
Geometric Feature Deletion Through Freeform
Feature Recognition

Thomas R. Langerak

Delft University of Technology
Landbergstraat 15

2628 CE Delft
 Netherlands

T.R.Langerak@tudelft.nl

ABSTRACT

The deletion of geometric features is a much used operation in the process of shape modeling; by deleting
geometric features, the smoothness of a surface can be increased. In this paper, a new method is presented for
the deletion of geometric features, which is based on a morphological understanding of the feature. The method
first parameterizes the feature and then deletes it using a parameter-based shape manipulation. The advantage of
this new method is that a geometric feature can be deleted while maintaining the semantics of both the feature
and its embedding shape. To be able to parameterize the feature, an improved version of an existing
evolutionary feature recognition procedure is developed, which constructs a feature template that matches a
feature on the target model. Application examples are given and the robustness of the method is discussed.

Keywords
Freeform features. Feature recognition, Feature deletion, Evolutionary computation

1. INTRODUCTION
When thinking of a surface with distinct geometric
patterns, it is often natural to think of this surface as
a base surface with features attached to it. For
example, if one would view a landscape with rock
formations, then it is only natural to see the rock
formations as being placed on the landscape (see
Figure 1). When a piece of skin swells up after an
insect bite, then the bump that originates is seen as
‘additional’ shape and the original skin surface is still
perceived, regardless of the fact that, of course, no
additional material has been created.

The geometric patterns of the rock formations and
the bump in these examples are features. Features
can be defined as connected regions of the surface
that can be easily separated from the rest of the
surface [Rib01]. Geometric features are often used as
a modeling tool by which distinct characteristics can

be added to an otherwise smooth surface. Features
can even be further formalized by adding parameters
to them that have a functional relation to the feature
shape.

Figure 1: Rock formations in Monument Valley,
Arizona

In other words, parameter values can be used to
modify the shape in a pre-defined and predictable
way. This way features can be used to significantly
improve the efficiency of shape manipulations. In
addition, the recognition of the features can be used
or is sometimes even necessary in a process of
reverse engineering. However, geometric features
can also occur as noise or byproducts of other
geometric modeling operations, and in this case can
be classified as unpredicted, unnecessary and even
unwanted regions of a surface. If this is the case, then
a logical wish is to remove them from the surface and
to (re)create a smooth surface. Smooth surfaces can
be more efficiently represented and as a result the

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Copyright UNION Agency – Science Press, Plzen, Czech
Republic.

WSCG2008 Full papers 199 ISBN 978-86943-15-2

computation time for many operations on the model
is significantly decreased.

Current methods for dealing with geometric features
are based on an geometric approach to the problem
of feature deletion, where features are considered to
be a geometric anomaly. However, in this case, an
‘understanding’ of the feature is lacking, and
consequently the result of the feature removal
procedure is imprecise and requires post-processing
of the geometric data. In this paper, a new approach
to feature deletion is proposed that first recognizes a
target feature. The parameterization of the feature
that can be derived from this recognition can then be
used to delete the feature using a parameter-based
shape manipulation.

2. EXISTING LITERATURE
To find approaches to remove features, one does not
have to look far. Different approaches exist, and
within each approach different techniques can be
used. Ribelles et al. [Rib01] propose a method that
combines several of these techniques for the removal
of features from polyhedral data. In their work, they
first split a polyhedral model into several subsections
using an intersection plane. They then classify and
cluster triangles in the polyhedral model
corresponding to their position relative to the
intersection plane. In the clustered data, they identify
features and separate these from the rest of the
polyhedral model. Finally, they use a hole filling
algorithm to repair the holes that are left behind by
the removal of the feature. Although the method
neatly combines several techniques, it is only
demonstrated for use with regular polyhedral models,
i.e. models with only surfaces that are either
perpendicular or parallel to the other surfaces in the
model. This implies that the technique cannot be
used in freeform models.
Another approach that targets regular features is that
of Venkataraman et al. [Ven02a]. The authors detect
features by finding a closed boundary loop, i.e. a
closed loop of edges along the boundary of the
feature. They then use extension and shrinking of the
faces that border on this boundary loop to remove the
features. In addition to the fact that their method only
targets regular features, it is also unclear to what
degree the approach can be automated. In [Ven02b]
the authors present a similar method that specifically
targets blend features.
Lee et al. [Lee05] propose a feature suppression
method that uses a cellular modeling approach to
identify features and then collapses the geometric
elements of a feature such that it can be removed
safely from the shape model. They store every
collapse operation, in order to later be able to

unsuppress the feature. Again, this method mainly
targets regular features and suffers from all the
disadvantages of history-based modeling.

3. PROBLEM DEFINITION
In this paper we assume that freeform surfaces can be
described by a discrete set of elements, which we call
shape configuration elements. A B-spline surface can
be described by a set of control points; polyhedral
meshes can be described as a collection of points,
vertices and faces. This means that a surface that can
be described with n elements, be it a polyhedral
mesh or a B-spline surface, can be formalized as

{ }1, , nS s s= K . Note that the shape configuration
elements are not part of the shape themselves. For
each representation type, it is assumed that an
evaluation function exists, which translates the shape
configuration element to actual geometry, e.g. for a
B-spline representation the shape evaluation function
is the well-known de Casteljau’s algorithm.

In our approach, features are embedded in a freeform
target surface. If the discrete set of elements that
represents the feature shape, denoted E , is a subset
of that of a surface S , then S is called the base
surface of E . The deletion of the feature can now be
defined as the transformation original deletedS S→ .
Note that for each element is it holds that if

original deleted
i is s≠ , then it holds that Esi ∈ . Hence,

to delete a feature from a surface, an operation on the
feature is needed that transforms the feature shape
(and with it the shape of its base surface) from its
original state to the ‘deleted’ state. A large advantage
of this approach compared to that of Lee et al.
[Lee05] is that the feature information is not
removed from the model. The only difference
between the ‘deleted’ state of the feature and the
original state of the feature is that its parameter
values have been set to a state that corresponds to

deleteds . Therefore, to reinstate the feature, all is
needed is another parameter change.

Features in this paper are taken to be parametrically
controlled shapes. This means that, besides the shape
information, a feature also contains parameter
information and, more importantly, information on
how the parameters influence the shape. We define a
feature as follows:

A feature ()0 , ,F E P Eµ = is a function that, given a

basic shape configuration 0E , a set of parameter
values P and a parameter mapping µ , results in a
shape configuration E , where:

WSCG2008 Full papers 200 ISBN 978-86943-15-2

- { }0 0 0
1 , , nE e e= K is the set of shape

configuration elements of the basic shape
configuration

- ()1, mP p p= K is a vector of parameter

values

- () (){ }
1 1

, ,
n m

l l
i i

i l

E P e E p Pµ µ
= =

= ∈ ∈UU is a

parameter mapping
- { }1, , nE e e= K is the resulting shape

configuration

The basic shape configuration 0E can be any valid
shape configuration of the feature. Without loss of
generality we therefore assume that the basic shape
configuration occurs when the vector of parameter
values ()0 0, ,0P = K . This definition implies that a
feature can have multiple states, each of which can
be derived from an original state (the basic shape
configuration of the feature), a vector of parameter
values and the parameter mapping.

Information on how the parameters influence the
shape is contained in the parameter mapping, which
is a set of nm functions l

iµ that describe the

influence of parameter lp on shape configuration
element ie . Although we have implemented more
sophisticated parameter mapping functions, in this
paper it suffices to assume that a parameter mapping
function l

iµ has the form of a translation vector l
iT ,

such that (,)l l l l
i i i ie p p T eµ = .

Combining this with what has been said earlier in
this section, we can pose the following problem
statement:

Feature deletion is the problem of, given an original
surface originalS that contains one or more features

originalE S∈ , to find an alternative state deletedS of
the surface, for which it holds that 0 deletedE S∈ .

Note that this problem only requires us to find the
feature ()0 , ,F E P Eµ = , for once E , P and µ are

known, 0E can be backwards computed as
()0 , ,E F E P µ= − . Hence, the problem of feature

deletion can be partly solved by using feature
recognition.

4. FEATURE RECOGNITION
Feature recognition has been a popular research topic
in the last decades of the previous century. However,

although many approaches to the recognition of
regular features have been proposed, very little work
has been done on the recognition of freeform
features.

Song et al. [Son05] and Vergeest et al. [Ver01] have
proposed a template matching approach, in which an
instance of a pre-defined feature type, a feature
template, is iteratively compared with a target
surface. They construct a function that takes the
parameter values of the template feature as input
variables and results in a measurement of the
geometric distance between the shape of the template
feature and that of the target surface. By then
applying a function minimization routine, parameter
values can be computed for which the geometric
distance between template and target surface is
minimal (see Figure 2). The template that is used in
the procedure is an instance of a user-selected feature
type from a collection of pre-defined features, the
feature library.

Figure 2: Consecutive steps in a template
matching procedure, in which a template is
iteratively matched to a shape model

Although the template matching method is successful
in finding relatively simple features, the usefulness is
limited by the size of the feature library. Before the
template matching method can be used to recognize a
feature on a target surface, a feature type that
resembles this feature must first be defined and
added to the library. Part of the recognition process
therefore lies with whoever designs the feature types
in the feature library.

An improvement on the template matching method
has been proposed by the author [Lan07]. In this
method, an evolutionary approach was used to find a
minimal configuration for the template feature. In
this paper, a more elaborate version of this method
will be given and it will be discussed how this
method can be used for the problem of feature
deletion.

Evolutionary computation is a technique that has
often been used in the past and that has its roots in
the field of biology. Evolutionary methods mimic the

WSCG2008 Full papers 201 ISBN 978-86943-15-2

biological concept of natural selection, which is
based on the principle of ‘survival of the fittest’. In
nature, some organisms have higher chances of
survival and procreation because they are better
adapted to their environment. The fact that they are
better adapted to their environment is due to the fact
that their genetic structure, their ‘DNA’, contains
specific genes. Because their chance of procreation is
bigger than that for other individuals, they are likely
to pass on these genes to a next generation. As a
result, organisms in this offspring generation are
even better adapted to their environment. Due to this
mechanism, populations adapt to their environments
and ‘improve’ with each generation. In an
evolutionary computation method, possible solutions
to a problem are viewed as organisms, of which the
genetic elements are the variables that play a role in
finding the solution to the problem. In an
evolutionary computation method, natural
mechanisms that play a role in evolution must be
implemented. The most important of these
mechanisms are: genetic structure, crossover,
mutation, fitness and selection.

Genetic structure

In the feature recognition problem, the ‘problem’
under consideration is that of shape matching. The
organisms in an evolutionary freeform feature
recognition problem are, logically, feature instances,
and the genetic structure therefore contains all the
variables that are needed to compute the shape of a
feature: the parameter values of the feature, but also
its parameter mapping functions. We define the gene
sequence (){ }1 1, , n mγ γ γ += K , such that i iPγ = for

i m≤ and ()
()/

mod ,
i m n

i i m nTγ
⎡ ⎤−⎢ ⎥

−= for i m> .

Crossover and mutation

Crossover and mutation determine how the
inheritance of genes from one generation to the other
takes place. The gene sequences of two individuals,
the parents, are combined such that the gene
sequence of each of their offspring is a (different)
combination of parts of the gene sequences of their
parents. Sometimes, during the process of
inheritance, the information in the gene sequence is
distorted. This process is called mutation and ensures
that the ‘gene pool’, the collection of all genes that
are available in a population, is constantly in motion.
Mutation introduces new properties into the gene
pool, both good and bad. However, only the good
properties survive the natural selection process.
Mutation plays a particularly important role in
evolutionary computation methods. Because the

available computation time and memory is limited,
populations are often simulated with less-than-
natural sizes. To counter the effect of inbreeding,
mutation rates are typically higher than in nature.

Fitness and selection

The extent to which an organism is adapted to its
environment is expressed in the fitness. In the case of
feature recognition, the fitness is implemented as the
geometric distance between feature shape and target
shape. As a measurement of this distance, the
Hausdorff distance is used, which is defined as

()()
1 1

2 2

1 2 1 2(,) max min ,
s S s S

H S S dist s s
∈

∈

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

, where dist is

the Euclidean distance between two points. The
higher the fitness of an organism, the higher the
probability that it will generate offspring.

Several variables play a large role in any
evolutionary computation:

- The population size Π indicates the number of
organisms in a population. Each individual in
the population signifies a single probe in the
search space. Therefore, the larger the
population size, the faster (in terms of number
of generations needed) the procedure converges
to an optimal solution to the feature recognition
problem. However, a large population size also
means a higher computation time.

- The selection size σ indicates the extent to
which the fitness has an influence on the chance
of selection. If σ is set to a high value, then
even the less successful features in a population
have a chance of generating offspring in the
next generation. In this case, the genetic
diversity (i.e. the number of different genes) of
an offspring feature population remains high,
but the selective power of the evolutionary
mechanism decreases.

- The mutation probability χ indicates how
likely it is that mutation occurs during the
creation of an offspring population. If χ is
high, then a higher number of new genes is
introduced in each generation. This can either
be an advantage or a disadvantage: the higher
the number of new genes, the less likely the
feature recognition is to get stuck in a local
minimum; however, too many new genes may
lead to an overload of new search directions to
be investigated and promising search directions
may therefore unjustly be discarded.

- The mutation rate ϕ determines the amount of
mutation that occurs. The higher the mutation

WSCG2008 Full papers 202 ISBN 978-86943-15-2

rate, the larger the difference between a mutated
gene and the parent genes that contributed to it.

Considering what has been said in this section, an
evolutionary feature recognition algorithm can be
given as follows:
1) An initial feature population

{ }1, ,1gen F FΠ= K is generated, where each F

is an instance of a pre-defined type from the
feature library. A random value is assigned to the
parameter values.

2) The fitness of each feature is computed and
features are ranked according to their increasing
fitness value ()f , such that

1() ()f F f FΠ≤ ≤K
3) A new population 1igen + is generated as follows.

For each feature instance in 1igen + :

- Two features, motherF and fatherF , are selected
from igen with probability

222()
2

x

P x e σ

σ π

−

= which is a one-sided

Gaussian distribution of the fitness over the
domain [)0,x∈ ∞ with standard deviation σ .

- Each gene of a new individual newF is copied
either from motherF or fatherF . Both have an
equal chance of being selected to carry on a
gene. The chance of mutation is computed using
a uniform distribution, and if mutation occurs,
then the value of a gene is multiplied by a factor
that is computed using a Gaussian distribution
with a mean of 1 and a standard deviation χ .

The procedure terminates when one of the following
conditions is met:
- The fitness no longer increases over generations,

or the increase in fitness is slow, i.e the difference
between 1()f F in 1igen − and 1()f F in igen is
smaller than a user-given threshold 1ε .

- The fittest feature in a population is an acceptable
solution to the feature recognition problem, i.e.

1()f F in igen is smaller than a user-given
threshold 2ε .

Using the evolutionary algorithm, features can be
recognized providing the variables of the algorithm
are set to a correct value. However, if both parameter
mapping functions and parameter values are included
in the genetic structure of a feature, then the amount
of genes is large. As a result, the population size
must be set to a very large value, which in turn leads

to a large computation time. To counter this problem,
we divide an evolutionary feature recognition
procedure into two steps:
Step 1
During the inheritance of genes, only the genes that
represent the parameter values are subjected to
mutation. As a result, the genes that represent the
parameter mapping functions remain stationary and
the population size can be kept small. The result of
this step is a configuration of a feature template that
roughly matches the target shape, similar to that of
the template matching method. Although the match is
not perfect, the end result of this step is a good
starting point for step 2.
Step 2
Starting from the configuration that was found in
step 1, a new evolutionary procedure is started.
Because this procedure starts from a reasonable
approximation of the optimal configuration of a
template feature, the population size can again be
kept small. This time, the genes that represent
parameter values are fixed and the genes for the
parameter mapping are included in the inheritance.
During this step, a much more accurate match is
found. Because the parameter mapping functions are
now subjected to mutation, the resulting feature is no
longer an instance of a feature that is available in the
library. The shape of the feature has been adapted to
that of the target surface, while maintaining the
functional relation between parameters and shape.
Examples of the result of the two steps are shown in
Figure 3. The main advantage of dividing the feature
recognition process into two steps is that the
population size can be kept small and hence the
computation time is reduced. In step 1, only a small
amount of genes is used; in step 2, the initial
configuration of a feature is already a reasonable
match of the target surface.

(a) (b) (c)

Figure 3: Results of the two steps of the
evolutionary feature recognition algorithm, (a)
the target shape model, (b) a rough match of a
feature template to the shape and (c) an improved
match, in which the feature template is adapted to
the target shape model.

WSCG2008 Full papers 203 ISBN 978-86943-15-2

Evolutionary feature recognition is an improvement
on existing feature recognition techniques in that it
does not require a rigid similarity between a feature
on the target surface and a pre-defined feature in the
feature library. Although at the starting point of the
recognition procedure, instances from pre-defined
feature types are used, during the procedure these
become adapted to the target surface and the feature
definition is slowly changed. However, although the
recognition procedure results in an accurate match
between a feature template and a target surface, the
result is still a template, not a portion of the target
surface. In other words, the shape configuration of
the feature template E is not a subsection of S .
This means that we are still not able to use the
feature template that results from the recognition
process to delete the feature on the target surface. In
the next section we therefore describe a technique to
find the base surface of the feature, using the
recognized feature as a starting point.

5. BASE SURFACE DETECTION AND
FEATURE DELETION

To be able to use the feature template that was found
in the feature recognition procedure, the observation
must be made that although the shape configurations
of the feature template ()0 , ,F E P µ′ ′ ′ ′ and the target

feature ()0 , , targetF E P E Sµ′′ ′′ ′′ ′′ = ⊆ are not

identical, this does hold to a high degree for the
parameter mapping functions, such that

() 0, ,targetF E P Eµ′ ′ ′ ′′− ≈ . Remember that 0E′′ is the

surface that remains after the feature F ′′ has been
deleted. This observation allows us to find an
estimate for the base surface of the target feature.
Song et al. [Son05] show how a matched template
can be used to deform the feature that it has been
matched to. They use a variant of lattice-based
deformation that was proposed by Sederberg and
Parry [Sed86].

(a)

(b)

(c)

(d)

Figure 4: Steps in the base surface detection: (a)
the original surface, (b) after deletion of the
feature, with some residual effects, (c) after
smoothing the surface (d) after reconstruction of
the feature.
By using this approach, the recognized feature can be
deleted by setting the parameter values of the
template to 0, but because the match between the
template and the target surface is not perfect, there is
some residual effect (see figure 4b).We have
implemented an approach to improve on this result,
so that a feature can be removed without residual
effect:

1. An evolutionary feature recognition is used
to find the configuration of a feature
template such that it has a minimal distance
to the target surface. This step equals the
two steps mentioned earlier.

2. The parameter values for the template
feature are set to 0 and the correspondence
between template and target surface is used

WSCG2008 Full papers 204 ISBN 978-86943-15-2

to deform the target surface using a lattice-
based approach.

3. The resulting surface is smoothed
4. A new feature recognition procedure is

started, in which the basic shape
configuration of the feature is a subset of
the surface that results from step 3.

For the smoothing in step 3, any known smoothing
algorithm can be used. There is not a ‘correct’
solution to the base surface detection problem, and
therefore the exact result of the smoothing procedure
is irrelevant, as long as it leads a smooth surface. We
used a simple Laplacian smoothing algorithm, which
in practical cases provided a sufficiently smooth base
surface.
Note that the feature recognition in step 4 can be
done much faster and with much more efficiency
than the recognition procedure in step 1, because:

- The configuration of the feature is
constrained by its position on the target
surface.

- The exact feature type of the target feature
is known, as it was constructed during step
1.

- Approximate parameter values for the
feature are known.

As a result, the population size for the second feature
recognition procedure can be kept very small, and the
computation time is small as well.
In the end result of step 3 , the targeted geometric
feature has been deleted, leaving a smooth surface.
However, earlier it was stated that the preservation of
the semantics of the deleted feature is important, for
example if one wants to undo the deletion. For this
reason, the surface that results from step 3 is
assumed to be the base surface of the original
feature; in step 4 the feature is reconstructed using
this base surface. Although the reconstructed feature
that is the result of step 4 is not an exact match of the
original target feature, we found that the distance
between the two was very small and could not be
visually discerned (see figure 4a vs. figure 4d).

Figure 5: Test models (left) and the result of the

feature deletion procedure (right).
To test the proposed method, it was subjected to
several test models, of which three are shown in
figure 5. The models were in the form of polyhedral
meshes containing in between 45000 and 76000
polygons. To be able to recognize and delete the
features on these models, first feature type
definitions were created; to guard the objectivity of
this definition, i.e., to guarantee that the definitions
were not an a priori match to the features on the test
models, the definitions were created by a colleague
on the basis of a verbal description of the feature in
question. Then, to guarantee that the correct feature
was deleted, first regions of interest were selected
around the targeted features on the test models.
Finally, these regions of interest were subjected to
the proposed method, the result of which can be seen
in figure 5.
From the results of the tests, it was concluded that
the proposed method can successfully be used to
delete geometric features. However, some situations
were found in which a feature could not be deleted,
due to the fact that (a) the feature interfered with
other features or parts of the shape, (b) the feature
was attached to multiple base surfaces, and (c) the
feature was nested, i.e. its base surface could be
considered to be another feature (see Figure 6).

WSCG2008 Full papers 205 ISBN 978-86943-15-2

Figure 6: Three cases in which the proposed
method failed: (a) interference with other shape
parts, (b) multiple base surfaces and (c) nested
features

6. RESULTS AND DISCUSSION
A method was proposed that deletes a feature from a
target surface. The method first recognizes the
feature by matching a feature template to the target
shape, and then uses the correspondence with the
template feature to reduce the feature to its basic
shape configuration. The resulting surface is
smoothed and in a final step the original feature is
reconstructed. The method was implemented for use
on polyhedral meshes, but can be generalized to B-
spline surfaces because in the theory no specific
assumptions were made on the shape representation
type. To implement the method for B-spline surfaces,
only the smoothing of a surface must be addressed.
It was found that the feature deletion method is
successful in deleting features from polyhedral
meshes. In the testing experiments, several problems
occurred, some of which were shown in figure 6.
First, it was found that the feature deletion method
does not fully work in the case where two or more
features interfere. Dealing with feature interference is
a known problem of feature recognition and it can be
expected that if improved feature recognition
methods are developed, then the deletion of these
features also improves. However, the difficulty of
dealing with features that have multiple base surfaces
is a minor but systematic shortcoming of the
proposed method, which should be addressed in
future research. Nested features cannot be
unambiguously deleted without additional user input
on what feature exactly has to be deleted.
Another problem with the feature deletion method
presented in this paper is that it is unable to deal with

eliminative features, i.e. holes. This is a consequence
of a shortcoming of the proposed feature recognition
method, not with the methodology that was proposed
for feature deletion. A different approach to feature
recognition is necessary for this type of features,
which is also left to future research.

7. ACKNOWLEDGMENTS
The research project 06240 is supported by the
Technology Foundation STW, applied science
division of NWO and the technology programme of
the Ministry of Economic Affairs, The Netherlands.

8. REFERENCES
[Lan07] Langerak, T.R., Vergeest, J.S.M, An Evolutionary

Strategy for Free Form Feature Identification in 3D
CAD Models, Proceedings of the WSCG conference,
Plzen, 2007

[Lee05] Lee, K.Y., Armstrong, C.G., Price, M.A., Lamont,
J.H., A small feature suppression/ unsuppression system
for preparing B-rep models for analysis, Proceedings of
the 2005 ACM symposium on Solid and physical
modeling, June 13-15, Cambridge, USA, 2005

[Rib01] Ribelles, J, Heckbert, P.S., Garland, M.,
Stahovich, T., Srivastava, S., Finding and removing
features from polyhedra, Proceedings of the ASME
DETC conference, September 9-12, Pittsburgh, USA,
2001.

[Sed86] Sederberg, T. W., Parry, S. R., Freeform
Deformations of Solid Geometric Models, Computer
Graphics, Vol. 20, No. 4, pp. 151–160, 1986

[Son05] Song, Y., Vergeest, J.S.M., Bronsvoort, W.,
Fitting and manipulating freeform shapes using
templates, Journal of Computing and Information
Science in Engineering, Vol. 5, No. 2, pp. 86-94, 2005.

[Ven02a] Venkataraman, S., Sohoni, M., Reconstruction of
feature volumes and feature suppression, Proceedings of
the 7th ACM symposium on Solid modeling and
applications, June 17-21, Saarbrucken, Germany, 2002

[Ven02b] Venkataraman, S., Sohoni, M., Rajadhyaksha,
R., Removal of blends from boundary representation
models, Proceedings of the 7th ACM symposium on
Solid modeling and applications, June 17-21,
Saarbrucken, Germany, 2002

[Ver01] Vergeest, J.S.M., Spanjaard, S., Horváth, I, Jelier,
J.J.O., Fitting Freeform Shape Patterns to Scanned 3D
Objects, Journal of Computing and Information Science
in Engineering, Vol. 1, No. 3, pp. 218-224, 2001

WSCG2008 Full papers 206 ISBN 978-86943-15-2

	wscg2008_FULL_Numbered.pdf.pdf
	B31-full.pdf
	B31-full.pdf

	B59-full.pdf

