
A Data Distribution Strategy for Parallel Point-Based 
Rendering 

Erik Hubo 
Expertise Center for Digital Media 

 Limburgs Universitair Centrum  
Universitaire Campus  

B-3590 Diepenbeek Belgium 
erik.hubo@luc.ac.be 

Philippe Bekaert 
Expertise Center for Digital Media 

 Limburgs Universitair Centrum  
Universitaire Campus  

B-3590 Diepenbeek Belgium 
philippe.bekaert@luc.ac.be 

 
ABSTRACT 

During the last couple of years, point sets have emerged as a new standard for the representation of largely 
detailed models. This is partly due to the fact that range scanning devices are becoming a fast and economical 
way to capture dense point clouds. Traditional rendering systems are impractical when a single polygonal 
primitive contributes less than a pixel during rendering. We present a data distribution strategy for parallel point-
based rendering, using a cluster of PCs as target platform. We describe a data-structure and a system 
architecture, which allows for decoupling the point-data from the computational work. This strategy enables 
both a balanced workload as well as no full data replication on each node. We exploit frame-to-frame coherence 
to make our system scalable. The system renders high-resolution images from high complex data sets at 
interactive frame rates. To our knowledge parallel point-based rendering has not been investigated in the past. 
Our results indicate the feasibility of sort-first parallelization applied to point-based rendering. 

Keywords 
Cluster Computing, Parallel Rendering, Point-Based Rendering

1. INTRODUCTION 
A recent trend in computer graphics is the shift 
towards sample-based rendering. Today's range 
sensing devices are capable of producing highly 
detailed and massive point clouds, which do not fit in 
the main memory of a single commodity PC.  Point-
based rendering can be more efficient than traditional 
rendering for these complex models if triangles 
occupy a small screen region. Processing many small 
triangles leads to bandwidth bottlenecks and 
excessive floating point and rasterization 
requirements [DeeM93]. Because of the absence of 
topology and relative positions, point-clouds are well 
suited for spatial subdivision and distribution 
between different PC's. One way of visualizing these 
enormous data sets is the use of expensive 
multiprocessor graphics servers with a huge main 
memory. A reasonable less expensive alternative of 

these dedicated graphics machines is a cluster of 
commodity PC's, linked by a high bandwidth 
network. The main challenge is to develop efficient 
parallel rendering algorithms that scale well within 
the processing, storage and communication 
characteristics of a PC cluster. Using this system 
architecture has many advantages: price-performance 
ratio, modularity, flexibility, storage capacity and 
scalability. Processing power, storage and memory 
capacity grow linearly with the number of PCs.  A 
drawback to the traditional, tightly-integrated parallel 
computers is the fact that there is no fast access to a 
shared virtual memory space, and that the bandwidth 
and latencies of inter-processor communication are 
significantly higher. The challenge is to develop 
algorithms that evenly divide workload among PCs, 
do not introduce extra work due to parallelization 
and scale well as more PCs are added to the system.  
In this paper we propose a data and work distribution 
scheme for parallel point-based rendering on a PC 
cluster. 
This paper is organized as follows: first we discuss 
previous work in section 2. Next, we give a short 
system overview in section 3. In section 4 we present 
our implementation, data structures and system 
architecture. Finally, sections 5 and 6 discuss our 
results and conclusions. 

Permission to make digital or hard copies of all or part of 
this work for personal or classroom use is granted without 
fee provided that copies are not made or distributed for 
profit or commercial advantage and that copies bear this 
notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute 
to lists, requires prior specific permission and/or a fee.  
 
WSCG 2005 Conference proceedings ISBN 80-903100-7-9 
WSCG’2005, January 31-February 4, 2005 
Plzen, Czech Republic. 
Copyright UNION Agency – Science Press 



2. PREVIOUS WORK 

Point-Based Rendering 
During the last couple of years, there has been an 
increased interest of the computer graphics 
community in point based rendering techniques. 
Point-based rendering dates back as far as 1985, the 
year in which Levoy and Whitted [LeMa85] 
proposed the use of points to model and render 3D 
continuous surfaces. In 1989, Westover [WeLe89], 
introduced splatting for interactive volume rendering. 
Splatting algorithms handle volume data as a set of 
particles that absorb and emit light. Westover’s basic 
splatting algorithm suffers from considerable artifacts 
due to inaccurate visibility determination when 
composing the splats from back to front. More 
recently, image-based rendering [McLe95] has 
become popular because the rendering time is 
proportional to the number of pixels (points) warped 
from the source to the output images. This contrasts 
with the scene-dependant time complexity for more 
traditional rendering techniques. Later on, the 
Lightfield [LeMa96] and Lumigraph [GoSt96] 
techniques were developed. These algorithms 
describe the radiance of a scene as a function of 
position and direction in a four-dimensional space, 
however, at the price of storage overhead.  
One of the first point based rendering systems was 
QSplat [RuSz00]. In QSplat, a multi-resolution 
hierarchy, based on bounding spheres, is employed 
for the representation and progressive visualization 
of large models. The system is able to handle large 
meshes at constant frame rate. Pfister and Zwicker 
introduced surfels [PfHa00], short for surface 
elements. Surfels are a powerful paradigm for 
efficiently rendering complex geometric objects at 
interactive frame rates. Surfels can handle complex 
shapes; introduce low rendering cost and high image 
quality. Three orthogonal LDI's [ShJo98] are used to 
sample objects and image space filters are employed 
to achieve hole-free rendering. Later Zwicker et al. 
presented a framework for direct volume rendering 
[ZwMA01] using a splatting approach based on 
elliptical Gaussian kernels, superior to the footprints 
of Westover [WeLe89]. This results in high-quality 
anti-aliased rendering without excessive blurring. 
Botsch et al. proved that a pure software 
implementation could render up to 14 million Phong 
shaded samples per second by using a quantization of 
splat shapes [BoMa02]. However the models used to 
achieve these rendering times are not complex in 
terms of memory requirement. Their quantized 
hierarchical data representation is very compact with 
a memory consumption of less than 2 bits per point 
position. Software-based point-based rendering 
algorithms have proven to be superior to polygon-
based rendering algorithms for highly complex 

scenes. High quality results can be achieved but their 
rendering speed is limited. Recent algorithms use 
graphical hardware to overcome this problem. This 
idea was first introduced in [RuSz00].  In [CoLi02] 
the authors avoid using the z-buffer by sorting an 
octree from back to front each frame similar to 
McMillan [McLe95]. In [BoMa03] the authors 
provide high quality as well as efficient rendering 
based on a two-pass splatting technique with 
Gaussian filtering. Finally, in their most recent 
publication the authors propose to base the lighting 
of a splat on a linearly varying normal field 
associated with it, resulting in a visually high quality 
image [BoMa04]. Dachsbacher et al. [DaCa03] 
present a hierarchical LOD structure that is suitable 
for GPU implementation. They can process 50M low 
quality points per second 
A main drawback of all the GPU algorithms is that 
they only perform well on rather simple models with 
a low screen resolution. This is due to the fact that, 
although extremely fast, a GPU’s on-board memory 
is currently rather limited in terms of data storage. To 
overcome this limitation we use a PC cluster to speed 
up the rendering. Since PC clusters have a scalable 
memory capacity, they are well suited for the 
interactive rendering of high-resolution images of 
complex models. 
A short overview of parallel rendering is presented 
next. 

Parallel rendering 
Parallel rendering systems have long been used for 
ray tracing [WaIn01], radiosity and global 
illumination [FuTh96, ZaDa95, ReEr98]. These 
systems can often be classified by the stage in the 
graphics pipeline in which the primitives are 
partitioned: sort-first, sort-middle or sort-last 
[MoSt94]. In sort-first systems, screen space is 
partitioned in non-overlapping 2D tiles, each of 
which is rendered independently. The final image is 
obtained by composing all 2D tiles.  The main 
advantage of this method is the low communication 
cost. The efficiency of sort-first algorithms is limited 
by redundant rendering due to overlapping tiles 
[SaRu01]. In general, since the overlap factors grow 
with increasing numbers of processors, the scalability 
of sort first systems is limited  [MuCa95]. Sort-
middle, the most straightforward approach, is 
commonly used in traditional systems. Primitives are 
redistributed in the middle of the rendering pipeline, 
between geometry processing and rasterization. This 
approach is not well suited for a cluster of PC’s due 
to its high communication requirements. Finally sort-
last methods defer sorting until the end of the 
rendering pipeline. The main advantage of sort-last is 
its scalability [MoSt94]. 



In the last few years, there has been a growing 
interest in PC clusters for interactive rendering tasks. 
Humphreys and Hanrahan presented a sort-first 
system designed for 3D graphics called WireGL 
[HuGr99, HuGr00]. WireGL was used to achieve 
scalable display size with minimal impact to the 
application's performance. Unlike sort-middle, sort-
first can use retained-mode scene graphs to avoid 
most data transfers for graphics primitives between 
processors [MuCa95]. In [SaRu00] a hybrid sort-first 
sort-last approach for parallel polygon rendering is 
presented. A specific algorithm for dynamic, view-
dependent and coordinated partitioning is used of 
both the 3D model and the 2D image, which has 
positive results in terms of both performance and 
scalability. 
Continual growth in typical dataset size and network 
bandwidth has made stream-based analysis a hot 
topic for remotely stored 3D models [RuSz01]. 
Streams are appropriate computational primitives, 
because large amounts of data arrive continuously, 
and it is impractical or unnecessary to retain the 
entire dataset. Chromium [HuGr02] is another a 
stream-processing framework based on WireGL. Its 
stream filters can be arranged to create sort-first and 
sort-last parallel graphics architectures.  
Since we are interested in high-resolution images, we 
prefer a PC cluster method to the recently popular 
GPU methods because of its scalable memory 
capacity. High-resolution images require complex 
models with many point samples, which cannot be 
accommodated by the memory of the graphical 
hardware. We believe our sort-first parallelization is 
scalable because the overlap factor is negligible in 
point-based rendering. To the authors’ knowledge 
parallel point-based rendering has not been 
investigated in the past. 

3. SYSTEM OVERVIEW 
Our system operates in two stages: 
Preprocessing Stage: The first stage serves as an 
offline preprocessing stage and is only performed 
once per 3D model. Details are provided in section 
4.1. The input for the first stage is a point- cloud. The 
system creates a multi-resolution hierarchical spatial 
subdivision structure, optimized for fast data 
traversal.  
Rendering stage: The second stage is the render 
stage. We use four types of processes in our system 
architecture to decouple the data from the 
computation in order to achieve an optimal load 
balance. We briefly describe these processes of the 
rendering pipeline below (Details are provided in 
section 4.2 to 4.5): 
Display process: This process executes the first and 
last stage of the rendering pipeline. In the first stage, 

the display process divides the view frustum into a 
set of smaller mini view frusta, according to a box of 
interest, and sends them together with camera data to 
the data traverse processes. After computation in the 
final stage, the display process receives the images 
corresponding to these mini frusta and loads them 
into the framebuffer for display.(see figure 1 (a)). 
Data traverse process: A data traverse process 
requests a mini frustum from the display process. 
While traversing the octree data structure, the data 
traverse process clips the octree cells against the mini 
frustum, and decides which octree cells are suitable 
for rendering.  For each mini frustum the data 
traverse process maintains, together with the list of 
useful octree cells, a list of used top-level octree 
cells. These are hierarchically higher octree cells (see 
figure 2).  Depending on the workload and the 

Display Process

Data Traverse
    Processes

Data Send
  Processes

Render 
Processes

Render packet
Top-level info packet

10011010110110101011
00001010101001001011
10111010101010110010
10101101010100101001
01000101001010001001
00101000100001010010

10011010110110101011
00001010101001001011
10111010101010110010
10101101010100101001
01000101001010001001
00101000100001010010

Data Packet

1100010

1100010 1100010
1100010

1100010

image packet

Box of intrest

Mini frusta

N
etw

ork

N
et

w
or

k

workload packet

Network

(a)

(b)

(c)

(d)

Figure 1: System overview of the rendering 
pipeline: (a) Display process: Frustum subdivision 
according to a box of interest and display. (b) 
Data traverse processes: traversing data and 
gathering render information. (c) Data send 
processes: sending point-data. (d) Render 
processes: Caching and rendering the incoming 
data and sending the rendered images back to the 
display node. 



available data on the render nodes (see section 4.5), 
the data traverse process can correctly determine the 
render node the data should be sent to. (see figure 
1(b)). 
Data send process: The data traverse processes 
inform the data send processes what point-data 
should be sent to which render node (see section 4.5). 
(see figure 1(c)). 
Render process: Render processes receive packets 
from data send processes (data packets) and from 
data traverse processes (render packets). Data 
packets contain point-data of a top-level octree cell. 
Render packets contain pointers to the data that has 
to be rendered, camera and mini frustum data. 
Received data packets are temporarily stored on the 
render node (see section 4.5). A render node creates 
one image per received render packet, assuming all 
necessary data packets are available. This image is 
sent back to the display process. (see figure 1 (d)). 

4. IMPLEMENTATION 
In this section we describe the implementation of our 
distributed point-based-rendering system in detail, 
and comment on the applied data structures and 
algorithms. 
Preprocessing 
The preprocessing stage is the first stage in the 
algorithm and has to be executed only once for any 
given input point cloud. Like other point-based 
rendering algorithms [RuSz00, BoMa02], an octree 
based hierarchical spatial subdivision structure is 
created from an input point cloud. The advantages of 
this data structure are: (1) fast data traversal: frustum 
and backface-culling, optimal succession of octree 
cells cache coherence [ChTr99] (2) immediate access 
to all data in an octree cell (for data sending)  (3) 
multi-resolution. If no normals or splat sizes per 3D 

position are included in the point cloud, these data 
can be simply derived from sample neighborhoods. 

4.1.1 Octree 
We construct the octree data-structure using a two-
step procedure. First, we create an ordinary axis-
aligned octree. Since we are working with large 
datasets, special care has to be taken to limit the 
octree recursion, which could adversely affect the 
algorithms efficacy. The leaf octree cells contain the 
actual point-data. 
In the second step the heavy loaded octree is 
rewritten to a fast, compact and memory-coherent 
octree. Initially, we split the point-data from the 
octree. The algorithm recursively creates the point-
array. This array is sorted in such a way that every 
octree cell has a start index and a size to access its 
point-data in this point-array (see figure 2). This is 
useful when we need fast data-access to a non-leaf 
octree cell. Besides a start index and size to its data, 
each octree cell contains location, normal, normal 
cone and bounding box information. Each octree cell 
has some structural information: a level (section 
4.1.2), an index to its sibling, and an index to its top-
level octree cell (see figure 2). All the data of the 
octree cell is aligned in 64 bytes for cache-
performance reasons. If an octree cell has no siblings 
it has a recursive index to its parent’s sibling (see 
figure 2: octree cell 10’s sibling). A top-level octree 
cell is a uniform parent at a low depth in the octree: it 
shares the same point-data as any octree cell beneath 
it. Each octree cell has an index to the top-level 
octree cell that contains its data (see figure 2). To 
align the data structure and avoid cache trashing 
[ChTr99] we write the octree down to an array, the 
octree-cell-array, by traversing the octree in depth-
first order (the same order as the data traverse 

0

1 5 11

2 3 4 6 12 13

8 9 10 14 15 16

7

DATA SEND PROCESS

Top-level octree cell 1 data Top-level octree cell 5 data Top-level octree cell 11 data
Data
level0

 1

1 5 11

next sibling

DATA TRAVERSE PROCESS

Top-Level Octree Cell Array

i Top-Level Octree CellsOctree cell at index i
in the octree-cell-arrayX Y X: top-level octree cell
Y: level

 4

 1  1  1  1  1

 1 1 1 1 1  2 2

 2  3  3

 1 1  1  5  5

 5  5  5

 11  11

 11  11  11

 1  5  11

 -1
First Child

Data

RENDER PROCESS

1 5 11 Top-Level Octree Cell Array

Top-level octree cell 3 data

Data Stream

Render Stream

Top level to 
Render Node Stream

Control Stream

Render
Packet

Data Packet

 11,S 15

Top-level octree cell 5 data

 5, S 7

 i ,S j
i : top-level octree cell
j : Start index to octree cells data
    in top- level octree cell i

 i , S j

Content of a Render Packet

Point-Array

Octree-Cell-Array

Figure 2: The octree data structure: Data Traverse Process: octree written down to an array, all 
information available except the point-data. Data Send Process: Top-level octree cell array pointing to 
point-array. Render Process: Top- level octree cell array pointing to received data packets. Render 
packets show what has to be rendered. 



processes use (see figure 2)) This way we do not 
need to save a pointer to the first child of an octree 
cell. 

4.1.2 Multi Resolution 
It is not necessary to use the full point-data for a 
model far from the camera. It is better to use a 
compact version of the data to save processing and 
network resources. Other algorithms, e.g. [RuSz00], 
use the information in their spacial subdivision 
scheme to create a multi-resolution model. Since we 
decouple the data structure from the point-data, we 
cannot introduce multi-resolution point-data in the 
data-structure. Therefore level-splats are introduced.   
As we mentioned in the previous section, every 
octree cell has a level (see figure 2). Data-points have 
level zero, leaf octree cells have level one, and the 
levels of all other octree cells is one more than the 
maximum level of their children (see figure 2). To 
create level(n) splats  we build for each level(n) 
octree cell a spatial subdivision data-structure on its 
level(n-1) splats. We use this data structure together 
with a covariance analysis [PaMa02] (Mahalanobis 
distance [JoIT]) to cluster level(n-1) splats to level(n) 
splats.  

Display process 
The system contains only one display process, which 
provides the user-interaction. The display process 
dynamically divides the view frustum into mini view 
frusta. This is a sort first approach [MoSt94]. The 
dimensions of these mini frusta are computed 
considering a box of interest. Typically this box is 
the bounding box of the point-data. The display 
process sends these mini frusta together with camera 
data and a timestamp to data traverse processes that 
reported to be idle. The display process keeps a 
queue of incoming images and sequentially displays 
these.  

Data traverse process 
A data traverse process only loads the octree-cell-
array (see section 4.1.1) into its main memory. This 
implies that the data traverse processes can work on 
the entire data set without loading the massive point-
data. This way the computational work can be 
decoupled from the data, resulting in a well-balanced 
workload. Each idle data traversing process asks the 
display process a new mini frustum and creates a 
render packet associated with it. This render packet is 
filled during the traversal of the octree as described 
below: 
 TraverseOctreeCellArray(){ 
      int index = 0;   
      do 
           if(whole array[index] in mini frustum) 
               AddToPacket(index); index = siblingindex 
           else if( part of array[index]  in mini frustum) 

                if(array[index] benefit of  subdivision is high)  
                       index++ 
                else 
                       AddToPacket(index); index = siblingindex 
           else if(array[index] out mini frustum) 
                index=siblingindex 
       while(index exists)  } 
Where array is the octree-cell-array, index is the 
position in this array of the octree cell that we are 
using and siblingIndex is the position of the sibling 
of this octree cell in the octree-cell-array. This 
function exploits the structure of the octree-cell-
array and avoids cache trashing [ChTr99]. 
Furthermore it uses frustum culling and decides 
whether the benefit of examining the children of the 
octree cell is sufficient. The AddToPacket function 
works on the octree cell at position index in the 
octree-cell-array. First we try to backface cull the 
octree cell, considering its normal and normal cone. 
If the top-level octree cell of the octree cell does not 
exist, we are too high in the octree and need to 
examine the children of the octree cell. The algorithm 
decides which data resolution it should use 
depending on the screen resolution, the octree cells 
distance to the camera and the available data 
resolutions for this octree cell. The size and the start 
index of the octree cells data are added to the render 
packet. The added start index is the offset from the 
octree cells data to the top-level octree cells data (see 
figure 3). 

StartIndex(Toplevel(i)) 

StartIndex(i)

added start index

Point-Data-Array

offset 

 
Added Start index = StartIndex(i) - StartIndex(toplevel(i)). 

Where i is an octree cell. 

Figure 3: Added start index is the offset from the 
octree cells data to the top-level octree cells data. 
The indices of the used top-level octree cells are also 
added to the render packet. When the octree traversal 
is finished, the render packet is ready. Every data 
traverse process has information concerning the 
current workload and the available data on each  
render node (see section 4.5). The render node with 
the smallest cost is chosen to receive and render the 
render packet. The cost is computed as described 
next: 

Cost(i) = Render Cost(i)+Network Cost(i) 

Render Cost(i) = workload on render process(i)*Ts 

Network Cost(i) = unavailable data on render process(i) * Tn 

Where i is a render node, Ts is the time to render one 
splat and Tn is the inverse network speed. Finally the 
data traverse process informs all data send processes 
what unavailable point-data they need to send to the 
chosen render node. 



Data send process 
A data send process loads the point-array, or a part 
of it, grouped per top-level octree cell in its main 
memory (see figure 2).  
Data send processes receive their instructions from 
the data traverse processes; they inform the data send 
processes to which render node which top-level 
octree cells data should be sent (see figure 2). Data 
send processes always send the entire point-data of a 
top-level octree cell. 

Render process 
In [MoSt94], the authors state that a sort first 
approach is only scalable if the frame-to-frame 
coherence is exploited. Therefore, we introduce top-
level octree cells. These are regular octree cells at a 
low depth in the octree (depth three, four or five 
depending on the size of the model). Combined, all 
top-level octree cells mutually exclusive enclose the 
entire point-array (see figure 2). When using top-
level octree cells we avoid both redundant data in the 
cache of our render processes and high network 
traffic. Furthermore, we exploit the frame-to-frame 
coherence, by sending more data than directly 
needed. 
A render node is a separate workstation running four 
render processes that share the same memory place. 
A render node receives two kinds of data streams, 
one from the data traverse processes and one from 
the data send processes. Initially, each render node 
contains an empty array with all top-level octree 
cells. The point-data in this array is filled each time 
point-data of a top-level octree cell is received from a 
data send process. Render packets, sent by the data 
traverse processes, contain pointers to the point-data 
of the octree cells that lie in the mini frustum. Each 
pointer is an offset in the point-data of the top-level 
octree cell where the pointers octree cell belongs to 
(see figure 2 and 3). Render packets also indicate 
which top-level octree cells point-data should be 
available to render this packet. If all requested point-
data is available, an idle render process will render 
the packet. As long as the requested data is not 
available, the packet will be queued. To avoid 

running out of memory, a least recently used caching 
scheme is applied. The least recently used point-data 
of a top-level octree cell will be deleted after a time-
out period has expired. All data traverse processes 
will be informed about this, so they can recompute 
the cost of sending data to that render node. For the 
same reason, render nodes inform the data processes 
about their current workload, this is the amount of 
points they still need to render. The rendered image 
is sent back to the display process for composition 
and display. 
In our current framework we use a simplified EWA 
[ZwMA01] splatting algorithm that could be easily 
replaced by a more advanced splatting algorithm if 
required.  

5. RESULTS 
The PC cluster used for our experiments consist of 9 
workstations. Each node has two 2.4 Ghz Intel 
Pentium IV Xeon processors, 2 GB DDR Ram, and 
is running Suse Linux 9.1. The nodes communicate 
with the LAM MPI implementation through a gigabit 
network. Since we are using a purely software based 
implementation, we exploit the computational power 
of each workstation and run several processes 
simultaneously. In our test setup the system runs as 
many Data Traverse as Render Processes (please note 
that there is not a one-to-one mapping between these 
processes.) 

Scalability 
5.1.1 Model Complexity 
We first consider the scalability of our system with 
regards to the model complexity. We have two test 
cases: (1) three dragon point sets with 0.3M, 1,2M 
and 4,2M points. (2) Different models with different 
complexities: Dragon 4,2M points, Turbine Blade 
10M points, Hand 5M points and Venus 3M points. 

5.1.1.1 Splats Per Second 
Our experiments showed that if we use only one 
render node, we are able to splat an average of 1.5 
Million Splats per Second, if all necessary data is 
available on the render node. Figure 4 shows the 
scalability of the splats per second. If the model 

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8

(a)      Render Nodes

Msps

Dragon 0.3M

Dragon 1,2M

Dragon 4,2M

            

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8

(b)      Render Nodes

Msps

Venus 3.3M
Dragon 4.2M
Hand 5M
Blade 10M

 
Figure 4:(a)(b) We averagely splat 1.5 Million Splats per Second per render node. If the model grows in 
complexity the splat rate could drop a little because the cost of traversing the octree increases.  



grows in complexity, the global splat rate could drop 
a little because the cost of traversing the octree 
increases (the difference between figure 4 (a) Dragon 
0.3M and (b) Blade 10M).  

5.1.1.2 Frames per Second 
If the model grows in complexity, more points need 
to be rendered each frame. Since the splat rate is 
more or less constant (see figure 4), the frame rate 
will drop for these complex scenes (see figure 5 (a)). 
However, it is not necessary to render more points 
than dictated by the screen resolution. This means the 
frame rate does not entirely depend on the 
complexity of the model, it also depends on the 
screen resolution and the available model resolutions. 
We could speed up the frame rate by choosing the 
optimal model resolution for each octree cell, 
depending on its distance to the camera and the 
screen resolution (see figure 5(b)). This results in a 
scalable frame rate. 
Figure 5 (c) shows us that the frame rate is rather 
constant. If the frame rate drops, point-data packets 
are sent. 

5.1.2 High Resolution 
A small part of the computational power is spent on 
sending images to the display process that loads them 
to the graphics board. This implies that the 
performance of our system is not very sensitive to the 
screen resolution, if the number of splats stays 
constant. As we can see on figure 6(a) the frame rate 
only drops if the resolution becomes too high. This is 

a result of the high communication costs associated 
with sending high-resolution images. However, if the 
number of splats increases with the resolution, as we 
described section 5.1.1, the frame rate will drop 
faster (see figure 6(b)), because more points need to 
be rendered. However, the quality of these images 
will be higher. 

Load Balance 
Each render node has a cost to render a given render 
packet. The correct choice of the render node with 
the smallest cost (see section 4.3 data traverse node) 
is vital for good load balancing. In figure 6(c) the 
workload for 8 render nodes is depicted, during the 
rendering of the Turbine Blade point set (10M 
points). When our process starts, the workload is low 
because many point-data packets are sent to the 
render nodes. Figure 6(c) clearly indicates that our 
cost function and system architecture is well chosen, 
because all render nodes are almost equally loaded 
and the global workload does not drop too much. 
When the workload drops, point-data packets are 
sent. 

6. CONCLUSION 
This paper presents a scalable data distribution 
strategy for parallel point-based rendering on a PC 
cluster architecture. Since the used data-structure and 
the algorithm’s architecture decouple the data from 
the computational work, the system achieves a well  
balanced workload and each data traverse process 
can work on the entire data without a full replication 

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8
(a)   Render Nodes

FPS

640*480
1248*1024
1920*1440
4000*3000

0

5

10

15

20

25

1 2 3 4 5 6 7 8(b)  Render Nodes

FPS

640*480
1248*1024
1920*1440
4000*3000

 

Load Balance

0

100

200

300

400

500

600

700

800

(c)   Time

CPU

 
Figure 6:(a) Tests are done with the dragon 4M point set. The system is, if the number of splats stays 
constant, only sensitive to the screen resolution if the overhead of sending the images back to the display 
node is too high (b) the frame rate drops faster because the number of splats increases with the 
resolution (c) the workload for 8 render nodes, during the rendering of the Blade point set (10M points). 

0

50

100

150

200

250

1 2 3 4 5 6 7 8
(a)   Render Nodes

FPS

Dragon 0.3M
Dragon 1,2M
Dragon 4,2M

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8
(b)   Render Nodes

FPS

Venus 3.3M
Dragon 4.2M
Hand 5M
Blade 10M

0

5

10

15

20

25

30

(c)   Time

FPS

Fps

Avg

 
Figure 5:(a)(b) If the model grows in complexity more point are needed each frame. Since the splat rate 
is rather constant, the frame rate will drop. For non-complex models we could render up to 210 fps while 
very complex models still result in 11 fps.(c) the frame rate is rather constant 



of the data. The algorithm dynamically partitions the 
screen into smaller mini frusta (a sort-first approach). 
Our technique exploits the sort-first properties of the 
algorithm, by sending more data than is directly 
needed. Large data sets at high screen resolution can 
be rendered at interactive frame rates. Point-Based 
rendering is well suited for a sort-first parallel 
rendering approach because the overlap factor is 
negligible. 
Topics for further study include faster software 
point-splatting algorithms with higher quality, using 
low-level processor instructions. Also, combining 
clustered CPU and GPU rendering might be an 
interesting research venue. 

7. ACKNOWLEDGEMENTS 
We would like to thank everybody who helped us 
with this publication and the Stanford Computer 
Graphics Laboratory for sharing the models used in 
our experiments.  

8. REFERENCES 
[BoMa02] M. Botsch, A. Wiratanaya L. Kobbelt, Efficient 

high quality rendering of point sampled geometry, 13th 
Eurographics workshop on Rendering, pp 53-64, 2002. 

[BoMa03] M.Botsch, L.Kobbelt,High-Quality Point-Based 
Rendering on Modern GPUs, 11th Pacific Conference 
on Computer Graphics and Applications, pp 335,2003. 

[BoMa04] M.Botsch,M.Spernat,L.Kobbelt,Phong Splat-
ting, pp 25-32, Symp.on Point-Based Graphics,2004. 

[CaEd74] E. E. Catmull, A subdivision algorithm for 
computer display of curved surfaces.1974. 

[ChTr99] T.M. Chilimbi, M. D. Hill, J. R. Larus, Cache-
Conscious Structure Layout, Programming language 
design and Implementation SIGPLAN99, pp 1 –12, 
1999. 

[CoLi02] L. Coconu, H Hege, Hardware-accelerated point-
based rendering of complex scenes, 13th Eurographics 
workshop on Rendering, pp 43- 52,2002. 

[DaCa03] C. Dachsbacher, C Vogelgsang and Marc 
Stamminger, Sequential point trees, Trans. Graph.,pp 
657-662, 2003. 

[DeeM93] Data Complexity for virtual reality: where do all 
the triangles go?, IEEE Virtual Reality Annual 
International Symposium, pp 357-363, 1993 

[FuTh96] T. A. Funkhouser, Coarse-Grained Parallelism 
for Hierarchical Radiosity Using Group Iterative 
Methods, Computer Graphics,pp 343-352, 1996. 

[GoSt96] S.J.Gortler, R. Grzeszczuk,R. Szeliski,M. F. 
Cohen, The Lumigraph,SIGGRAPH96, pp 253–262, 
1996 

 [HuGr99]G. Humphreys, P. Hanrahan, A distributed 
graphics system for large tiled displays, Proceedings of 
the conference on Visualization '99,pp 215-224,1999. 

 [HuGr00]G. Humphreys, I. Buck, M. Eldridge,P. 
Hanrahan, Distributed rendering for scalable displays, 
ACM/IEEE conference on upercomputing,pp.30,2000. 

 [HuGr02]G. Humphreys, M. Houston, R. Ng,R Frank, S. 
Ahern,P. D. Kirchner,J. T. Klosowski, Chromium: a 

stream-processing framework for interactive rendering 
on clusters, Computer graphics and interactive 
techniques,pp 693-702 ,2002. 

[JoIT]I.T. Jolliffe, Springers Series in Statistics, Principal 
Component Analyse, second edition, pp 92- 93. ISBN 
0-387-95442-2 

[LeMa85] M. Levoy, T. Whitted, The use of points as 
display primitive. Tech. Rep. TR 85-022, University of 
North Carolina at Chapel Hill. 

[LeMa96] M. Levoy, P. Hanrahan, Light Field 
Rendering,SIGGRAPH96,pp 31 – 42,1996 

[McLe95]  L. McMillan,  G. Bishop, Plenoptic Modeling: 
An Image-Based Rendering System, pp 39-46, 1995. 

[MoSt94] S. Molnar,M. Cox, D. Ellsworth,H. Fuchs, A 
Sorting Classification of Parallel Rendering, IEEE 
Computer Graphics and Algorithms, p23-32, 1994. 

[MuCa95] C. Mueller, The sort-first rendering architecture 
for high-performance graphics, symposium on 
Interactive 3D graphics, pp 75 - end, 1995. 

[PaMa02] M. Pauly, M. Gross, L.P. Kobbelt, Efficient 
simplification of point-sampled surfaces, IEEE 
Visualization pp 136- 170,2002. 

[PfHa00] H. Pfister, M. Zwicker,J.v. Baar, M. Gross, 
Surfels: Surface Elements as Rendering Primitives,  
SIGGRAPH00, pp 335-342,2000 

[ReEr98] E. Reinhard, A. Chalmers,F. W. Jansen,   
Overview of Parallel Photo-realistic Graphics, nr CS-
EXT-1998-147, 1998. 

[RuSz00] S. Rusinkiewicz, M. Levoy, QSplat: A 
Multiresolution Point Rendering System for Large 
Meshes, pp 343-352, Siggraph00, 2000. 

[RuSz01] S. Rusinkiewicz, M. Levoy,Streaming QSplat: a 
viewer for networked visualization of large, dense 
models, symposium on Interactive 3D graphics,pp 63-
68, 2001.  

[SaRu00] R. Samanta,T. Funkhouser,K. Li, J. Pal Singh, 
Hybrid sort-first and sort-last parallel rendering with a 
cluster of PCs, Eurographics workshop on Graphics 
hardware, pp 97-108, 2000. 

[SaRu01] R. Samanta,T. Funkhouser,K., Parallel 
Rendering with K-way Replication, IEEE 2001 
symposium on parallel and large-data visualization and 
graphics, pp 75 –84, 2001 

[ShJo98] J.Shade, S. Gortler,L. He R. Szeliski, Layered 
depth images, Computer graphics and interactive 
techniques, pp 231 –242, 1998. 

[WaIn01] I. Wald, P. Slusallek, C. Benthin, Interactive 
Distributed Ray Tracing of Highly Complex Models, 
EUROGRAPHICS, Workshop on Rendering, pp 277-
288, 2001, 

[WeLe89] L. Westover, Interactive volume rendering, 
Chapel Hill workshop on Volume visualization pp 9-
16, 1989. 

[ZaDa95] D. Zareski, B.Wade, P. Hubbard,P. Shirley, 
Efficient Parallel Global Illumination Using Density 
Estimation,IEEE/ACM 1995 Parallel Rendering 
Symposium (PRS '95),pp 47- 54, 1995. 

[ZwMA01] M. Zwicker, H. Pfister, J.v.Baar, M.Gross, 
Ewa volume splatting, IEEE Visualization 2001, pp 29-
36, 2001. 

 


	IPC_2005.pdf
	IPC_2005.pdf

	!WSCG_2005_FULL_stamped.pdf
	Local Disk
	StampIt - A Stamping Utility for PDF Documents

	!WSCG_2005_FULL.pdf
	E53-full.pdf
	E53-full.pdf

	J83-full.pdf



