A Generalized Light-Field API and Management System.

Joan Blasco, Miguel Escrivà, Paco Abad, Ricardo Quirós,

Emilio Camahort, and Roberto Vivó

Computer Science Department.

Polytechnic University of Valencia.

Contents

- Introduction.
- Previous Work.
- System.
- API Design.
- Implementation.
- Results.
- Conclusions and Future Work.

Introduction

- Image-Based Rendering
 - □ Simple acquisition
 - □ Realistic representation
 - Rendering complexity depends on output image complexity.
- A light field represents the radiance flowing through all the points in a scene in all possible directions

Introduction

- We present a light-field modeling system
 - Efficiently build, store, combine, resample, retrieve and render LFs.

Our Goals:

- Compare representations, combine, and display on autostereoscopic displays.
- □ Achieve interactive framerates.
- □ Intuitive API.

Previous Work

- Light Field.
 - □ Plenoptic function [Adelson and Bergen91]

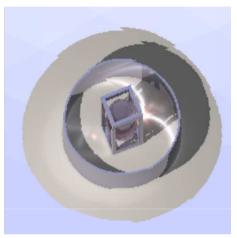
- Different parameterizations.
 - □ Planar anisotropic [Levoy96][Gorter96]
 - Spherical quasi-isotropic [Camahort98]
 - Unstructured [Buhler01]

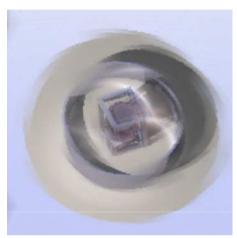
Previous Work

- Levoy and Hanrahan and Gortler et al.
 - □ Planar Anisotropic Light Fields
 - Based on the two-plane parameterization.
 - Discretize the light-field by imposing rectilinear grids on both planes.
- Camahort et al.
 - □ Spherical quasi-isotropic.
 - □ Based on a spherical parametrization.

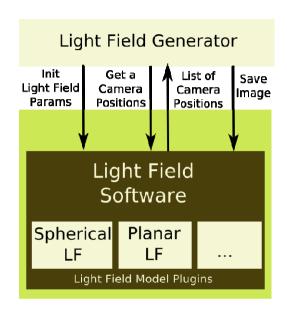
- Support for light-field modeling and rendering.
 - □ Different parameterizations.
 - Multiple input camera arrangements.
 - □ Different resolutions.
 - □ Different capture robot configurations.
 - □ Several storage strategies.
 - Multiple rendering algorithms.
 - Multiple display devices.

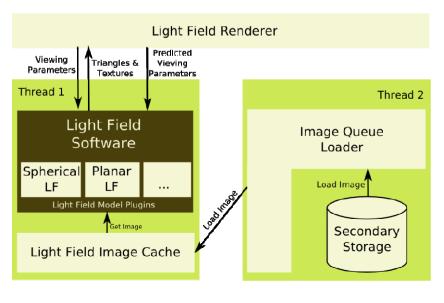
- Light-Field Representations.
 - Support drawing, generating, capturing and storing different light-field representations.
- Our software
 - □ Easily configurable.
 - □ Extended using specific lightfield plugins.
 - Spherical LF plugin
 - Planar LF plugin




- Generation and Capture
 - Specific to each type of representation.
 - □ Camera iterators.
- Synthetic models
 - □ OpenGL, POV, Blender
- Real-world objects.
 - Camera mounted on a robotic arm

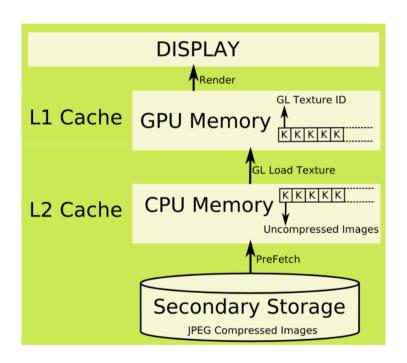
- Light-field's drawbacks
 - □ Huge storage req's
 - □ Artifacts due to discretization errors
 - Seams and ghosting
- Solution
 - □ Use of depth information.



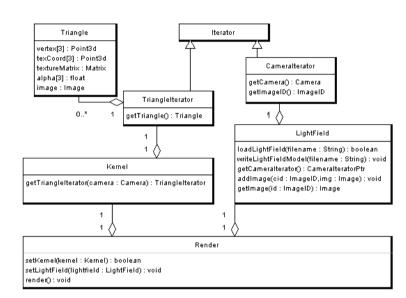

- Light-field composition supports
 - Managing different light-field models.
 - □ Integration with geometric information.
 - Labels, tags, regular objects,...
- Multiple Light Fields
 - Storing multiple images per directional sample.
- Correct renderings
 - □ Draw in proper back-to-front order.
 - □ Use depth information.

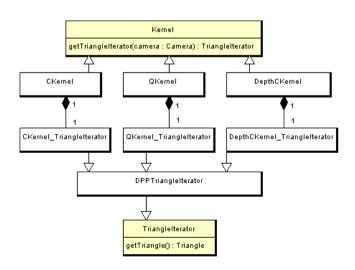
API Design

- Intuitive interface
- Acquisition
 - Initialize light-field parameters.
 - Obtain the camera positions.
 - □ Capture the images.
 - □ Store the data images.
- Rendering



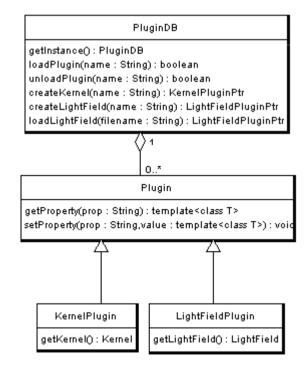
API Design: Rendering


- Uses multiple threads.
- Out-of-core storage techniques.
 - Only new images need to be loaded from disk.
- Two-level cache architecture.
 - Better capacity/response time ratio.



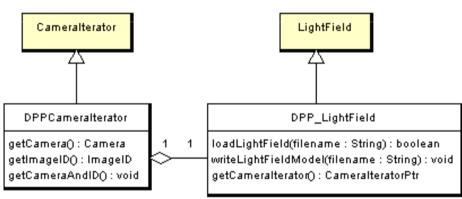
Implementation

- **■** C/C++
- Interfaces
 - □ Light-Field Interface
 - Load, save and generate light-field representations.
 - □ Kernel Interface
 - Reconstruction kernels for rendering algorithms.



Implementation

- Plugin Architecture.
 - Multiple light-field parameterizations.
- Two kinds of plugins
 - □ LightField plugins.
 - Planar anisotropic.
 - Spherical isotropic.
 - Unstructured.
 - □ Kernel plugins.
 - Constant.
 - Linear.

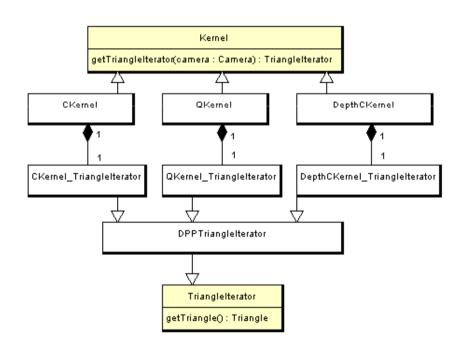


Adding a new LF representation

Requires adding

■ New class inheriting from the LightField interface

- □ Important methods
 - loadLightField
 - writeLightFieldModel
 - getCameralterator



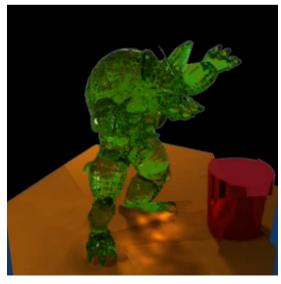
Adding a new LF representation

- Write a new Cameralterator.
 - □ To acquire light fields.

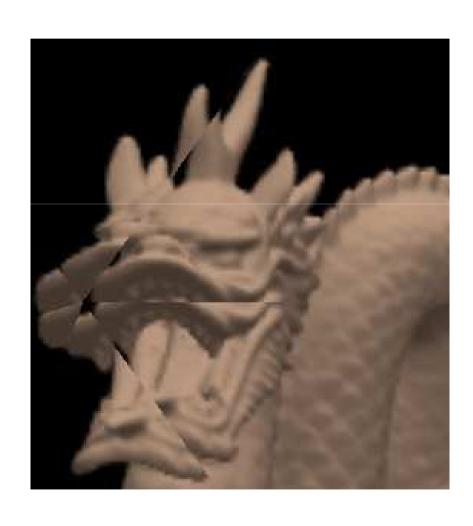
- Implement a new rendering algorithm.
 - Inherit from the Kernel interface.

Results

- API supports multiple light fields.
 - □ Planar and Spherical implemented.
 - □ Unstructured: in the works.
- Different rendering algs implemented.
 - □ With constant reconstruction.
 - □ With linear reconstruction.
 - □ With depth correction.
 - □ With integrated geometry.
- Two-level cache management implementation.



Results



Results

Conclusions and Future Work

- Light-field modeling and rendering in a generalized way.
 - Quick development of novel techniques.
- Flexibility and portability.
- Handles
 - □ Spherical light fields.
 - ☐ Planar light fields.

http://www.sig.upv.es/ALF/papers/wscg2008

Questions?

A Generalized Light-Field API and Management System.

Joan Blasco, Miguel Escrivà, Paco Abad, Ricardo Quirós, Emilio Camahort, and Roberto Vivó

Computer Science Department.

Polytechnic University of Valencia.