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ABSTRACT 
Accurate terrain representation takes a very significant role in making a scene more realistic. In this paper, we 

present a full GPU-based real-time terrain rendering algorithm by ray-casting. Since it requires no geometrical 

structure like a polygonal mesh, it doesn't need any LOD (Level-Of-Detail) policies. Most of them are processed 

on CPU and may give much burden on the CPU. As a result, it enhances the whole performance of the system. 

Our method grants a complete freedom to the view point and its direction, so objects can move around so freely 

in the air or on the surface that it can be directly applied to any computer games and VR (Virtual Reality) system. 

To better the rendering quality, we applied curved patches to the height field. On the way, we suggest a 

simplification for evaluating a ray-patch intersection. We implemented all the processes on GPU, and obtained 

tens to hundreds of frame rates with a variety of resolutions of height maps: 256ⅹ256~8192ⅹ8192 (texel
2
). 
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1. INTRODUCTION 
In computer graphics, accurate representation of 

terrain plays an important role in making a scene 

more realistic. We cannot imagine any world without 

it at all. Its applications are, therefore, wide-ranged 

over many areas from GIS to virtual reality and 

computer games; None the less, terrain still remains a 

challenging area to game or VR creators. To 

represent or simulate terrain, we usually use the 

height map, which is also called the height field as a 

space. The height map is an image each pixel of 

which contains a height value of the corresponding 

position. There are two main approaches to 

construct-ing terrain from the height information. 

The first is the polygon-based method [Gro95, Duc97, 

Paj98, Hwa04, Los04, and Asr05]. It generates a 

terrain mesh from a height map either in regular grids 

or adaptively to local complexity and map the 

corresponding height value to each vertex of the 

mesh. They are basically fast because they can utilize 

parallelized GPU capabilities. However, the number 

of polygons gets bigger as the complexity of terrain 

increases, so it may require too much time and 

storage. To relieve this inefficiency, LOD (Level Of 

Detail) is used on the basis of distance from view 

points and variation of heights. Even though it 

improves the performance of system, other serious 

problems are entailed between polygons of different 

levels, such as popping or cracking etc. Worse, most 

LOD algorithms are processed on CPU, and a great 

burden may be caused to the CPU. 

The others are based on ray-tracing [Coh96, Ser97, 

Wri92, Lee95]. They render terrain just with a height 

map. More than one ray per pixel are made, cast, and 

traced into the height field until they intersect with 

the field. Once an intersection is found, the pixel is 

shaded using the positional information. They are 

based on a hierarchical data structure, and therefore 

less affected by geometrical complexity, whereas 

they are not fit to real-time applications. 

In this paper, we present a real-time algorithm based 

on GPU ray-casting. Our method was much inspired 

by the Pyramidal Displacement Mapping by Oh et al 

[Oh06]. The PDM renders the height field using a 

pyramid of depth images. Here we use the term 

height inversely with depth (Figure.1). The image 

pyramid is a set of images that its width and height 

decrease by 1/2 as a level goes up, which has the 

original depth image at level 0. Each texel of sub-

image has the minimum depth (or maximum height) 

of adjacent 4 texels of the immediate lower level. 

Finally, the highest level of the pyramid has just one 

texel whose value is the minimum of the entire depth 

map. We can efficiently and accurately find ray-
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height field intersections by this data structure.  

When a ray goes down, the ray can safely move 

down to the maximum height of one texel area 

without any intersections, and then the current height 

of the ray is read from the next lower level. The ray 

moves forward in the same way until it reaches level 

0. If the height from the lowest level is equal to or 

higher than the current position of the ray, we can say 

that the intersection is found. There are, however, 

some problems if the PDM is applied to terrain as it 

is. As the displacement mapping handles down-

displacement from the mapping plane, the view point 

always looks downwards (Figure.1-1). In terrain 

rendering, the view point can go under the mapping 

plane near the surface and look upwards. We gave 

some significant revision to the original PDM to cope 

with this situation. The ray traverses the same 

hierarchy as downward cases, but the way to trace a 

ray is slightly different. When the current texel area 

is lower than the current ray, there cannot be any 

intersections within the area, so the ray can safely go 

up to the boundary of the texel, not the maximum 

height this time. If the current texel in level 0 is 

higher than the ray, we get the intersection. If not, the 

ray keeps going forward until it finds an intersection. 

There occurs one more problem that the surface 

looks like staircases as the view point gets closer to 

the surface. To this, we reconstructed the surface 

with bilinear patches. One bilinear patch is built from 

four adjacent height elements, and a ray-patch 

intersection is evaluated there. We simplified the ray-

patch intersection method given in [Ram04], and 

made it feasible for the pixel shader. 

Our method is based on the idea that the ray has no 

intersections to the maximum height in downward 

directions, and to the texel boundary in upward 

directions. However, when we reconstruct the surface 

with bilinear patches, some part of one patch may be 

higher than the maximum height of the correspond-

ing texel, where the ray may pass through the patch. 

To solve this problem, we devised a new depth map 

(we call it the bounding map) which has as a texel 

value the height of each bounding volume that 

encloses each bilinear patch. The ray traversal on this 

map is exactly the same as that of the original map.  

Our algorithm runs fully on GPU, so it allows the 

CPU to be dedicated to other tasks, like physics-

based rendering, resource managements and AI etc., 

so it enhances the whole system performance. 

The major contributions of our work are as follows: 

 

1. Overhaul the existing PDM algorithm to give the 

full freedom of view point and direction, allowing 

freely fly through and walk through terrain. 

2. Dramatically improve the visual quality of the 

terrain surface by applying curved patches. 

3. Enhance the system performance by carrying out 

the whole process on GPU. 

The remainders of this paper consist of follows. 

Section 2 summarizes related works and section 3 

overviews our system. Section 4 describes rendering 

terrain using a hierarchical data structure without 

curved patches. Section 5 applies curved patch to the 

terrain. Section 6 shows finally rendered results.  

2. Related Work 
So far, most terrain rendering techniques that provide 

sufficient freedom to the position of view point and 

its direction have been based on polygonal structure 

[Gro95, Duc97, Paj98, Hwa04, Los04, and Asr05]. 

Gene-rally, they render terrain in fashions that make 

terrain meshes and map textures to them. Those 

methods are well fit to the rendering pipeline of GPU, 

and therefore have some advantage on rendering time, 

whereas the mesh should be prepared in advance and 

the number of polygons should be controlled, 

otherwise it may impose a big load on the system. 

We usually use LOD (Level Of Detail) to handle this 

problem, whose purpose is to reduce sub-sampling 

artifacts. However, the problems accompanied like 

cracking and popping etc., since they should be 

processed on CPU, incur more inefficiency. 

Naturally main concerns in polygon-based methods 

have been focused on handling re-meshing due to the 

LOD.  

There have been many researches from this point of 

view. Markus et al. introduced the adaptive quad-tree 

meshes for regular grids of terrain data using dyadic 

scaling of the wavelet transform [Gro95]. Pajarola 

suggested restricted quad-trees (RQT), which is an 

adaptive, hierarchical triangulation model and is used 

to triangulate a parametric surface [Paj98]. 

Duchineau et al. used preprocessed bin-tree triangles 

with view-dependent, guaranteed error metrics to do 

re-meshing in real-time (ROAM: Real-time 

Optimally Adapting Meshes) [Duc97]. Pomeranz 

presented RUSTiC (ROAMing Using Surface 

Triangle Clusters), which is the ROAM that every 

triangle bin should have the same boundaries on the 

shared edges in order not to have any cracks [Pom00]. 

Lok et al. replaced the triangle bin-tree with the 

diamond data structure. Their method uses an 

efficient out-of-core algorithm with GPU memory as 

Figure 1. In the displacement mapping, the 

view point cannot go under the mapping 

plane, so there are just downward rays (1), 

but in terrain, upward rays are frequent (2). 
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Figure 2. System overview: In our system, all processes are carried out on the GPU except building 

the hierarchical map, which is performed just once and doesn’t have any influence on the system. 

a cache. Hoppe et al. presented “the geometry clip-

map” in [Los04] as a variant of texture clip-map 

[Tan98]. The geometry clip-map has an importance 

in that it processes the LOD on GPU. The clip-map 

caches terrain data in nested regular grids and it is 

refilled incrementally and toroidally as the viewpoint 

moves, where the vertices of grids are stored in a 

vertex buffer. However, it has a fixed grid resolution, 

and when a view point moves near the surface (like 

walk-through), bottlenecks may occur in updating 

clip-maps. In [Asr05], they upgraded the above clip-

map to the GPU-only version using vertex texture.  

Unlike polygon-based methods, ray-casting based 

ones directly cast and trace rays into height field, and 

find intersections. Cohen et al. [Coh96] introduced a 

CPU-based ray-casting algorithm. They used a voxel 

map made in regularly spaced heights from height 

map and top-down pyramid traversal. In [Coh96], 

they more developed this and implemented “visual 

fly-through” over vast amount of terrain data through 

the proper memory pre-fetching. Though this method 

was much advanced compared to other CPU-based 

algorithms [Ser97][Wri92][Lee95], still it was 

performed on CPU and just used for a fly-through 

purpose, not general. 

In this paper, we propose a GPU-only algorithm that 

utilizes a hierarchical depth image. Several GPU-

based techniques for displacement mapping have 

been introduced with a good performance and quality. 

Parallax occlusion mapping approximates ray-height 

field intersections with linearly interpolated parallax 

displacement [Tat06]. Relief mapping mitigated the 

artifacts using the binary search, but they have some 

problems in specific view directions and high 

frequency area respectively [Pol05]. Dynamic 

parallax occlusion mapping relieves the artifacts by 

varying sampling rates according to the ray’s 

direction and frequency of the height field, but it just 

relieved the problem [Tat06]. Oh et al.’s Pyramidal 

Displacement Mapping solved above problem 

completely [Oh06] using a hierarchical data structure 

and a traversal algorithm fit to the hierarchy. Tevs et 

al. applied the similar scheme and used the bilinear 

patch for visual artifacts, but since they adopted the 

binary search to get intersections, it shows the same 

problem as [Pol05] in grazing angles [Tev08]. 

The method proposed in this paper is based on the 

PDM, which is a kind of displacement mapping and 

therefore is not fit to applying to terrain. We got rid 

of all these limitations. We are assured that this is the 

first case to apply GPU-based ray-casting to terrain. 

3. System Overview 
Our system consists of a preprocessing on CPU and a 

ray-tracing on GPU. 

In the preprocessing step, a virtual space where a 

height field resides is constructed and the PDM of the 

height map is made. Ahead of that, the height map 

should be transformed into a depth map. We will use 

depths from the mapping plane (Figure 1) over the 

whole system. Since this step is performed just once 

and doesn’t have much influence on the system.  

In the ray-tracing step, per-pixel eye-rays are made 

and cast into the height field. In vertex shader, four 

rays connecting a view point and four corners of a 

screen-aligned rectangle are set up, and per-pixel 

rays are made through the rasterizer, the number of 

which is the same as the resolution of display. The 

pixel shader casts each ray into the virtual space and 

gets an intersection with the height field. The cast ray 

traverses the hierarchical map from top to leaf.  

Figure 2 illustrates these two steps in more detail.  

4. Terrain Rendering with a Depth Map 

The Pyramidal Displacement Map (PDM) 
The PDM is an image pyramid of depth maps whose 

sublevel pixel has the lowest value of quadrant pixels 

of the immediate superlevel. Since the original PDM 

is for displacement mapping, it has some constraints 

that viewpoints cannot go under the mapping plain 

and its direction always looks downwards (Figure 1).  

In this paper, we lifted all these constraints and 

enabled view points to go down around the surface 

and look toward any directions. 

A Virtual Space and Per-pixel Rays 
To render the height field, we first establish a base 

space in which a height field will be located and into 

which all related coordinates will be transformed. In 

Figure 3 (a) shows a virtual space defined within the 

world coordinate system, and finally the space is 

scaled to the 3D unit space [0, 1]
3
 so as to be aligned 

with a height field (texture space). Since we represent 

high-and-lows of terrain by depth from the mapping 

plane, we use the coordinate system as described in 

Figure 3(c) for convenience. After the virtual space is 

set up, per-pixel eye-rays are generated using the 

WSCG 2009 Full papers proceedings 163 ISBN 978-80-86943-93-0



Figure 4. General cases of ray-traversal: (a) the 

ray can safely advance to the maximum height 

or the boundary of the current texel without 

intersections, (b), and the ray can advance to 

the boundary of the current texel. 

rendering pipeline. We make a viewport-aligned 

rectangle, which can be obtained by inversely 

transforming four points (1, 1), (1,−1), (−1, 1) and 

(−1,−1) of the projection space into the view space. 

In vertex shader, four basic rays connecting the view 

point(Vp) and four points P0, P1, P2, and P3 are made 

and, through rasterizer, per-pixel rays are 

obtained(Figure 3-b). 

Ray Casting 
Traversal algorithms adopted in [Ser97, Wri92, 

Lee95] are just related to downward rays since any 

view point cannot go under the mapping plain 

(Figure 3). However, because in case of terrain 

rendering, the view point can be located around the 

surface, naturally upward rays are generated. We 

made it possible for the ray to travel in any directions 

at arbitrary view points with some improvements. 

4.1.1 Downward Ray 
The hierarchical structure helps us find an 

intersection more quickly. When a ray descends, the 

ray can safely move to the maximum height or the 

texel boundary because the ray has no intersections 

in that area, and then the position is read from the 

next lower level. This process is repeated until the 

ray reaches level. If the depth read from level 0 is 

equal to or lower than the end point of the ray, we get 

the intersection. Figure 4(a) illustrates its general 

algorithm. After the ray arrives at the level, however, 

if it did not have an intersection, it searches the 

height field linearly. In the worst case, its time 

complexity is O(n). We improved the performance to 

O(log2n). A ray crosses one grid, and if its position is 

still higher than the surface, the level of the PDM 

raises one level up by force so that the ray skips 

twice as long distance as the previous level. We 

reduced the number of node-crossings greatly in this 

way. 

4.1.2 Upward Ray 
The ways a ray goes up is a bit different from 

downward cases. The ray moves just to the texel 

boundary, not the maximum height this time. If the 

current texel value in level 0 is larger than or equal to 

the height of the current ray, we have got an 

intersection. As a view point stays around the surface, 

more upward rays are generated and should be 

treated more efficiently. One straightforward method 

is to linearly search the height field. The linear search 

is very easy, but its cost increases proportionally to 

the resolution of height map. We take advantage of 

the quad-tree structure to reduce the cost (the number 

of advances). Nevertheless, when a view point is 

located in a deep valley, the linear search at the 

location of level 0 is inevitable. It usually takes up a 

considerable portion of the cost. We raised one level 

up each time a ray fails to find an intersection at each 

advance and thus improved the performance.  

Figure 3. (a) A space for the height field is built. 

(b) In the vertex shader, four basic rays are set 

up, which are on lines connecting a viewpoint 

and four corners of image plane. Interpolating 

them,  per-pixel rays (E) are generated, (c) All 

coordinates are transformed into the 

normalized virtual space [0, 1]
3
 for the space to 

be aligned with the texture space.  We have the 

z-axis turned-over as we use the depth map. 
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Figure 6. (a)A bilinear patch is built from the 

nearest four texels. Because the uv plane of 

height field is of uniform grids, we can make 

3D coordinates by just sampling depths (b) A 

bilinear patch built (c) Four patches 

Rendering Results using PDM 
Figure 5 shows results rendered with a depth map 

and above mentioned algorithms. As shown in the 

figure, when the terrain is flown through (a), it 

appears to be no problem, but as the view point 

approaches the surface (b), it looks like staircases. To 

alleviate this visual discomfort, we reconstruct the 

surface with curved patches(to be explained in the 

next section).  

5. Terrain Rendering with a Depth Map 
To improve the quality, we covered the height field 

with bilinear patches, considering computational 

efficiency and implementability in shader program. 

Ray-Bilinear patch Intersection 
A bilinear patch is built from the nearest four texels 

of the location where a ray hits the height field. Since 

the height field consists of uniform square grids, we 

can immediately know x, y coordinates, and therefore 

we just need four depth values (z’s) to complete full 

3D coordinates(x, y, z). Figure 6 illustrates this and a 

bilinear patch made from the process. A ray-patch 

intersection can be evaluated mathematically by 

parametric equations shown in Figure 7. While this 

procedure was hinted by [Ram04], we simplified it 

significantly. Generally we need three quadratic 

equations with two parametric variables to express a 

bilinear surface in 3D space, one equation for each 

dimension, which can be written PB(u, v)= (PB(u,v).x, 

PB(u,v).y, PB(u,v).z). In the same way, a line is PL(t)= 

(P0.x + t · E.x, P0.y + t · E.y, P0.z + t · E.z). As a result, 

to get an intersection of a curved surface with a ray, 

we get three variable quadratic equations with respect 

to u, v, and t. We simplified these into one variable 

quadric equation, which come from substitution of 

two linear equations into a quadratic equation, (u, v, 

PB(u, v).z) = (P0.x + t · E.x, P0.y + t · E.y , P0.z + t · E.z) . 

1However, the proper solution should be inside the 

bilinear patch. Figure 12 shows how to discriminate 

it from two real solutions of the equation (1). Any 

rays first start on a boundary of the bounding volume 

of a texel, where t = 0.  In the concave case (a), if the 

smaller t is less than 0, since it is located behind the 

patch, the boundary is performed for the other larger 

t. If the larger t is inside the patch, that’s the proper 

solution, otherwise, the ray moves forward more until 

it finds an in-patch intersection with the next patch 

(c). In the convex case (b), simply the smaller t is the 

appropriate solution. 

                                                           
1  This paragraph will be easy to understand after 

reading the following sections on the ‘bounding map’ 

Figure 5. When we look at a height field from 

the far, it appears to be no problem (a), As we 

get closer, it shows some visual artifacts (b) 

Figure 7. A simple ray-patch intersection  

 1) Bilinear patch  

PB(u,v) 

=(1-u){P00(1-v)+01v+P01v}+u{P10(1-v}+P11v} 

=(u, v, (1-u)(1-v)z00+v(1-u)z01+u(1-v)z10+uvz00) 

,where 0≤u, v≤1. 

2) Ray  

PL(t) = P0+tE = (P0.x+tE.x, P0.y+tE.y, P0.z+tE.z) 

3) Ray-Bilinear Patch Intersection  

PL(t) = PB(u,v) 

⇔  (P0.x+tE.x, P0.y+tE.y, P0.z+tE.z) 

  = (u, v, (1-u)(1-v)z00+v(1-u)z01+u(1-v)z10+uvz00) 

⇔ u = P0.x+tE.x 

     v = P0.y+tE.y 

     t  = {uv(z11-z10-z01+z00)+u(z10-z00)+v(z01-z00)+z00-P0.z)/E.z  

        = (uvA+uB+vC+D-P0.z)/E.z  

      , where A= z11-z10-z01+z00, 

                  B= z10-z00, C= z01-z00, D= z00. 

⇔ E.x·E.y·At2 

    +{(E.x·P.y+P.x·E.y)A+E.x·B+E.y·C-E.z)t 

    +(P.x·P.y·A)+P.x·B+P.y·C+D-P0.z)=0∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙equ.(1)  
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Figure 9. The Bounding Map. (a) The new map 

becomes a big bounding volume of the whole 

height field(we call it the bounding map) (b) One 

bounding volume enclosing a bilinear patch 

Challenges to Finding Intersections 
To trigger building a bilinear patch, a ray should first 

meet the height field. Figure 8 illustrates three cases 

hard to get ray-patch intersections by the method of 

the previous section: (1) the ray meets the height 

field but doesn’t meet with the patch. In this case, the 

ray advances more grids one by one, and then finds a 

valid intersection with a patch. (2) The ray has an 

intersection with a patch, but because it doesn’t meet 

the height field, it passes through the right patch, (3) 

the ray is very closely related to the ray which passes 

through the right patch. If (2) is properly handled, it 

never occurs. The last two cases make jaggies or 

holes in the middle or at the silhouette of terrain. 

The Bounding Map 
To keep a ray from passing through the right patch, 

we use a new depth map. Figure 9 shows how to 

build the new map. As shown, the new map forms a 

big bounding volume of the entire height field 

(Figure9-b), so we call it the ‘bounding map’, which 

consists of texel-sized bounding volumes (Figure 9-

c). It can be noticed that any ray with an intersection 

should first meet a bounding volume (Figure 9-b). 

To build the bounding map, we pick the maximum 

height every four adjacent depth out and write it on 

the corresponding position of the new map. This 

bounding map is made into a pyramid. The original 

map keeps its original shape and is used to build the 

bilinear patch and find intersections by positional 

information handed over from the bounding map. 

Ray-Casting and Ray-Patch Intersection 

in different maps 

We evaluate a ray-patch intersection on two different 

maps with two separate processes. Firstly, a ray is 

cast into the bounding map. If an intersection with 

the height map exists, its position is handed over to 

the original map. And then, a ray-patch intersection 

is calculated. If it hits, the proper pixel is shaded. If 

not, the ray gets back to the bounding map and keeps 

to traverse until it finds an intersection (Figure 11-c, 

d). Figure 10 shows interactions between two maps. 

Final results with Bilinear-Patching 
Figure 11 shows rendering results without and with 

bilinear-patches. We can see a staircases-like surface 

in (a). After the surface is bilinear-patched, which we 

shaded it by point sampling to clearly see the shape 

of bilinear patches, those artifacts almost disappeared 

(b). (c) is the final scene that the bi-linear sampling is 

applied, where its quality is greatly improved. 

Figure 8. Three cases hard to find ray-patch 

intersections. (1) The ray meets with the height 

field but not with the patch. (2) It doesn’t even 

build a patch since it doesn’t meet the height 

field. (3) The ray should have already 

intersected with the previous patch. If the case 

(2) is properly handled, it cannot occur. 

Figure 11. Results (a) without patches (b) 

bilinear patching + point sampling (c) bilinear 

patching + bi-linear filtering 

Figure 10.  Quad-tree traversal and Bi-linear 

patching on the two maps 
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6. Experiments and Results 
We implemented our method with DirectX 9.0 on 

ATI 2900 graphic card and 2.33Ghz Intel CPU. 

[Table 1] compares our method to a polygonal one, 

where each terrain mesh has twice the number of 

triangles than that of height map. If the meshy terrain 

is rendered without an 2LOD/ VFC, the performance 

is sharply down at the resolution of 1024
2
 and at the 

higher resolution, memory overflows since the 

number of triangles exceeds the 3maximum primitive 

count of hardware. Even though it applies an LOD/ 

VFC, the same problems ultimately occur at higher 

resolutions. On the contrary, our method, due to its 

hierarchical structure, is less affected by the increase 

of resolution and causes no memory overflows to the 

maximum resolution the hardware supports. 

Figure 13 visualizes the number of node-crossings 

through spectrum. When the view point flies through 

(Figure.13-d), 90% of intersections are found within 

16 (blue, sky-blue). Figure (b), (c), which are viewed 

on the surface, show more than 85~90% are done in  

                                                           
2LOD : Level Of Detail/ VFC : View Frustrum Culling 
3 The ATI 2900 Graphics card has the maximum primitive 
count of 8,388,607.  

35. Just around 5% are more than 85, which occurs in 

grazing angles. Figure 14 shows rendering results 

carried out with various height maps. 

Res. 
Our method 4Polygonal method 

PreProc 
(sec) 

Fly/ Walk  
(fps) 

NO LOD 
(fps) 

LOD/VFC 
(fps) 

2562 

5122 

10242 

20482 

40962 

81922 

0.6 
1.8 
4.0 
8.1 
17.5 
36.0 

105~115/ 66~99 
53~75/ 47~56 
40~44/ 37~40 
58~98/ 54~85 
40~82/ 37~80 
32~67/ 30~45 

250~285 
75~83 
19~22 

overflow 
overflow 
overflow 

290~340 
180~230 

75~80 
37~41 
6~14 

overflow 
Table 1. Time Performance-Resolutions 

 

7. Conclusions 
Thus far, we have presented a ray-casting based 

GPU-only terrain rendering method. We got rid of 

restrictions of displace mapping on the viewpoint and 

direction so that the viewpoint could freely move 

anywhere, and the problem that the surface looks like 

staircases near the ground was improved by applying 

bilinear patches. Our approach can be used in various 

fields, such as computer game, virtual reality, and 

flight simulation etc. In addition to that, our method 

will be better-suited for the ray-tracing based 

graphics hardware that will emerge in the near future. 
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4The test was done on OGRE 3D  using the octree for the 
spatial partition and with MaxMipMapLevel=5 for LOD. 

Figure 13. Spectrums representing the 

number of node-crossing (a) reference image, 

(b) and (c) walk-through, (d) fly-through 

Figure 12.  The ray always starts on the 

boundary of a bounding volume (t=0). There is 

two types of intersection either with a convex side 

(a) or a concave side of the patch (b). (a) Each t 

(≥0) is checked if any intersection is made inside 
the patch. If not, the intersection occurs beyond 

the patch, so (c) the ray advances more until it 

finds an in-patch intersection with the next patch. 

(b) The real smaller t is the proper solution. 
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Figure 14. Final results rendered with a made 

height map (a), (g) and arbitrary height maps 

obtained from the web (b), (c), (d), (e), (f). 
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