the corresponding

position. There are two main approaches to

construct-ing terrain from the height information.

The first is the polygon-based method [Gro95, Duc97,

Paj98, Hwa04, Los04, and Asr05]. It generates a

terrain mesh from a height map either in regular grids

or adaptively to local complexity and map the

corresponding height value to each vertex of the

mesh. They are basically fast because they can utilize

parallelized GPU capabilities. However, the number

of polygons gets bigger as the complexity of terrain

increases, so it may require too much time and

storage. To relieve this inefficiency, LOD (Level Of

Detail) is used on the basis of distance from view

points and variation of heights. Even though it

improves the performance of system, other serious

problems are entailed between polygons of different

levels, such as popping or cracking etc. Worse, most

LOD algorithms are processed on CPU, and a great

burden may be caused to the CPU.

The others are based on ray-tracing [Coh96, Ser97,

Wri92, Lee95]. They render terrain just with a height

map. More than one ray per pixel are made, cast, and

traced into the height field until they intersect with

the field. Once an intersection is found, the pixel is

shaded using the positional information. They are

based on a hierarchical data structure, and therefore

less affected by geometrical complexity, whereas

they are not fit to real-time applications.

In this paper, we present a real-time algorithm based

on GPU ray-casting. Our method was much inspired

by the Pyramidal Displacement Mapping by Oh et al

[Oh06]. The PDM renders the height field using a

pyramid of depth images. Here we use the term

height inversely with depth (Figure.1). The image

pyramid is a set of images that its width and height

decrease by 1/2 as a level goes up, which has the

original depth image at level 0. Each texel of sub-

image has the minimum depth (or maximum height)

of adjacent 4 texels of the immediate lower level.

Finally, the highest level of the pyramid has just one

texel whose value is the minimum of the entire depth

map. We can efficiently and accurately find ray-

Permission to make digital or hard copies of all or part

of this work for personal or classroom use is granted

without fee provided that copies are not made or

distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first

page. To copy otherwise, or republish, to post on

servers or to redistribute to lists, requires prior specific

permission and/or a fee.

WSCG 2009 Full papers proceedings 161 ISBN 978-80-86943-93-0

height field intersections by this data structure.

When a ray goes down, the ray can safely move

down to the maximum height of one texel area

without any intersections, and then the current height

of the ray is read from the next lower level. The ray

moves forward in the same way until it reaches level

0. If the height from the lowest level is equal to or

higher than the current position of the ray, we can say

that the intersection is found. There are, however,

some problems if the PDM is applied to terrain as it

is. As the displacement mapping handles down-

displacement from the mapping plane, the view point

always looks downwards (Figure.1-1). In terrain

rendering, the view point can go under the mapping

plane near the surface and look upwards. We gave

some significant revision to the original PDM to cope

with this situation. The ray traverses the same

hierarchy as downward cases, but the way to trace a

ray is slightly different. When the current texel area

is lower than the current ray, there cannot be any

intersections within the area, so the ray can safely go

up to the boundary of the texel, not the maximum

height this time. If the current texel in level 0 is

higher than the ray, we get the intersection. If not, the

ray keeps going forward until it finds an intersection.

There occurs one more problem that the surface

looks like staircases as the view point gets closer to

the surface. To this, we reconstructed the surface

with bilinear patches. One bilinear patch is built from

four adjacent height elements, and a ray-patch

intersection is evaluated there. We simplified the ray-

patch intersection method given in [Ram04], and

made it feasible for the pixel shader.

Our method is based on the idea that the ray has no

intersections to the maximum height in downward

directions, and to the texel boundary in upward

directions. However, when we reconstruct the surface

with bilinear patches, some part of one patch may be

higher than the maximum height of the correspond-

ing texel, where the ray may pass through the patch.

To solve this problem, we devised a new depth map

(we call it the bounding map) which has as a texel

value the height of each bounding volume that

encloses each bilinear patch. The ray traversal on this

map is exactly the same as that of the original map.

Our algorithm runs fully on GPU, so it allows the

CPU to be dedicated to other tasks, like physics-

based rendering, resource managements and AI etc.,

so it enhances the whole system performance.

The major contributions of our work are as follows:

1. Overhaul the existing PDM algorithm to give the

full freedom of view point and direction, allowing

freely fly through and walk through terrain.

2. Dramatically improve the visual quality of the

terrain surface by applying curved patches.

3. Enhance the system performance by carrying out

the whole process on GPU.

The remainders of this paper consist of follows.

Section 2 summarizes related works and section 3

overviews our system. Section 4 describes rendering

terrain using a hierarchical data structure without

curved patches. Section 5 applies curved patch to the

terrain. Section 6 shows finally rendered results.

2. Related Work
So far, most terrain rendering techniques that provide

sufficient freedom to the position of view point and

its direction have been based on polygonal structure

[Gro95, Duc97, Paj98, Hwa04, Los04, and Asr05].

Gene-rally, they render terrain in fashions that make

terrain meshes and map textures to them. Those

methods are well fit to the rendering pipeline of GPU,

and therefore have some advantage on rendering time,

whereas the mesh should be prepared in advance and

the number of polygons should be controlled,

otherwise it may impose a big load on the system.

We usually use LOD (Level Of Detail) to handle this

problem, whose purpose is to reduce sub-sampling

artifacts. However, the problems accompanied like

cracking and popping etc., since they should be

processed on CPU, incur more inefficiency.

Naturally main concerns in polygon-based methods

have been focused on handling re-meshing due to the

LOD.

There have been many researches from this point of

view. Markus et al. introduced the adaptive quad-tree

meshes for regular grids of terrain data using dyadic

scaling of the wavelet transform [Gro95]. Pajarola

suggested restricted quad-trees (RQT), which is an

adaptive, hierarchical triangulation model and is used

to triangulate a parametric surface [Paj98].

Duchineau et al. used preprocessed bin-tree triangles

with view-dependent, guaranteed error metrics to do

re-meshing in real-time (ROAM: Real-time

Optimally Adapting Meshes) [Duc97]. Pomeranz

presented RUSTiC (ROAMing Using Surface

Triangle Clusters), which is the ROAM that every

triangle bin should have the same boundaries on the

shared edges in order not to have any cracks [Pom00].

Lok et al. replaced the triangle bin-tree with the

diamond data structure. Their method uses an

efficient out-of-core algorithm with GPU memory as

Figure 1. In the displacement mapping, the

view point cannot go under the mapping

plane, so there are just downward rays (1),

but in terrain, upward rays are frequent (2).

WSCG 2009 Full papers proceedings 162 ISBN 978-80-86943-93-0

Figure 2. System overview: In our system, all processes are carried out on the GPU except building

the hierarchical map, which is performed just once and doesn’t have any influence on the system.

a cache. Hoppe et al. presented “the geometry clip-

map” in [Los04] as a variant of texture clip-map

[Tan98]. The geometry clip-map has an importance

in that it processes the LOD on GPU. The clip-map

caches terrain data in nested regular grids and it is

refilled incrementally and toroidally as the viewpoint

moves, where the vertices of grids are stored in a

vertex buffer. However, it has a fixed grid resolution,

and when a view point moves near the surface (like

walk-through), bottlenecks may occur in updating

clip-maps. In [Asr05], they upgraded the above clip-

map to the GPU-only version using vertex texture.

Unlike polygon-based methods, ray-casting based

ones directly cast and trace rays into height field, and

find intersections. Cohen et al. [Coh96] introduced a

CPU-based ray-casting algorithm. They used a voxel

map made in regularly spaced heights from height

map and top-down pyramid traversal. In [Coh96],

they more developed this and implemented “visual

fly-through” over vast amount of terrain data through

the proper memory pre-fetching. Though this method

was much advanced compared to other CPU-based

algorithms [Ser97][Wri92][Lee95], still it was

performed on CPU and just used for a fly-through

purpose, not general.

In this paper, we propose a GPU-only algorithm that

utilizes a hierarchical depth image. Several GPU-

based techniques for displacement mapping have

been introduced with a good performance and quality.

Parallax occlusion mapping approximates ray-height

field intersections with linearly interpolated parallax

displacement [Tat06]. Relief mapping mitigated the

artifacts using the binary search, but they have some

problems in specific view directions and high

frequency area respectively [Pol05]. Dynamic

parallax occlusion mapping relieves the artifacts by

varying sampling rates according to the ray’s

direction and frequency of the height field, but it just

relieved the problem [Tat06]. Oh et al.’s Pyramidal

Displacement Mapping solved above problem

completely [Oh06] using a hierarchical data structure

and a traversal algorithm fit to the hierarchy. Tevs et

al. applied the similar scheme and used the bilinear

patch for visual artifacts, but since they adopted the

binary search to get intersections, it shows the same

problem as [Pol05] in grazing angles [Tev08].

The method proposed in this paper is based on the

PDM, which is a kind of displacement mapping and

therefore is not fit to applying to terrain. We got rid

of all these limitations. We are assured that this is the

first case to apply GPU-based ray-casting to terrain.

3. System Overview
Our system consists of a preprocessing on CPU and a

ray-tracing on GPU.

In the preprocessing step, a virtual space where a

height field resides is constructed and the PDM of the

height map is made. Ahead of that, the height map

should be transformed into a depth map. We will use

depths from the mapping plane (Figure 1) over the

whole system. Since this step is performed just once

and doesn’t have much influence on the system.

In the ray-tracing step, per-pixel eye-rays are made

and cast into the height field. In vertex shader, four

rays connecting a view point and four corners of a

screen-aligned rectangle are set up, and per-pixel

rays are made through the rasterizer, the number of

which is the same as the resolution of display. The

pixel shader casts each ray into the virtual space and

gets an intersection with the height field. The cast ray

traverses the hierarchical map from top to leaf.

Figure 2 illustrates these two steps in more detail.

4. Terrain Rendering with a Depth Map

The Pyramidal Displacement Map (PDM)
The PDM is an image pyramid of depth maps whose

sublevel pixel has the lowest value of quadrant pixels

of the immediate superlevel. Since the original PDM

is for displacement mapping, it has some constraints

that viewpoints cannot go under the mapping plain

and its direction always looks downwards (Figure 1).

In this paper, we lifted all these constraints and

enabled view points to go down around the surface

and look toward any directions.

A Virtual Space and Per-pixel Rays
To render the height field, we first establish a base

space in which a height field will be located and into

which all related coordinates will be transformed. In

Figure 3 (a) shows a virtual space defined within the

world coordinate system, and finally the space is

scaled to the 3D unit space [0, 1]
3
 so as to be aligned

with a height field (texture space). Since we represent

high-and-lows of terrain by depth from the mapping

plane, we use the coordinate system as described in

Figure 3(c) for convenience. After the virtual space is

set up, per-pixel eye-rays are generated using the

WSCG 2009 Full papers proceedings 163 ISBN 978-80-86943-93-0

Figure 4. General cases of ray-traversal: (a) the

ray can safely advance to the maximum height

or the boundary of the current texel without

intersections, (b), and the ray can advance to

the boundary of the current texel.

rendering pipeline. We make a viewport-aligned

rectangle, which can be obtained by inversely

transforming four points (1, 1), (1,−1), (−1, 1) and

(−1,−1) of the projection space into the view space.

In vertex shader, four basic rays connecting the view

point(Vp) and four points P0, P1, P2, and P3 are made

and, through rasterizer, per-pixel rays are

obtained(Figure 3-b).

Ray Casting
Traversal algorithms adopted in [Ser97, Wri92,

Lee95] are just related to downward rays since any

view point cannot go under the mapping plain

(Figure 3). However, because in case of terrain

rendering, the view point can be located around the

surface, naturally upward rays are generated. We

made it possible for the ray to travel in any directions

at arbitrary view points with some improvements.

4.1.1 Downward Ray
The hierarchical structure helps us find an

intersection more quickly. When a ray descends, the

ray can safely move to the maximum height or the

texel boundary because the ray has no intersections

in that area, and then the position is read from the

next lower level. This process is repeated until the

ray reaches level. If the depth read from level 0 is

equal to or lower than the end point of the ray, we get

the intersection. Figure 4(a) illustrates its general

algorithm. After the ray arrives at the level, however,

if it did not have an intersection, it searches the

height field linearly. In the worst case, its time

complexity is O(n). We improved the performance to

O(log2n). A ray crosses one grid, and if its position is

still higher than the surface, the level of the PDM

raises one level up by force so that the ray skips

twice as long distance as the previous level. We

reduced the number of node-crossings greatly in this

way.

4.1.2 Upward Ray
The ways a ray goes up is a bit different from

downward cases. The ray moves just to the texel

boundary, not the maximum height this time. If the

current texel value in level 0 is larger than or equal to

the height of the current ray, we have got an

intersection. As a view point stays around the surface,

more upward rays are generated and should be

treated more efficiently. One straightforward method

is to linearly search the height field. The linear search

is very easy, but its cost increases proportionally to

the resolution of height map. We take advantage of

the quad-tree structure to reduce the cost (the number

of advances). Nevertheless, when a view point is

located in a deep valley, the linear search at the

location of level 0 is inevitable. It usually takes up a

considerable portion of the cost. We raised one level

up each time a ray fails to find an intersection at each

advance and thus improved the performance.

Figure 3. (a) A space for the height field is built.

(b) In the vertex shader, four basic rays are set

up, which are on lines connecting a viewpoint

and four corners of image plane. Interpolating

them, per-pixel rays (E) are generated, (c) All

coordinates are transformed into the

normalized virtual space [0, 1]
3
 for the space to

be aligned with the texture space. We have the

z-axis turned-over as we use the depth map.

WSCG 2009 Full papers proceedings 164 ISBN 978-80-86943-93-0

Figure 6. (a)A bilinear patch is built from the

nearest four texels. Because the uv plane of

height field is of uniform grids, we can make

3D coordinates by just sampling depths (b) A

bilinear patch built (c) Four patches

Rendering Results using PDM
Figure 5 shows results rendered with a depth map

and above mentioned algorithms. As shown in the

figure, when the terrain is flown through (a), it

appears to be no problem, but as the view point

approaches the surface (b), it looks like staircases. To

alleviate this visual discomfort, we reconstruct the

surface with curved patches(to be explained in the

next section).

5. Terrain Rendering with a Depth Map
To improve the quality, we covered the height field

with bilinear patches, considering computational

efficiency and implementability in shader program.

Ray-Bilinear patch Intersection
A bilinear patch is built from the nearest four texels

of the location where a ray hits the height field. Since

the height field consists of uniform square grids, we

can immediately know x, y coordinates, and therefore

we just need four depth values (z’s) to complete full

3D coordinates(x, y, z). Figure 6 illustrates this and a

bilinear patch made from the process. A ray-patch

intersection can be evaluated mathematically by

parametric equations shown in Figure 7. While this

procedure was hinted by [Ram04], we simplified it

significantly. Generally we need three quadratic

equations with two parametric variables to express a

bilinear surface in 3D space, one equation for each

dimension, which can be written PB(u, v)= (PB(u,v).x,

PB(u,v).y, PB(u,v).z). In the same way, a line is PL(t)=

(P0.x + t · E.x, P0.y + t · E.y, P0.z + t · E.z). As a result,

to get an intersection of a curved surface with a ray,

we get three variable quadratic equations with respect

to u, v, and t. We simplified these into one variable

quadric equation, which come from substitution of

two linear equations into a quadratic equation, (u, v,

PB(u, v).z) = (P0.x + t · E.x, P0.y + t · E.y , P0.z + t · E.z) .

1However, the proper solution should be inside the

bilinear patch. Figure 12 shows how to discriminate

it from two real solutions of the equation (1). Any

rays first start on a boundary of the bounding volume

of a texel, where t = 0. In the concave case (a), if the

smaller t is less than 0, since it is located behind the

patch, the boundary is performed for the other larger

t. If the larger t is inside the patch, that’s the proper

solution, otherwise, the ray moves forward more until

it finds an in-patch intersection with the next patch

(c). In the convex case (b), simply the smaller t is the

appropriate solution.

1 This paragraph will be easy to understand after

reading the following sections on the ‘bounding map’

Figure 5. When we look at a height field from

the far, it appears to be no problem (a), As we

get closer, it shows some visual artifacts (b)

Figure 7. A simple ray-patch intersection

 1) Bilinear patch

PB(u,v)

=(1-u){P00(1-v)+01v+P01v}+u{P10(1-v}+P11v}

=(u, v, (1-u)(1-v)z00+v(1-u)z01+u(1-v)z10+uvz00)

,where 0≤u, v≤1.

2) Ray

PL(t) = P0+tE = (P0.x+tE.x, P0.y+tE.y, P0.z+tE.z)

3) Ray-Bilinear Patch Intersection

PL(t) = PB(u,v)

⇔ (P0.x+tE.x, P0.y+tE.y, P0.z+tE.z)

 = (u, v, (1-u)(1-v)z00+v(1-u)z01+u(1-v)z10+uvz00)

⇔ u = P0.x+tE.x

 v = P0.y+tE.y

 t = {uv(z11-z10-z01+z00)+u(z10-z00)+v(z01-z00)+z00-P0.z)/E.z

 = (uvA+uB+vC+D-P0.z)/E.z

 , where A= z11-z10-z01+z00,

 B= z10-z00, C= z01-z00, D= z00.

⇔ E.x·E.y·At2

 +{(E.x·P.y+P.x·E.y)A+E.x·B+E.y·C-E.z)t

 +(P.x·P.y·A)+P.x·B+P.y·C+D-P0.z)=0∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙equ.(1)

WSCG 2009 Full papers proceedings 165 ISBN 978-80-86943-93-0

Figure 9. The Bounding Map. (a) The new map

becomes a big bounding volume of the whole

height field(we call it the bounding map) (b) One

bounding volume enclosing a bilinear patch

Challenges to Finding Intersections
To trigger building a bilinear patch, a ray should first

meet the height field. Figure 8 illustrates three cases

hard to get ray-patch intersections by the method of

the previous section: (1) the ray meets the height

field but doesn’t meet with the patch. In this case, the

ray advances more grids one by one, and then finds a

valid intersection with a patch. (2) The ray has an

intersection with a patch, but because it doesn’t meet

the height field, it passes through the right patch, (3)

the ray is very closely related to the ray which passes

through the right patch. If (2) is properly handled, it

never occurs. The last two cases make jaggies or

holes in the middle or at the silhouette of terrain.

The Bounding Map
To keep a ray from passing through the right patch,

we use a new depth map. Figure 9 shows how to

build the new map. As shown, the new map forms a

big bounding volume of the entire height field

(Figure9-b), so we call it the ‘bounding map’, which

consists of texel-sized bounding volumes (Figure 9-

c). It can be noticed that any ray with an intersection

should first meet a bounding volume (Figure 9-b).

To build the bounding map, we pick the maximum

height every four adjacent depth out and write it on

the corresponding position of the new map. This

bounding map is made into a pyramid. The original

map keeps its original shape and is used to build the

bilinear patch and find intersections by positional

information handed over from the bounding map.

Ray-Casting and Ray-Patch Intersection

in different maps

We evaluate a ray-patch intersection on two different

maps with two separate processes. Firstly, a ray is

cast into the bounding map. If an intersection with

the height map exists, its position is handed over to

the original map. And then, a ray-patch intersection

is calculated. If it hits, the proper pixel is shaded. If

not, the ray gets back to the bounding map and keeps

to traverse until it finds an intersection (Figure 11-c,

d). Figure 10 shows interactions between two maps.

Final results with Bilinear-Patching
Figure 11 shows rendering results without and with

bilinear-patches. We can see a staircases-like surface

in (a). After the surface is bilinear-patched, which we

shaded it by point sampling to clearly see the shape

of bilinear patches, those artifacts almost disappeared

(b). (c) is the final scene that the bi-linear sampling is

applied, where its quality is greatly improved.

Figure 8. Three cases hard to find ray-patch

intersections. (1) The ray meets with the height

field but not with the patch. (2) It doesn’t even

build a patch since it doesn’t meet the height

field. (3) The ray should have already

intersected with the previous patch. If the case

(2) is properly handled, it cannot occur.

Figure 11. Results (a) without patches (b)

bilinear patching + point sampling (c) bilinear

patching + bi-linear filtering

Figure 10. Quad-tree traversal and Bi-linear

patching on the two maps

WSCG 2009 Full papers proceedings 166 ISBN 978-80-86943-93-0

6. Experiments and Results
We implemented our method with DirectX 9.0 on

ATI 2900 graphic card and 2.33Ghz Intel CPU.

[Table 1] compares our method to a polygonal one,

where each terrain mesh has twice the number of

triangles than that of height map. If the meshy terrain

is rendered without an 2LOD/ VFC, the performance

is sharply down at the resolution of 1024
2
 and at the

higher resolution, memory overflows since the

number of triangles exceeds the 3maximum primitive

count of hardware. Even though it applies an LOD/

VFC, the same problems ultimately occur at higher

resolutions. On the contrary, our method, due to its

hierarchical structure, is less affected by the increase

of resolution and causes no memory overflows to the

maximum resolution the hardware supports.

Figure 13 visualizes the number of node-crossings

through spectrum. When the view point flies through

(Figure.13-d), 90% of intersections are found within

16 (blue, sky-blue). Figure (b), (c), which are viewed

on the surface, show more than 85~90% are done in

2LOD : Level Of Detail/ VFC : View Frustrum Culling
3 The ATI 2900 Graphics card has the maximum primitive
count of 8,388,607.

35. Just around 5% are more than 85, which occurs in

grazing angles. Figure 14 shows rendering results

carried out with various height maps.

Res.
Our method 4Polygonal method

PreProc
(sec)

Fly/ Walk
(fps)

NO LOD
(fps)

LOD/VFC
(fps)

2562

5122

10242

20482

40962

81922

0.6
1.8
4.0
8.1
17.5
36.0

105~115/ 66~99
53~75/ 47~56
40~44/ 37~40
58~98/ 54~85
40~82/ 37~80
32~67/ 30~45

250~285
75~83
19~22

overflow
overflow
overflow

290~340
180~230

75~80
37~41
6~14

overflow
Table 1. Time Performance-Resolutions

7. Conclusions
Thus far, we have presented a ray-casting based

GPU-only terrain rendering method. We got rid of

restrictions of displace mapping on the viewpoint and

direction so that the viewpoint could freely move

anywhere, and the problem that the surface looks like

staircases near the ground was improved by applying

bilinear patches. Our approach can be used in various

fields, such as computer game, virtual reality, and

flight simulation etc. In addition to that, our method

will be better-suited for the ray-tracing based

graphics hardware that will emerge in the near future.

8. ACKNOWLEDGMENTS
This research was supported by the Ministry of

Culture, Sports, and Tourism, Korea, under the

CTRC (Cultural Technology Research Center)

support program supervised by the KOCCA and was

also supported by Seoul R&BD Program (10581).

4The test was done on OGRE 3D using the octree for the
spatial partition and with MaxMipMapLevel=5 for LOD.

Figure 13. Spectrums representing the

number of node-crossing (a) reference image,

(b) and (c) walk-through, (d) fly-through

Figure 12. The ray always starts on the

boundary of a bounding volume (t=0). There is

two types of intersection either with a convex side

(a) or a concave side of the patch (b). (a) Each t

(≥0) is checked if any intersection is made inside
the patch. If not, the intersection occurs beyond

the patch, so (c) the ray advances more until it

finds an in-patch intersection with the next patch.

(b) The real smaller t is the proper solution.

WSCG 2009 Full papers proceedings 167 ISBN 978-80-86943-93-0

9. REFERENCES
[Asr05] Asirvatham, A., Hoppe, H.: Terrain

Rendering using GPU Based Geometry clipmaps.

GPU Gems 2 (2005)

[Coh96] Cohen-Or, D., Rich, E., Lerner, U., Shenkar,

V.: A real-time photo-realistic visual flythrough.

IEEE Transactions on Visualization and

Computer Graphics 2(3), 255–265 (1996)

[Duc97] Duchaineau, M., Wolinsky, M., Sigeti, D.,

Miller, M., Aldrich, C., Mineev-Weinstein, M.:

Roaming terrain: Real-time optimally adapting

meshes. vis 00, 81 (1997)

[Gro95] Markus H. Gross, Roger Gatti, and Oliver

G.: Fast multiresolution surface meshing. vis 0,

135 (1995)

[Hwa04] Hwa, L.M., Duchaineau, M.A., Joy, K.I.:

Adaptive 4-8 texture hierarchies. In: VIS ’04:

Proceedings of the conference on

Visualization ’04, pp. 219–226 (2004)

[Lee95] Lee, C.H., Shin, Y.G.: An efficient ray

tracing method for terrain rendering. In:

Proceedings of International Pacific Graphics’95,

pp. 180–193 (1995)

[Los04] Losasso, F., Hoppe, H.: Geometry clipmaps:

terrain rendering using nested regular grids. In:

SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers,

pp. 769–776 (2004)

[Oh06] Oh, K., LEE, C., Ki, H.: Pyramidal

displacement mapping : A gpu based artifacts-

free ray tracing through an image pyramid. In:

Proceedings of the ACM Symposium on Virtual

Reality Software and Technilogy(VRST’06), pp.

75–82 (2006)

[Paj98] Pajarola, R.: Large scale terrain visualization

using the restricted quadtree triangulation. vis 00,

(1998)

[Pol05] Policarpo, F., Oliveira, M.M., Comba, L.D.:

Real-time relief mapping on arbitrary polygonal

surfaces. In: I3D ’05: Proceedings of the 2005
symposium on Interactive 3D graphics and games,

pp. 155–162 (2005)

[Pom00] Pomeranz: Roam using surface triangle

clusters(rustic). Master’s thesis, California

University (2000)

[Ram04] Ramsey, S.D., Potter, K., Hansen, C.: Ray

bilinear patch intersections. journal of graphics

tools 9(3), 41–47 (2004)

[Ser97] Sergei I. Vyatkin, Boris S. Dolgovesov,

Valerie V. Ovechkin, Sergei E. Chizhik, Nail R.

Kaipov “Photorealistic imaging of digital terrains,

freeforms and thematic textures in real-time

visualization system Voxel-Volumes”, GraphiC-

on ’97, Moscow (1997)

[Tan98] Tanner, C.C., Migdal, C.J., Jones, M.T.: The

clipmap: a virtual mipmap. In: SIGGRAPH ’98:

Proceedings of the 25th annual conference on

Computer graphics and interactive techniques, pp.

151–158 (1998)

[Tat06] Tatarchuk, N.: Dynamic parallax occlusion

mapping with approximate soft shadows. In:

I3D ’06: Proceedings of the 2006 symposium on

Interactive 3D graphics and games, pp. 63–69

(2006)

[Tev08] Tevs, A., Ihrke, I., Seidel, H.P.: Maximum

mipmaps for fast, accurate, and scalable dynamic

height field rendering. In: SI3D, pp. 183–190

(2008)

 [Wri92] Wright, J.R., Hsieh, J.C.L.: A voxel-based,

forward projection algorithm for rendering

surface and volumetric data. In: VIS ’92:

Proceedings of the 3rd conference on

Visualization ’92, pp. 340–348 (1992)

Figure 14. Final results rendered with a made

height map (a), (g) and arbitrary height maps

obtained from the web (b), (c), (d), (e), (f).

WSCG 2009 Full papers proceedings 168 ISBN 978-80-86943-93-0

	!_WSCG2009_FULL_final_NUMBERED.pdf
	D05-full
	ABSTRACT
	Keywords
	1. INTRODUCTION
	2. Related Work
	3. System Overview
	4. Terrain Rendering with a Depth Map
	The Pyramidal Displacement Map (PDM)
	A Virtual Space and Per-pixel Rays
	Ray Casting
	4.1.1 Downward Ray
	4.1.2 Upward Ray

	Rendering Results using PDM

	5. Terrain Rendering with a Depth Map
	Ray-Bilinear patch Intersection
	Challenges to Finding Intersections
	The Bounding Map
	Ray-Casting and Ray-Patch Intersection in different maps
	Final results with Bilinear-Patching

	6. Experiments and Results
	7. Conclusions
	8. ACKNOWLEDGMENTS
	9. REFERENCES

