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ABSTRACT 

The deletion of geometric features is a much used operation in the process of shape modeling; by deleting 
geometric features, the smoothness of a surface can be increased. In this paper, a new method is presented for 
the deletion of geometric features, which is based on a morphological understanding of the feature. The method 
first parameterizes the feature and then deletes it using a parameter-based shape manipulation. The advantage of 
this new method is that a geometric feature can be deleted while maintaining the semantics of both the feature 
and its embedding shape. To be able to parameterize the feature, an improved version of an existing 
evolutionary feature recognition procedure is developed, which constructs a feature template that matches a 
feature on the target model. Application examples are given and the robustness of the method is discussed. 

Keywords 
Freeform features. Feature recognition, Feature deletion, Evolutionary computation 

 

1. INTRODUCTION 
When thinking of a surface with distinct geometric 
patterns, it is often natural to think of this surface as 
a base surface with features attached to it. For 
example, if one would view a landscape with rock 
formations, then it is only natural to see the rock 
formations as being placed on the landscape (see 
Figure 1). When a piece of skin swells up after an 
insect bite, then the bump that originates is seen as 
‘additional’ shape and the original skin surface is still 
perceived, regardless of the fact that, of course, no 
additional material has been created. 

The geometric patterns of the rock formations and 
the bump in these examples are features. Features 
can be defined as connected regions of the surface 
that can be easily separated from the rest of the 
surface [Rib01]. Geometric features are often used as 
a modeling tool by which distinct characteristics can 

be added to an otherwise smooth surface. Features 
can even be further formalized by adding parameters 
to them that have a functional relation to the feature 
shape. 

 
Figure 1: Rock formations in Monument Valley, 
Arizona 

In other words, parameter values can be used to 
modify the shape in a pre-defined and predictable 
way. This way features can be used to significantly 
improve the efficiency of shape manipulations. In 
addition, the recognition of the features can be used 
or is sometimes even necessary in a process of 
reverse engineering. However, geometric features 
can also occur as noise or byproducts of other 
geometric modeling operations, and in this case can 
be classified as unpredicted, unnecessary and even 
unwanted regions of a surface. If this is the case, then 
a logical wish is to remove them from the surface and 
to (re)create a smooth surface. Smooth surfaces can 
be more efficiently represented and as a result the 
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computation time for many operations on the model 
is significantly decreased. 

Current methods for dealing with geometric features 
are based on an geometric approach to the problem 
of feature deletion, where features are considered to 
be a geometric anomaly. However, in this case, an 
‘understanding’ of the feature is lacking, and 
consequently the result of the feature removal 
procedure is imprecise and requires post-processing 
of the geometric data. In this paper, a new approach 
to feature deletion is proposed that first recognizes a 
target feature. The parameterization of the feature 
that can be derived from this recognition can then be 
used to delete the feature using a parameter-based 
shape manipulation.  

2. EXISTING LITERATURE 
To find approaches to remove features, one does not 
have to look far. Different approaches exist, and 
within each approach different techniques can be 
used. Ribelles et al. [Rib01] propose a method that 
combines several of these techniques for the removal 
of features from polyhedral data. In their work, they 
first split a polyhedral model into several subsections 
using an intersection plane. They then classify and 
cluster triangles in the polyhedral model 
corresponding to their position relative to the 
intersection plane. In the clustered data, they identify 
features and separate these from the rest of the 
polyhedral model. Finally, they use a hole filling 
algorithm to repair the holes that are left behind by 
the removal of the feature. Although the method 
neatly combines several techniques, it is only 
demonstrated for use with regular polyhedral models, 
i.e. models with only surfaces that are either 
perpendicular or parallel to the other surfaces in the 
model. This implies that the technique cannot be 
used in freeform models. 
Another approach that targets regular features is that 
of Venkataraman et al. [Ven02a]. The authors detect 
features by finding a closed boundary loop, i.e. a 
closed loop of edges along the boundary of the 
feature. They then use extension and shrinking of the 
faces that border on this boundary loop to remove the 
features. In addition to the fact that their method only 
targets regular features, it is also unclear to what 
degree the approach can be automated. In [Ven02b] 
the authors present a similar method that specifically 
targets blend features. 
Lee et al. [Lee05] propose a feature suppression 
method that uses a cellular modeling approach to 
identify features and then collapses the geometric 
elements of a feature such that it can be removed 
safely from the shape model. They store every 
collapse operation, in order to later be able to 

unsuppress the feature. Again, this method mainly 
targets regular features and suffers from all the 
disadvantages of history-based modeling. 

3. PROBLEM DEFINITION 
In this paper we assume that freeform surfaces can be 
described by a discrete set of elements, which we call 
shape configuration elements. A B-spline surface can 
be described by a set of control points; polyhedral 
meshes can be described as a collection of points, 
vertices and faces. This means that a surface that can 
be described with n  elements, be it a polyhedral 
mesh or a B-spline surface, can be formalized as 

{ }1, , nS s s= K . Note that the shape configuration 
elements are not part of the shape themselves. For 
each representation type, it is assumed that an 
evaluation function exists, which translates the shape 
configuration element to actual geometry, e.g. for a 
B-spline representation the shape evaluation function 
is the well-known de Casteljau’s algorithm. 

In our approach, features are embedded in a freeform 
target surface. If the discrete set of elements that 
represents the feature shape, denoted E , is a subset 
of that of a surface S , then S  is called the base 
surface of E . The deletion of the feature can now be 
defined as the transformation original deletedS S→ . 
Note that for each element is  it holds that if 

original deleted
i is s≠ , then it holds that Esi ∈ . Hence, 

to delete a feature from a surface, an operation on the 
feature is needed that transforms the feature shape 
(and with it the shape of its base surface) from its 
original state to the ‘deleted’ state. A large advantage 
of this approach compared to that of Lee et al. 
[Lee05] is that the feature information is not 
removed from the model. The only difference 
between the ‘deleted’ state of the feature and the 
original state of the feature is that its parameter 
values have been set to a state that corresponds to 

deleteds . Therefore, to reinstate the feature, all is 
needed is another parameter change. 

Features in this paper are taken to be parametrically 
controlled shapes. This means that, besides the shape 
information, a feature also contains parameter 
information and, more importantly, information on 
how the parameters influence the shape. We define a 
feature as follows: 

A feature ( )0 , ,F E P Eµ =  is a function that, given a 

basic shape configuration 0E , a set of parameter 
values P  and a parameter mapping µ , results in a 
shape configuration E , where: 
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- { }0 0 0
1 , , nE e e= K  is the set of shape 

configuration elements of the basic shape 
configuration  

- ( )1, mP p p= K  is a vector of parameter 

values  

- ( ) ( ){ }
1 1

, ,
n m

l l
i i

i l

E P e E p Pµ µ
= =

= ∈ ∈UU  is a 

parameter mapping 
- { }1, , nE e e= K  is the resulting shape 

configuration 
 

The basic shape configuration 0E can be any valid 
shape configuration of the feature. Without loss of 
generality we therefore assume that the basic shape 
configuration occurs when the vector of parameter 
values ( )0 0, ,0P = K . This definition implies that a 
feature can have multiple states, each of which can 
be derived from an original state (the basic shape 
configuration of the feature), a vector of parameter 
values and the parameter mapping. 

Information on how the parameters influence the 
shape is contained in the parameter mapping, which 
is a set of nm  functions l

iµ  that describe the 

influence of parameter lp  on shape configuration 
element ie . Although we have implemented more 
sophisticated parameter mapping functions, in this 
paper it suffices to assume that a parameter mapping 
function l

iµ  has the form of a translation vector l
iT , 

such that ( , )l l l l
i i i ie p p T eµ = . 

Combining this with what has been said earlier in 
this section, we can pose the following problem 
statement: 

Feature deletion is the problem of, given an original 
surface originalS   that contains one or more features 

originalE S∈ , to find an alternative state deletedS  of 
the surface, for which it holds that 0 deletedE S∈ . 

Note that this problem only requires us to find the 
feature ( )0 , ,F E P Eµ = , for once E , P  and µ  are 

known, 0E  can be backwards computed as 
( )0 , ,E F E P µ= − . Hence, the problem of feature 

deletion can be partly solved by using feature 
recognition. 

4. FEATURE RECOGNITION 
Feature recognition has been a popular research topic 
in the last decades of the previous century. However, 

although many approaches to the recognition of 
regular features have been proposed, very little work 
has been done on the recognition of freeform 
features.  

Song et al. [Son05] and Vergeest et al. [Ver01] have 
proposed a template matching approach, in which an 
instance of a pre-defined feature type, a feature 
template, is iteratively compared with a target 
surface. They construct a function that takes the 
parameter values of the template feature as input 
variables and results in a measurement of the 
geometric distance between the shape of the template 
feature and that of the target surface. By then 
applying a function minimization routine, parameter 
values can be computed for which the geometric 
distance between template and target surface is 
minimal (see Figure 2). The template that is used in 
the procedure is an instance of a user-selected feature 
type from a collection of pre-defined features, the 
feature library. 

 

 
Figure 2: Consecutive steps in a template 
matching procedure, in which a template is 
iteratively matched to a shape model  

Although the template matching method is successful 
in finding relatively simple features, the usefulness is 
limited by the size of the feature library. Before the 
template matching method can be used to recognize a 
feature on a target surface, a feature type that 
resembles this feature must first be defined and 
added to the library. Part of the recognition process 
therefore lies with whoever designs the feature types 
in the feature library. 

An improvement on the template matching method 
has been proposed by the author [Lan07]. In this 
method, an evolutionary approach was used to find a 
minimal configuration for the template feature. In 
this paper, a more elaborate version of this method 
will be given and it will be discussed how this 
method can be used for the problem of feature 
deletion. 

Evolutionary computation is a technique that has 
often been used in the past and that has its roots in 
the field of biology. Evolutionary methods mimic the 
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biological concept of natural selection, which is 
based on the principle of ‘survival of the fittest’. In 
nature, some organisms have higher chances of 
survival and procreation because they are better 
adapted to their environment. The fact that they are 
better adapted to their environment is due to the fact 
that their genetic structure, their ‘DNA’, contains 
specific genes. Because their chance of procreation is 
bigger than that for other individuals, they are likely 
to pass on these genes to a next generation. As a  
result, organisms in this offspring generation are 
even better adapted to their environment. Due to this 
mechanism, populations adapt to their environments 
and ‘improve’ with each generation. In an 
evolutionary computation method, possible solutions 
to a problem are viewed as organisms, of which the 
genetic elements are the variables that play a role in 
finding the solution to the problem. In an 
evolutionary computation method, natural 
mechanisms that play a role in evolution must be 
implemented. The most important of these 
mechanisms are: genetic structure, crossover, 
mutation, fitness and selection.  

Genetic structure 

In the feature recognition problem, the ‘problem’ 
under consideration is that of shape matching. The 
organisms in an evolutionary freeform feature 
recognition problem are, logically, feature instances, 
and the genetic structure therefore contains all the 
variables that are needed to compute the shape of a 
feature: the parameter values of the feature, but also 
its parameter mapping functions. We define the gene 
sequence ( ){ }1 1, , n mγ γ γ += K , such that i iPγ =  for 

i m≤  and ( )
( )/

mod ,
i m n

i i m nTγ
⎡ ⎤−⎢ ⎥

−=  for i m> . 

Crossover and mutation 

Crossover and mutation determine how the 
inheritance of genes from one generation to the other 
takes place. The gene sequences of two individuals, 
the parents, are combined such that the gene 
sequence of each of their offspring is a (different) 
combination of parts of the gene sequences of their 
parents. Sometimes, during the process of 
inheritance, the information in the gene sequence is 
distorted. This process is called mutation and ensures 
that the ‘gene pool’, the collection of all genes that 
are available in a population, is constantly in motion. 
Mutation introduces new properties into the gene 
pool, both good and bad. However, only the good 
properties survive the natural selection process. 
Mutation plays a particularly important role in 
evolutionary computation methods. Because the 

available computation time and memory is limited, 
populations are often simulated with less-than-
natural sizes. To counter the effect of inbreeding, 
mutation rates are typically higher than in nature. 

Fitness and selection 

The extent to which an organism is adapted to its 
environment is expressed in the fitness. In the case of 
feature recognition, the fitness is implemented as the 
geometric distance between feature shape and target 
shape. As a measurement of this distance, the 
Hausdorff distance is used, which is defined as 

( )( )
1 1

2 2

1 2 1 2( , ) max min ,
s S s S

H S S dist s s
∈

∈

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

, where dist  is 

the Euclidean distance between two points. The 
higher the fitness of an organism, the higher the 
probability that it will generate offspring. 

Several variables play a large role in any 
evolutionary computation: 

- The population size Π  indicates the number of 
organisms in a population. Each individual in 
the population signifies a single probe in the 
search space. Therefore, the larger the 
population size, the faster (in terms of number 
of generations needed) the procedure converges 
to an optimal solution to the feature recognition 
problem. However, a large population size also 
means a higher computation time.  

- The selection size σ  indicates the extent to 
which the fitness has an influence on the chance 
of selection. If σ is set to a high value, then 
even the less successful features in a population 
have a chance of generating offspring in the 
next generation. In this case, the genetic 
diversity (i.e. the number of different genes) of 
an offspring feature population remains high, 
but the selective power of the evolutionary 
mechanism decreases.  

- The mutation probability χ  indicates how 
likely it is that mutation occurs during the 
creation of an offspring population. If χ  is 
high, then a higher number of new genes is 
introduced in each generation. This can either 
be an advantage or a disadvantage: the higher 
the number of new genes, the less likely the 
feature recognition is to get stuck in a local 
minimum; however, too many new genes may 
lead to an overload of new search directions to 
be investigated and promising search directions 
may therefore unjustly be discarded.  

- The mutation rate ϕ  determines the amount of 
mutation that occurs. The higher the mutation 
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rate, the larger the difference between a mutated 
gene and the parent genes that contributed to it.  

Considering what has been said in this section, an 
evolutionary feature recognition algorithm can be 
given as follows: 
1) An initial feature population 

{ }1, ,1gen F FΠ= K  is generated, where each F  

is an instance of a pre-defined type from the 
feature library. A random value is assigned to the 
parameter values. 

2) The fitness of each feature is computed and 
features are ranked according to their increasing 
fitness value ( )f , such that 

1( ) ( )f F f FΠ≤ ≤K  
3) A new population 1igen +  is generated as follows. 

For each feature instance in 1igen + : 

- Two features, motherF and fatherF , are selected 
from igen  with probability  

222( )
2

x

P x e σ

σ π

−

=  which is a one-sided 

Gaussian distribution of the fitness over the 
domain [ )0,x∈ ∞  with standard deviation σ .  

- Each gene of a new individual newF is copied 
either from motherF or fatherF . Both have an 
equal chance of being selected to carry on a 
gene. The chance of mutation is computed using 
a uniform distribution, and if mutation occurs, 
then the value of a gene is multiplied by a factor 
that is computed using a Gaussian distribution 
with a mean of 1 and a standard deviation χ .  

 
The procedure terminates when one of the following 
conditions is met: 
- The fitness no longer increases over generations, 

or the increase in fitness is slow, i.e the difference 
between 1( )f F  in 1igen −  and 1( )f F in igen  is 
smaller than a user-given threshold 1ε . 

- The fittest feature in a population is an acceptable 
solution to the feature recognition problem, i.e. 

1( )f F in igen  is smaller than a user-given 
threshold 2ε . 

 

Using the evolutionary algorithm, features can be 
recognized providing the variables of the algorithm 
are set to a correct value. However, if both parameter 
mapping functions and parameter values are included 
in the genetic structure of a feature, then the amount 
of genes is large. As a result, the population size 
must be set to a very large value, which in turn leads 

to a large computation time. To counter this problem, 
we divide an evolutionary feature recognition 
procedure into two steps: 
Step 1 
During the inheritance of genes, only the genes that 
represent the parameter values are subjected to 
mutation. As a result, the genes that represent the 
parameter mapping functions remain stationary and 
the population size can be kept small. The result of 
this step is a configuration of a feature template that 
roughly matches the target shape, similar to that of 
the template matching method. Although the match is 
not perfect, the end result of this step is a good 
starting point for step 2. 
Step 2 
Starting from the configuration that was found in 
step 1, a new evolutionary procedure is started. 
Because this procedure starts from a reasonable 
approximation of the optimal configuration of a 
template feature, the population size can again be 
kept small. This time, the genes that represent 
parameter values are fixed and the genes for the 
parameter mapping are included in the inheritance. 
During this step, a much more accurate match is 
found. Because the parameter mapping functions are 
now subjected to mutation, the resulting feature is no 
longer an instance of a feature that is available in the 
library. The shape of the feature has been adapted to 
that of the target surface, while maintaining the 
functional relation between parameters and shape. 
Examples of the result of the two steps are shown in 
Figure 3. The main advantage of dividing the feature 
recognition process into two steps is that the 
population size can be kept small and hence the 
computation time is reduced. In step 1, only a small 
amount of genes is used; in step 2, the initial 
configuration of a feature is already a reasonable 
match of the target surface. 

 
(a)  (b)  (c) 

Figure 3: Results of the two steps of the 
evolutionary feature recognition algorithm, (a) 
the target shape model, (b) a rough match of a 
feature template to the shape and (c) an improved 
match, in which the feature template is adapted to 
the target shape model. 

WSCG2008 Full papers 203 ISBN 978-86943-15-2



Evolutionary feature recognition is an improvement 
on existing feature recognition techniques in that it 
does not require a rigid similarity between a feature 
on the target surface and a pre-defined feature in the 
feature library. Although at the starting point of the 
recognition procedure, instances from pre-defined 
feature types are used, during the procedure these 
become adapted to the target surface and the feature 
definition is slowly changed. However, although the 
recognition procedure results in an accurate match 
between a feature template and a target surface, the 
result is still a template, not a portion of the target 
surface. In other words, the shape configuration of 
the feature template E  is not a subsection of S . 
This means that we are still not able to use the 
feature template that results from the recognition 
process to delete the feature on the target surface. In 
the next section we therefore describe a technique to 
find the base surface of the feature, using the 
recognized feature as a starting point. 

5. BASE SURFACE DETECTION AND 
FEATURE DELETION 
 
To be able to use the feature template that was found 
in the feature recognition procedure, the observation 
must be made that although the shape configurations 
of the feature template ( )0 , ,F E P µ′ ′ ′ ′  and the target 

feature ( )0 , , targetF E P E Sµ′′ ′′ ′′ ′′ = ⊆  are not 

identical, this does hold to a high degree for the 
parameter mapping functions, such that 

( ) 0, ,targetF E P Eµ′ ′ ′ ′′− ≈ . Remember that 0E′′  is the 

surface that remains after the feature F ′′  has been 
deleted. This observation allows us to find an 
estimate for the base surface of the target feature.  
Song et al. [Son05] show how a matched template 
can be used to deform the feature that it has been 
matched to. They use a variant of lattice-based 
deformation that was proposed by Sederberg and 
Parry [Sed86].  
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4: Steps in the base surface detection: (a) 
the original surface, (b) after deletion of the 
feature, with some residual effects, (c) after  
smoothing the surface (d) after reconstruction of 
the feature. 
By using this approach, the recognized feature can be 
deleted by setting the parameter values of the 
template to 0, but because the match between the 
template and the target surface is not perfect, there is 
some residual effect (see figure 4b).We have 
implemented an approach to improve on this result, 
so that a feature can be removed without residual 
effect: 

1. An evolutionary feature recognition is used 
to find the configuration of a feature 
template such that it has a minimal distance 
to the target surface. This step equals the 
two steps mentioned earlier. 

2. The parameter values for the template 
feature are set to 0 and the correspondence 
between template and target surface is used 
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to deform the target surface using a lattice-
based approach. 

3. The resulting surface is smoothed 
4. A new feature recognition procedure is 

started, in which the basic shape 
configuration of the feature is a subset of 
the surface that results from step 3. 

For the smoothing in step 3, any known smoothing 
algorithm can be used. There is not a ‘correct’ 
solution to the base surface detection problem, and 
therefore the exact result of the smoothing procedure 
is irrelevant, as long as it leads a smooth surface. We 
used a simple Laplacian smoothing algorithm, which 
in practical cases provided a sufficiently smooth base 
surface.  
Note that the feature recognition in step 4 can be 
done much faster and with much more efficiency 
than the recognition procedure in step 1, because: 

- The configuration of the feature is 
constrained by its position on the target 
surface. 

- The exact feature type of the target feature 
is known, as it was constructed during step 
1. 

- Approximate parameter values for the 
feature are known. 

As a result, the population size for the second feature 
recognition procedure can be kept very small, and the 
computation time is small as well. 
In the end result of step 3 , the targeted geometric 
feature has been deleted, leaving a smooth surface. 
However, earlier it was stated that the preservation of 
the semantics of the deleted feature is important, for 
example if one wants to undo the deletion. For this 
reason, the surface that results from step 3 is 
assumed to be the base surface of the original 
feature; in step 4 the feature is reconstructed using 
this base surface. Although the reconstructed feature 
that is the result of step 4 is not an exact match of the 
original target feature, we found that the distance 
between the two was very small and could not be 
visually discerned (see figure 4a vs. figure 4d). 
 

  

 

 
Figure 5: Test models (left) and the result of the 

feature deletion procedure (right). 
To test the proposed method, it was subjected to 
several test models, of which three are shown in 
figure 5. The models were in the form of polyhedral 
meshes containing in between 45000 and 76000 
polygons. To be able to recognize and delete the 
features on these models, first feature type 
definitions were created; to guard the objectivity of 
this definition, i.e., to guarantee that the definitions 
were not an a priori match to the features on the test 
models, the definitions were created by a colleague 
on the basis of a verbal description of the feature in 
question. Then, to guarantee that the correct feature 
was deleted, first regions of interest were selected 
around the targeted features on the test models. 
Finally, these regions of interest were subjected to 
the proposed method, the result of which can be seen 
in figure 5.  
From the results of the tests, it was concluded that 
the proposed method can successfully be used to 
delete geometric features. However, some situations 
were found in which a feature could not be deleted, 
due to the fact that (a) the feature interfered with 
other features or parts of the shape, (b) the feature 
was attached to multiple base surfaces, and (c) the 
feature was nested, i.e. its base surface could be 
considered to be another feature (see Figure 6). 
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Figure 6: Three cases in which the proposed 
method failed: (a) interference with other shape 
parts, (b) multiple base surfaces and (c) nested 
features 

6. RESULTS AND DISCUSSION 
A method was proposed that deletes a feature from a 
target surface. The method first recognizes the 
feature by matching a feature template to the target 
shape, and then uses the correspondence with the 
template feature to reduce the feature to its basic 
shape configuration. The resulting surface is 
smoothed and in a final step the original feature is 
reconstructed. The method was implemented for use 
on polyhedral meshes, but can be generalized to B-
spline surfaces because in the theory no specific 
assumptions were made on the shape representation 
type. To implement the method for B-spline surfaces, 
only the smoothing of a surface must be addressed.  
It was found that the feature deletion method is 
successful in deleting features from polyhedral 
meshes. In the testing experiments, several problems 
occurred, some of which were shown in figure 6. 
First, it was found that the feature deletion method 
does not fully work in the case where two or more 
features interfere. Dealing with feature interference is 
a known problem of feature recognition and it can be 
expected that if improved feature recognition 
methods are developed, then the deletion of these 
features also improves. However, the difficulty of 
dealing with features that have multiple base surfaces 
is a minor but systematic shortcoming of the 
proposed method, which should be addressed in 
future research. Nested features cannot be 
unambiguously deleted without additional user input 
on what feature exactly has to be deleted. 
Another problem with the feature deletion method 
presented in this paper is that it is unable to deal with 

eliminative features, i.e. holes. This is a consequence 
of a shortcoming of the proposed feature recognition 
method, not with the methodology that was proposed 
for feature deletion. A different approach to feature 
recognition is necessary for this type of features, 
which is also left to future research. 
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