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ABSTRACT 

This paper describes a novel method to optimize the force-directed placement algorithm for 3D drawing of large 
graphs. The main idea behind our approach consists in optimizing the layout by equitably distributing vertices in 
space. We consider the largest sphere inscribed in the 3D space and the vertices are then assigned random initial 
positions that are improved by force-directed placement.  In order to ensure the effectiveness of the algorithm, 
we propose a new energy function minimization which uses the conjugated gradient of Fletcher-Reeves. Our 
algorithm is not only addressed to general undirected graphs but it also produces good layouts for large trees. 
This work is motivated by our need to offer 3D visualization tools for large computing networks but this first 
phase will be focused on the graph representation. 
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1. INTRODUCTION 
Graph algorithms are used in most applications and 
tools that visualize complex systems or large 
databases. Their effectiveness comes from the fact 
that they highlight the structure of a system by 
presenting each element as a node and their relations 
as links. This facilitates the perception process 
required to understand the structure of complex 
systems, identify the centre of interest and detect 
possible anomalies.  
Several research projects have been carried out on 
the graph-drawing algorithms these two last decades. 
[Bat98a] summarizes the most important works on 
the graphs that can be classified according to their 
applicability and required aesthetics.  
Generally graph drawing algorithms can be classified 
in two categories: hierarchical algorithms that 
distribute nodes according to their hierarchy in the 
graph, and algorithms based on physical models. 

 

The hierarchical algorithms are often applied on trees 
and acyclic directed graphs. These algorithms try to 
identify a suitable pre-tree from the given graph. 
Thus the vertex set is partitioned in several subsets so 
that the smallest subset contains the root node and 
the other nodes are partitioned into branches. Nodes 
are placed successively from the root to leaf nodes.   
In contrast, algorithms based on physical models 
focus on undirected general graphs. The family of 
these algorithms, generally called force-directed 
placement, involves transforming vertices and edges 
into a system of forces and finding the minimum 
energy state of the system. This state is found by 
running a simulation of the forces or by resolving 
differential equations.  
The algorithm that we present in this paper falls into 
the second category of graph drawing techniques. 
Indeed, undirected graphs can be considered as the 
most general class of graphs because they allow the 
representation of any type of information and are 
generally used in the representation of complex 
systems. 
Representing visually hundreds or thousands of 
vertices in a small area however remains a principal 
challenge so that several techniques have been 
associated with the force-directed methods in order 
to reduce the poor running time and to produce 
optimal drawings. 
This work presents new techniques that optimize the 
layout by distributing the vertices equitably, which 
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therefore increasingly reduce edge crossing. Our 
algorithm is addressed to 3D graph-drawing and its 
basic ideas consist in using the largest sphere 
inscribed in space and recursively distributing this 
sphere to the various vertices. The final positions of 
vertices are found after several steps and at each step 
the position of each vertex is improved by force-
directed placement.  
The second feature of our algorithm is the 
implementation of a numerical optimization to 
compute the final position of each vertex. Indeed, the 
effectiveness of the force-directed placement 
algorithm resides in the choice of the energy function 
and the method to minimize this energy.  
The conjugated gradient of Fletcher-Reeves is then 
implemented to perform the numerical optimization. 
The conjugated gradient is the most efficient method 
of optimization [Fle64a], [Gil90a], [Wan05a] and its 
main advantage is that it minimizes a function with 
several variables in a relatively short time. 
This paper is structured as follows. Section 2 reviews 
earlier force-directed placement algorithms. Section 
3 details the contribution of this work, i.e., the 
vertices distribution approach, the definition of 
attractive and repulsive forces and the new energy 
function. We then describe our force-directed 
placement algorithm at the end of this section.  
Section 4 presents initial results and shows the 
capacity of our algorithm to draw large undirected 
graphs and trees. Finally we conclude and outline 
perspectives in section 5. 

2. RELATED WORK 
Most graph-drawing algorithms are based on the 
physical model that represents vertices as steel rings 
and edges as springs. Vertices are initially placed at 
random positions and the system is released so that 
springs modify the coordinates of vertices until 
stability is reached (i.e. when the generated total 
energy is minimal). 
This concept was initially developed by Eades 
[Ead84a] and several projects have been successively 
carried out. [Kam89a] improved Eades’ work by 
introducing the concept of ideal distance between 
vertices that are not neighbors. This distance is 
proportional to the length of the shortest path 
between them. They are also the first who formulated 
the total energy of a graph and found that the 
searching for the vertices’ final positions that 
minimize edge crossings is a process reducing the 
total energy of a physical system of rings and 
springs. [Fru91a] developed a new variant of Eades’ 
algorithm but, instead of solving differential 
equations to minimize the total energy of the system, 
they used a simulation of repulsive and attractive 

forces to find the final position of each vertex. Most 
recent force-directed algorithms are based on the 
approach of Fruchterman & Reingold. Although they  
produce aesthetic results for medium graphs, these 
algorithms have two major drawbacks. The first is 
that they do not take into account space optimization. 
Consequently, the vertices are not effectively 
distributed in space. The second drawback is time 
consumption. Indeed, these algorithms are based on 
the principle that every pair of vertices exerts 
repulsive forces but also that attractive forces are 
only calculated between neighbors. Before obtaining 
the final state of the system, several iterations are 
computed and the positions of the vertices are 
modified. Given that each iteration is computed in a 
time of the order of O(n2+m), n being the total 
number of vertices and m the total number of edges, 
this poses a major problem in drawing complex 
graphs formed by thousands of vertices. 
In order to improve quality of drawing and to reduce 
the total execution time for large graphs, several 
methods were combined with force-directed 
algorithms. [Wal03a] presented a multilevel 
technique based on the partitioning of a graph into 
many sub-graphs. Thus the algorithm starts with the 
construction of the smallest sub-graph, improves the 
positions of vertices with the force-directed 
placement and uses the obtained result in the 
construction of the next sub-graph. Similarly, 
[Gaj04a] has recently combined a new technique 
called MIS (Maximal Independent Set) with the 
force-directed placement to draw large graphs. MIS 
consists in finding a partition of vertices set in many 
independent subsets. A subset is independent if no 
pair of elements is connected by an edge. 
The major advantage of these techniques is the 
reduction of execution time since the force-directed 
algorithm is only applied to the improvement of 
vertices’ positions in a subset at any given time. We 
only quote here a few techniques but the idea of 
partitioning large graphs in many sub-graphs had 
already been introduced by Fruchterman & Reingold 
with their multi-grid technique. In the same way the 
idea of partitioning into multi-layer was also used by 
[Dav96a] and [Har02a]. 
Initially, the majority of force-directed placement 
algorithms are applied in two dimensional layout but 
several studies have proved that three dimensional 
layouts are visually better and have several 
advantages. [Dwy01a] confirmed this result in his 
study on 3D visualization of UML class diagrams 
using force-directed placement. [Chu01a] propose 
virtual worlds which can allow users to comprehend 
large graphs. They have developed a platform for 
experimenting with 3D force-directed placement 
algorithms.  
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3. OUR ALGORITHM 

3.1 Overview  
The algorithm that we propose in this paper is 
addressed to 3D general undirected graph-drawing. 
We will later show that it is also suited to the 
drawing of large trees. Our algorithm is based on the 
approach of Kamada & Kawai that consists in 
solving differential equations to minimize total 
energy. Indeed, the process for finding the final 
positions of vertices by simulating attractive and 
repulsive forces can rarely minimize total energy. 
This is why each algorithm based on this method 
gives its own energy function that is never expressed 
explicitly. Instead of using the partitioning method 
like recent algorithms, we are interested rather in 
optimizing the layout by considering each graph as 
complete, i.e. each vertex is related to other vertices 
by n-1 links, n being the total number of vertices. 
This produces a better representation of less complex 
graphs. Indeed, the idea of partitioning a graph into 
independent subsets is not very reliable in the sense 
that it is not always applicable to complete graphs 
that are impossible to subdivide into independent 
subsets. The optimization approach that we propose 
consists in subdividing the largest sphere inscribed in 
space into several smaller spheres of the same 
dimension and containing one vertex. The positions 
of vertices are improved by force-directed placement 
in order to minimize the unused space in the initial 
sphere. 
The main features of the algorithm are then:   

 an equitable distribution of vertices, 
 no collision between vertices, 
 a minimization of unused space,  
 an effective energy function. 

3.2 Vertices distribution approach 
The key feature of this approach is to build the 
largest sphere inscribed in the 3D space and to 
equitably divide it for the various vertices. Let S0 be 
the initial sphere, n vertices are distributed inside 
according to the following conditions:  

 each vertex i is at the centre of the partition Si, 
where Si is a sphere, 

 for all vertex i and vertex j, the partition Si has 
the same size as the partition Sj, i.e. 
volume(Si)=volume(Sj). 

 
For this, we have to maximize the volume of each 
sphere Si, i.e. to minimize the unused space. 
Maximizing the volume of each sphere Si comes 
down to finding the final position of each vertex 
minimizing the total energy of the corresponding 
spring system. 

 
Figure 1: Vertices distribution. 

The figure above shows the process of vertices 
distribution. Colored objects placed in the centre of 
spheres represent vertices. This is an example of a 
graph that mixes both a tree and a general undirected 
graph. Positioning vertices of undirected graphs is 
easier because the initial sphere is directly 
subdivided into the various vertices. The only 
condition to satisfy is that all spheres must have the 
same volume. 
Space optimization is the main interest of the recent 
algorithm developed by [Ngu02a] for the 2D 
representation of large hierarchical systems. Their 
algorithm is very effective because, on a small 
surface, it lays out thousands of nodes structured in a 
tree. Unfortunately, it does not apply to topologies 
structured differently such as complete or general 
undirected graphs. 

3.3 Attractive forces, repulsive forces and 
total energy 
In order to minimize edge crossings and refine the 
drawing, the principle of force-directed placement is 
slightly deviated from the physical reality and two 
forces are introduced: repulsive forces are applied to 
every pair of vertices and attractive forces that are 
only applied to adjacent vertices so that they are 
closer to each other. Thus, the final state of the 
system is found when the sum of the forces applied is 
null or minimized down to a chosen value. 
Our algorithm is always based on this principle but 
the main difference resides in the expression of 
attractive forces. Indeed, in order to optimize the 
available embedding area and to avoid positioning 
vertices outside a current sphere, the attractive forces 
are applied to bring the elements towards the centre. 
The problem is then modeled as follows: 

 the vertices exert repulsive forces towards each 
other,  

 each vertex is attracted by the centre of the 
sphere (S). 
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In this way, the repulsive force generated by two 
vertices is inversely proportional to the distance 
between them, i.e. the closer to each other two 
vertices are, the more important repulsive forces they 
exert. Contrarily, the attractive force is proportional 
to the distance between a vertex and the centre of the 
current sphere so it is more important when a vertex 
is further away from the centre. The expression of 
the forces applied to a vertex is: 
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According to the Kamada & Kawai approach on 
which our algorithm is based, the total energy of the 
system is expressed by the following sum:  
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In terms of xyz-coordinates, the expression (3) is 
given by the formula (4): 
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Pi(xi, yi, zi) and Centre(cx, cy, cz) respectively being 
the position of vertex i and the centre of the largest 
sphere inscribed in space. 

To find the final state of the system, we need to find 
the local minima of the energy E at each vertex. This 
means that we need to take partial derivatives of E 
and solve them in order to find local minima for each 
vertex. Let Pi(xi, yi, zi) be the initial position of 
vertex i. Therefore we need the new position P’i(x’i, 
y’i, z’i) which locally minimizes energy E, where x’i 
= xi+txi, y’i = yi+tyi, z’i = zi+tzi. In other words, we 
need the translation Ti(txi, tyi, tzi) of each vertex i 
which minimizes energy E. By introducing the 
expression of (x’i ,y’i, z’i) we get the formula (5): 
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3.4 Minimizing the total energy 
The common problem of force-directed placement 
algorithms is to find an efficient energy function 
(cost function) to reduce the total energy of the 
system. Thus, we need to find for each vertex the 
position that stabilizes the system. Our method 
consists in finding the minimum energy using the 
conjugated gradient of Fletcher-Reeves optimization 
method. This method has been already used in a 
Java-based experimental platform [Dan98a] but 
repulsion forces are computed in O(n log n) using 
Barnes-Hut tree-code [Bar86].  
The gradient of the sum E (5) applied to a vertex i is 
given by the following expression: 
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Where Xi = xi+txi, Xj = xj+txj, Yi = yi+tyi, Yj= yj+tyj, 
Zi = zi+tzi, Zj = zj+tzj 
 
As we deal with n vertices, the sum E (5) results in 
2n non-linear and non-independent equations. 
Therefore, we find the vertex in the system with the 
highest energy and move it to a location minimizing 
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its energy, i.e.  0
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is repeated until the local energy for each vertex 
stops decreasing. This is summarized as follows:   
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 identify the vertex m with the highest norm of 
translation ( 1..ni∆∆ im =≥ ),  

 minimize local energy E for this vertex 
through the conjugated gradient with txm, tym, 
tzm as parameters and keep other vertices at 
their current positions, 

 after minimization, vertex m has Tm(txm, tym, 
tzm) as translation, is moved to its new position 
Pm(xm+txm, ym+tym, zm+tzm), and the 
conjugated gradients of E for all tx1, ty1, tz1, 
tx2, ty2, tz2, …, txn, tyn, tzn are recalculated. 
These steps are stopped when all norms of 
translations are lower than a 
value: 1..ni forε∆i =< , i.e. the final state of 
the system is found. 

 
In order to improve the aesthetic of the layout, we 
have introduced in the expression of the energy the 
graph distance between two vertices which is the 
shortest path between them in the graph. This allows 
closer positioning of two neighboring vertices. Let dij 
be the graph distance between two vertices Oi and Oj. 
Therefore, the expression of energy E (5) is given by 
the following sum (6): 
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where Xij = xi-xj, Yij = yi-yj, Zij = zi-zj. 

The algorithm is then summarized by the following 
pseudo-code: 

 
Minimization algorithm of total energy E 

 
Assign random placement of vertices: 
initialize (xi, yi, zi), i=1…n 
Initialize the translations to zero 
(txi=0, tyi=0, tzi=0), i=1...n 

Compute the gradients of E for all (txi, 
tyi, tzi) and compute i∆  with i=1...n 
Find the vertex m with im ∆∆ ≥ , i=1...n 
While ε∆m >  
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Assign the descent direction:    
u(ux, uy, uz)← -grad 
While εu >  

2grads ←  
Compute the optimal step p in the 
direction u, while observing the 
different conditions (applying the 
translation vector, vertex m must 
not be outside the available area 
(S) and it must not be in 
collision with the other vertices) 
Update the translation vector with 
(txm, tym, tzm) (txm+p*ux, tym+p*uy, 
tzm+p*uz).  
Compute the gradient of E for txm, 

tym, tzm, 

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End While 
Compute the gradient of E for all 

iii tz,ty,tx  and the i∆  with i=1...n 
Find vertex m where im ∆∆ ≥ , i=1...n 

End While 
 
To compute the optimal step p, it is possible to use 
minimization by “quadratic interpolation” or by 
section in “Golden Search” or by the “one-
dimensional Newton method”. 

4. APPLICATIONS AND RESULTS 
We have developed a prototype tool using the Java 
programming language and Java3D class library. 
The following screenshots show the capacity of our 
algorithm to identify the main interest of a complex 
system by highlighting the global view and to draw 
the hierarchical structure. 
Our algorithm has the same scalability problem as 
the other force-directed layout techniques. An 
improvement will be added in the future to make the 
algorithm more scalable. 
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In practice, a complex system is rarely structured as a 
complete graph. It is not a pure tree either. Therefore 
it is sometimes possible to create a partition of the set 
of vertices according to their weights. Here, we mean 
by weight the number of edges incident from a 
vertex. We simply use the partition of the graph 
when it is possible and necessary to show the 
structure and to improve the layout, but it is not the 
main interest of our method. 
By grouping the vertices according to their weight, 
the graph can be subdivided into several hierarchies 
as follows: H1:{O1, O2, O3,…,On}, H2: 
{{O11,O12,…},{O21,O22,…},…,{Oh1, Oh2,…}}, H3, 
H4, … 
Once vertices are hierarchically grouped, the first 
hierarchy, here H1, is then given an initial layout. Its 
elements are distributed in the initial sphere (S) and 
their positions are refined using the force-directed 
method. After this step, each vertex Oi of H1 is 
placed at the centre of a sphere Si. The next step 
starts by distributing in the sphere Si the vertices (Oi1, 
Oi2, ...) considered as the sub-hierarchy of Oi and the 
force-directed method is then applied. This process is 
recursively applied through all the hierarchies until 
positioning all vertices.  
In the case where it is impossible to subdivide the 
graph, vertices are directly distributed in the largest 
sphere inscribed in the embedding area. 
This process applies easily to trees because we just 
need to place the root vertex at the centre of the 
initial sphere and to recursively subdivide this sphere 
through the remaining hierarchies until the leaf 
vertices. 
The six following figures represent the general 
structures of large systems, i.e. the combination of a 
tree and a general graph. Figure 1 shows how fifteen 
vertices are placed equitably in the area and figure 2 
represents them with maximum links, i.e. a vertex is 
linked to every other ones. Figure 3, 4 and 5 show 
the typical case of a mixture of trees and general 
graphs. Figure 6 specifically represents a pure tree 
rooted from the vertex placed at the centre of the 
area. The embedding area is represented by the xyz 
axes and colored in grey. We have assigned different 
colors to vertices in order to highlight hierarchical 
levels in the graph.  
We have developed a simple user interface as a test 
bed for our algorithm. The number of nodes on each 
level of a graph can be specified to test the rapidity 
of the drawing. Thus it is easy to build all types of 
graph and analyze the strength of the algorithm. The 
three standard ways of navigation are also added to 
allow the study of a graph. All the details of a 
complex graph can then be shown by zooming on in, 
rotating or translating the display. 

Our algorithm does not take into account the effects 
of edges; they are just used to calculate the weight of 
each vertex and only plotted after positioning all 
vertices. 

 

  
 

Figure 1: 15 vertices  

 
Figure 2: 15 linked vertices  

 
  

Figure 3: 110 vertices    
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Figure 4: 550 vertices 

 

  
 

Figure 5: 606 vertices   
 

Figure 6: 1051 vertices 
 

Figures 3, 4 and 5 show the typical case of a 
complete graph. They respectively contain 110, 550 
and 606 nodes and the drawing took respectively 
0.30, 1.30 and 2.0 seconds on a laptop with a 1Gh 
AMD processor. 

Generating the layout of a tree is very fast because 
the initial sphere containing the route node is 
successively subdivided into different branches. 
Figure 6 for example represents 1051 nodes and is 
computed in around 2.0 seconds.    

Compared with different force-directed algorithms 
our algorithm can draw a large graph in a reasonable 
time because it is based on the natural mechanism 
that consists in associating with a hierarchical of 
graphs and the drawing starts by the smallest graph 
in the hierarchy and drawing larger and larger 
graphs.  The second advantage of our method is the 
use of a numerical optimization while computing the 
displacement of a vertex. 

5. CONCLUSIONS 
We have presented a new method to optimize the 
force-directed placement algorithm. The conjugated 
gradient of Fletcher-Reeves is implemented to 
perform the numerical optimization. Our method may 
not be the fastest amongst the force-directed 
placement algorithms but its main advantage is its 
effectiveness in minimizing total energy while most 
algorithms based on this method fail and do not 
clearly express their cost function. Our algorithm is 
addressed to three dimensional drawings of general 
undirected graphs and trees.   
To avoid collisions between vertices we consider the 
largest sphere inscribed in space and subdivide it into 
smaller spheres, each containing a vertex. The 
unused space is minimized by improving the position 
of each vertex with the force-directed method. 
According to the structure of a graph it is possible to 
associate a partition method in order to improve the 
layout.  
Our next goal consists in improving the presentation 
by introducing the notion of weighting when 
assigning space to vertices. Indeed, some vertices 
have more descendents than others. The size of the 
area assigned to each vertex must then be 
proportional to the number of its descendents. 
Therefore, the presentation will be much more 
interesting when introducing the vertices’ weight into 
the energy function.  
Our algorithm can be used in many computer science 
fields such as large-scale computing network, 
telecommunication networks’ display, but we are 
going to apply it to our project of large computing 
networks 3D visualization. 
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