
Paving Procedural Roads with Pixel Shaders

Jörn Loviscach

Hochschule Bremen
Flughafenallee 10

28199 Bremen, Germany

jlovisca@informatik.hs-bremen.de

ABSTRACT
Modern graphics hardware can be used to create procedural geometry. Our proposal details an optimized
method to form roads and similar 3D objects by cookie-cutting them from slightly oversized polygons. The
roads follow spline-like curves on a plane. The curves and their offset variants are cast into an approximated,
implicit description. This can efficiently be evaluated within a pixel shader to discard pixels that are part of the
oversized polygons but not part of the roads. Our method guarantees smooth geometry and smooth texturing.
To achieve comparable results with roads formed from polygons in the usual way requires level-of-detail or
similar mechanisms which not only complicate development and scene management, but also add load on the CPU.

Keywords
driving simulator, implicit curve, offset curve, pixel shader, clipping

1 INTRODUCTION
Roads are a prominent feature of virtual reality and
gaming applications such as driving simulators. Many
roads follow curved paths, in particular circles and spi-
rals [AAS01], which are rendered with a large number
of polygons. If this is not done, both the lateral borders
of the roads and their textures such as medians show
objectionable angles, see Figure 1.

Typical applications use large numbers of roads. To
prevent a serious drop in the frame rate, these may not
be rendered with a high polygons count. Thus, the
number of polygons used has to be reduced for less
visible or invisible roads or parts of them. This not
only leads to additional development effort but also
requires visibility estimation and a more sophisticated
scene management to be done on the CPU.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee, provided that no copies are made or distributed for profit
or commercial advantage and that all copies bear this notice
and the full citation on the first page. To otherwise copy or
republish, to post on servers or to redistribute to lists, a prior
specific permission and/or a fee are required.

Conference Proceedings ISBN 80-903100-7-9
WSCG ’2005, January 31-February 4, 2005
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

Figure 1. A conventionally built road shows
angular artifacts (upper image). Our method

yields smooth shapes and textures (lower image).
The insets show the polygons used.

The main contribution of this paper is an efficient im-
plicit description of fat planar curves: a centerline plus
a family of offset curves. This implicit description is
used to cookie-cut roads from large polygons using a
pixel shader. These roads possess tangent continuous
shape and texturing.

The input to our method is a set of anchor points—
each equipped with a tangent direction—that repre-
sents the centerline (mostly marked by a median) of
the road. Every two consecutive anchor points deter-
mine a road segment, which is to be treated separately.
We assume that each segment lies in a plane. This is at
least approximately valid for roads with slowly vary-
ing grade. Furthermore, we assume that no segment
is strongly bent horizontally, so that its centerline can
be parameterized using the projection onto the straight
line that connects the two anchor points, see Figure 2.

W

L

Figure 2. A road is divided into segments defined
by start and end points on its centerline together

with tangent directions.

Every road segment is covered with a quadrangle (to
be rendered as two triangles under DirectX) computed
from the road’s width and the spline-like curve that
forms the central line. A pixel shader is used to dis-
card the pixels of the quadrangle that do not belong to
the road. To this end, the clip instruction of the HLSL
shading language is used. It translates to the texkill
instruction of DirectX pixel shader assembler. Further-
more, the pixel shader assigns texture coordinates to
the pixels. A mapping x 7→ (u,v) is employed that en-
sures smoothness along every single road segment as
well as tangent continuity at the transition from one
segment to the next, see Figure 3.

All computations are offloaded from the CPU to the
graphics hardware, excluding a short initialization rou-
tine to build vertex and index buffers. For optimiza-
tion, the computation of all quantities that vary linearly
is moved from the pixel shader into the vertex shader
of the same (and only) rendering pass.

The proposed method does a substantial amount of
work in the pixel shader. Roads close to the viewer
incur a high computational cost, but are perfectly free
from angular-looking defects. Distant roads, however,
lead to only a small computational cost because they

v = 0.0

v = 0.2

v = -0.2

u =
 0.0

 u
= 1.0

u =
 0.3

Figure 3. World space coordinates are converted
to coordinates (u,v) along and across the road.

These serve to define both geometry and texturing.

consist of few pixels in screen space. A large percent-
age of invisible segments of the road will be discarded
already at the vertex level through frustum clipping.
Only a low number of polygons is needed to construct
the roads using the shader. Thus, the efficiency for dis-
tant roads is close to that of level-of-detail or frustum
culling approaches.

This paper is structured as follows: In Section 2 we
outline related work; Section 3 describes the formula-
tion of roads as fat curves. How these can be evaluated
using a graphics chip is covered in Section 4. Section 5
presents and discusses results; Section 6 gives a sum-
mary and points out directions for further research.

2 RELATED WORK
Vertex-based procedural creation of geometry on
graphics cards has been studied much in recent years.
For instance, it can be found in the curved-PN-triangle
subdivision offered by current ATI graphics cards
[Vla01]. Bolz and Schröder [Bol03] propose a vertex-
based method to evaluate subdivision surfaces.

Due to increasing computing power and improved
functionality, pixel-based instead of vertex-based pro-
cedural creation of geometry is now becoming a viable
option. Some works have already addressed this topic.

Hirche et al. [Hir04] render per-pixel displacement
maps on the graphics chip. To this end, they extrude
prisms from the triangles of a mesh. They render
these prisms with a complex pixel shader, which em-
ploys ray casting to evaluate the displacement map us-
ing four samples per ray. Kanai and Yasui [Kan04]
evaluate per-pixel positions and normals of subdivi-
sion surfaces in a pixel shader and use the results to
fill a vertex buffer to render the surface from. Lovis-
cach [Lov04] uses curved fins along the silhouette of
a mesh to smooth the outline visually. The fins are
painted by a pixel shader onto quadrangles that are ex-

truded from the silhouette of the mesh inside a vertex
shader.

Rose and Ertl [Ros03] draw wire frames onto sim-
plified polyhedra. ATI’s demo “Ruby: The Double
Cross” [ATI04] employs pixel shaders to procedurally
generate the ATI logo from lines and circles. This
method does not actually produce geometry, but comes
close in spirit.

In order to construct roads with a pixel shader, we use
a parameterization that is related to offset curves: v = 0
is the centerline of the road; a non-zero v leads to an
offset curve. Offset curves are a classic topic of com-
puter graphics; for surveys see [Elb97] and [Mae99].

Most of the work done on offset curves is concerned
with explicit representations. In contrast to that, we
are interested in the inverse mapping from world space
to parameter space, which may be compared to an
implicit representation of offset curves. This can for
instance be achieved with the distance function that
maps every point to its distance to the original curve,
a mapping that can be used, for instance, to find the
medial axis transform.

Pottmann et al. [Pot02] study local quadratic approxi-
mations of the squared distance to a curve in the Frenet
frame. They employ this approximation to generate
offset curves with active splines. However, it does not
seem straightforward to use these results here, in par-
ticular due to the non-global nature of the approxima-
tion.

3 ROADS AS FAT CURVES
For simplicity we only show the construction for the
2D case in which the central line starts at the origin
(x,y) = (0,0) and ends at (1,0), see Figure 4. All
other cases can be reduced to this by rotation and uni-
form scaling. Let the tangent direction at the origin
be parallel to (1,a)T and that at the end be parallel to
(1,b)T.

Then we can construct the centerline as the graph
of a function y = f (x) with the following properties:
f (0) = 0 = f (1), f ′(0) = a, and f ′(1) = b. We choose
f to be the cubic function that fulfills those require-
ments:

f (x) := x(1− x)2a− x2(1− x)b

Given a point (x,y) near the curve, we want to find ap-
proximate values for the nearest position on the center-
line (parametrized by x) and the signed distance from
the centerline. Call these two values (u,v). The point
(x,y) is a point on the road if and only if 0≤ u≤ 1 and
−W/L ≤ v ≤W/L, where W is half the road’s width

and L the distance between its anchor points (before
scaling). Furthermore, (u,v) serve as curved texture
coordinates on the road.

We assume that a, b, and y are close to zero so that
there are no problems concerning the uniqueness of a
nearest point on the curve. In Section 5 we will show
how large these values may be chosen in practice.

To convert (x,y) to (u,v), we employ a basic idea from
the theory of offset curves [Elb97]: The vector from
(x,y) to the nearest point on the central line has to be
perpendicular to a tangent vector to the curve, see Fig-
ure 4: (

x−u
y− f (u)

)
·
(

1
f ′(u)

)
= 0

This leads to

x−u+(y− f (u)) f ′(u) = 0. (1)

y

f(u)

u 1 x

(x, y)

v

Figure 4. (x,y) is converted to (u,v) using the
nearest point (u, f (u)) on the curve.

We are not going to solve Equation 1 (which in general
is of degree five) precisely, but rather use it as a guid-
ance to construct an approximately equal object with
precisely identical properties regarding start point, end
point, initial and final direction.

Note that f (u) ≈ 0 for a curve which is only weakly
bent. Furthermore, f ′ can be computed using a and b.
This yields an approximation u1 of u in Equation 1:

x−u1 + y((3u2
1−4u1 +1)a+(3u2

1−2u1)b) = 0 (2)

This equation typically possesses two different solu-
tions in u1. We pick the solution close to x. This so-
lution is guaranteed to exist for y, a, and b sufficiently
close to zero. It can be written

u1 =
2γ√

β 2−4αγ −β
, (3)

where

α := 3y(a+b), β :=−1−(4a+2b)y, γ := x+ya.
(4)

We write the solution of the quadratic equation in the
untypical form of Equation 3 to prevent a division by

zero when y = 0 and hence α = 0. Note that β < 0 if
the bending is weak and the width is small enough.

The points (x,y) with u1 = 0 form the line through the
start point (0,0) perpendicular to the tangent of the
curve at that point: From u1 = 0 follows x = −ay.
Similarly, the points (x,y), for which u1 = 1, form a
the line through the end point (1,0) perpendicular to
the tangent of the curve there.

A simpler approximation with the same properties
would be

u2 =
x+ ya

1+(a−b)y
.

However, it turns out that this approximation—
concerning its overall shape—does not perform well
for strongly curved paths.

Now v remains to be computed. If we had solved
Equation 1 precisely, the signed distance v could be
found through the dot product of a normalized vector
perpendicular to the curve and the difference vector
between the point (x,y) on the plane and the nearest
point (u, f (u)), see Figure 4:

v =

(
x−u

y− f (u)

)
·
(
− f ′(u)

1

)
√

f ′(u)2 +1
(5)

Due to the dot product, this equation is robust under
a small shift along the curve. Thus, it seems reason-
able to use this equation in our framework with u1 in
place of u. This completes an efficient algorithm to
convert a point (x,y) near the curve to curved coordi-
nates (u1,v).

Whereas the mapping (x,y) 7→ (u1,v) is only approxi-
mate, it possesses the same features as the exact solu-
tion of Equation 1: On the lines u1 = 0 and u1 = 1 the
mapping equals the exact solution, what is crucial for
the continuous transition from one road segment to the
next.

On top of that, the transition from one segment to the
next is not only continuous, but also tangent contin-
uous. To prove tangent continuity, one can compute
the gradient of v with respect to x and y at u1 = 0 and
u1 = 1 for arbitrary v using basic mathematics. It turns
out that the gradient equals (−a,1)T/

√
a2 +1 and

(−b,1)T/
√

b2 +1, respectively. All lines v = const
must run perpendicular to the gradient field. There-
fore, they have a slope of a and b, respectively, at
u1 = 0 and u1 = 1, what proves tangent continuity.
This property of the construction does neither depend
on the details of f nor on the approximation used
to find u1, as long as f (0) = 0 = f (1), f ′(0) = a,
f ′(1) = b, u1 = 0 corresponds to x =−ay, and u1 = 1
corresponds to x = 1−by.

4 HARDWARE ACCELERATION
In the prototype, we have implemented the method us-
ing the following steps:

• Preprocessing:

– Given a sequence of anchor points along the
median of the road to be built, compute the
initial and final slopes a and b for every seg-
ment using a Catmull-Rom spline that inter-
polates the anchor points. (The slope could
also be defined arbitrarily.)

– Create vertex and index buffers that de-
scribe one quadrangle per road segment.

• For every frame:

– Draw the terrain.
– Draw the quadrangles defined in the prepro-

cessing step. Use shaders on them both to
form the road through pixel clipping and to
map a texture onto it.

Each quadrangle is chosen such that it covers the cor-
responding road segment completely with not much
excess, see Figure 5. To create quadrangles with min-
imum area reduces rendering time. This construction
employs T-junctions (see inset in the lower part of Fig-
ure 1), which may be objectionable in other circum-
stances. For a discussion see Section 5.

In order that the segments fit together, two of the sides
of a quadrangle have to run through the start and end
points, respectively, of the centerline, perpendicular
to the corresponding tangents, see Figure 5. The two
other sides of the quadrangle are parallel to the straight
line y = 0 that connects the start and the end point of
the centerline. To position these two sides, we look
for extremal values of f on [0,1] by solving the equa-
tion f ′(u) = 0, which in general is quadratic. If, for
instance, there is a maximum at u = u+, the upper side
has to be shifted upward to y = f (u+)+W/L.

y

f(u+)W/L

1 x

Figure 5. Every road segment is covered by a
quadrangle.

Note that this shape saves the test whether 0≤ u1 ≤ 1,
because this is automatically true for any point on the

quadrangle: Along one of its sides u1 equals 0, along
one other side it equals 1. Thus, only −W/L ≤ v ≤
W/L remains to be checked to determine if a point lies
on the road.

For each of the four vertices of such a quadrangle we
store the following attributes in the vertex buffer:

• 3D position

• xy position in the rotated and scaled system ac-
cording to Section 3

• a, b, and the distance L between the anchor points

• uStart, uRange

The distance L is needed to adapt the road width
(which is transmitted as a constant parameter), be-
cause the xy position is scaled to x ∈ [0,1]. The values
uStart and uRange are used to shift and rescale u, the tex-
ture coordinate along the road. Both are determined
from arc length such that the textures of the road seg-
ments fit together seamlessly.

The data a, b, L, uStart, and uRange are identical for all
vertices of one quadrangle. Therefore, we use the Ver-
tex Stream Frequency Divider offered by DirectX 9.0
to save memory bandwidth for this subset of the vertex
attributes.

The value α , β , and γ of Equation 4 depend linearly on
the position of a pixel inside a triangle. For efficiency,
we use a vertex shader to compute them per vertex,
and rely on the automatic linear interpolation applied
by the graphics chip to all values that are transmitted
from the vertex shader to the pixel shader. The pixel
shader then evaluates Equations 3 and 5.

For the implementation we chose Managed Di-
rectX 9.0c using the language C# and Microsoft’s Ef-
fect framework with HLSL. The vertex and the pixel
shader compile to 23 and 35 instructions, respectively,
of Shader Model 2.0. All computations are done using
16 bit floating point precision instead of the regular
32 bit floating point precision without visually objec-
tionable roundoff errors.

In a typical virtual reality or gaming setting, the geom-
etry of buildings and terrains can be much more angu-
lar than that of roads: Most buildings possess rectan-
gular forms by construction; terrains can be covered
with complex textures that help to hide large polygons.
Smooth roads may, however, not be combined with a
coarsely-tessellated terrain in a straightforward man-
ner: The roads would be cut off in angular patterns.

To prevent this, the terrain in the vicinity of the road is
composed of large level polygons, see Figure 6. An-
other possibility would be to introduce ditches. We

render the terrain before the roads and leave a visually
unnoticeable small height gap between the road and
the terrain below to prevent z-fighting.

Figure 6. Intersections between the roads and the
terrain may reveal the coarse tessellation of the

latter (top right). Hence, we create level geometry
along the roads (bottom).

5 RESULTS. DISCUSSION
Even for relatively large values of a, b, and W/L the
approximate mapping (x,y) 7→ (u1,v) yields useful re-
sults, and the quadrangle fits closely, see Figure 7. In
our experiments, we found no visually objectionable
deviations as long as |a| ≤ 1 and |b| ≤ 1, and further-
more |W/L| ≤ 0.3 if a and b are of different sign and
|W/L| ≤ 0.2 if they are of same sign. This range al-
lows strongly curved segments, see Figures 8 and 9.

In situations with strong bending such as that of Fig-
ure 9 the viewer may realize that the u1 coordinate
used for texturing deviates from arc length parameter-
ization. This difference could be diminished through
a corrective term. With typical road textures, however,
this is not necessary.

To fit the quadrangles tightly around the road, we
employ geometry with T-junctions. Thus, roundoff
may lead to pixel-wide gaps between two quadrangles.
However, in our experiments such defects did not turn
up. One may also argue that the number of vertices
could be cut by half by joining every two neighboring
vertices on each side along the road. But this would
enlarge the area of the quadrangles and thus lead to
more invocations of the pixel shader. Furthermore, as
described in Section 4, every vertex contains the val-
ues of x and y in its local coordinate frame. A shared

Figure 7. The parameterization of a road segment
(a = 0.7, b =−0.3, W/L = 0.2) and the quadrangle
used for rendering show that the approximation in
Eq. 2 does not lead to easily recognizable errors.

Figure 8. Strongly bent curves such as for a = 1,
b = 1 must not be too wide. Here, W/L = 0.2,

which is the allowable maximum for these values
of a and b.

vertex would have to be equipped with two sets of
these data—one for the previous quadrangle, one for
the next. It is hard to see how the shader could switch
between both sets.

For the speed benchmarks we used an Nvidia
GeForce FX 6800 graphics card in a PC equipped with
an Intel Pentium-4 processor running at 2.5 GHz. The
rendering was done in 1280× 1024 full screen mode
without vertical synchronization.

Because roads are typically viewed under a very
oblique angle, textures have to be filtered anisotropi-
cally. In our experiments, a setting of 4 for the maxi-
mum degree of anisotropy proved to be sufficient, see
Figure 10.

To study the scaling behavior we used a base scene, see
Figure 11, as a building block to create seven scenes

Figure 9. A quarter circle (a = 1, b =−1,
W/L = 0.2) is approximated with a peak error of

25 percent, which, however, is not immediately
apparent.

Figure 10. To avoid noticeable blurring, we set the
maximum anisotropy level of texture filtering to 4.
The inset on the left shows the portion outlined on

the right with levels 1, 2, and 4 (top to bottom).

of different complexity ranging from one copy of the
base scene to 25× 25 copies arranged side by side in
a rectangular pattern. The road of the base scene is
composed of 97 segments. In addition, we created a
terrain consisting of 2868 triangles, rendered before
the road. We used a field of view of 45◦ and a far
plane distance of 1.5 times the longer side length of
the base terrain.

To compare the shader-based solution with a purely
polygonal construction, we used the software package
Maxon Cinema 4D to create a Catmull-Rom spline
curve from the anchor points. (Note that the center-
line of the road generated by our method is no such
curve, but a visually close approximation.) The spline
was extruded into a road, which was stored inside an
.x mesh, imported and rendered inside our software
prototype.

To have a basis for comparison, we generated a
set of five differently tessellated versions using the

Figure 11. The base scene for the benchmark
comprises a road defined by 97 anchor points and

tangents.

curvature-adaptive setting of Cinema 4D with thresh-
old angles of 1◦, 2◦, 5◦, 10◦, and 20◦, respectively,
which led to polygonal versions of the road consisting
of 5374, 2972, 1392, 772, 444, and 256 triangles, see
Figure 12. Only the highest one of these resolutions
could warrant that the shape and the texture of the road
looked perfectly smooth from viewpoints such as that
of Figure 12.

Figure 12. To compare the cookie-cutting method
with other approaches, we used five different

tessellations at threshold angles 1◦, 2◦, 5◦, 10◦, and
20◦ (from top to bottom).

Whereas per-pixel procedural geometry in itself is
more expensive than standard polygons, the proposed
approach may outperform roads rendered from poly-
gons in scenes with high complexity, see Figure 13.
This is mainly due to the strongly reduced amount of
polygons to be discarded during view frustum clip-
ping. To achieve a similar effect, a purely polygon-
based approach may switch to the “5◦” or a coarser
version based on distance (level of detail) or use some
sort of hierarchical frustum culling.

Time (ms)
per Pass

1 100 200 300 400 500 600 700 800
0

2

4

6

8

10

12

Number of Copies

Terrain
Only

Shader

1°

2°

20°
10°
5°

Figure 13. The benchmarks compares the
rendering times for our shader-based method,
standard renderings with varying degrees of
tessellation, and the terrain without the road.

In principle, our solution should also benefit greatly
from early-z optimization. If the terrain is drawn be-
fore the roads, the graphics chip would be able to cull
all pixels of roads that are hidden beneath terrain ge-
ometry. This could reduce the workload of the pixel
shader drastically. However, currently the cookie-
cutting approach (i. e., use of the texkill instruction
in the pixel shader) will disable early-z optimization
of typical graphics cards [Rig02, Nvi04].

6 CONCLUSION. OUTLOOK
We have presented a method to generate roads and
similar 3D objects procedurally with a pixel shader.
This approach generates smooth shapes and textures
with little effort for initial setup and no runtime scene
management overhead. In contrast to that, level-of-
detail switching would have to involve countermea-
sures against popping artifacts or intersections be-
tween coarse versions of roads and the terrain.

For roads close to the viewer, the shader-based method
leads to a perfect look but adds a noticeable compu-
tational load on the graphics chip. For distant roads
and scenes of high complexity, the performance ap-
proaches that of the standard method of tessellating
objects into fine triangles. Given the fast performance
growth of graphics chips as opposed to that of CPUs,
this may also become true for scenes of medium com-
plexity in the near future.

Most applications of our method will need to combine
the curved roads with intersections etc. The latter can
be built using standard polygon-based geometry. The
transition between such a crossing and a road cookie-
cut from polygons can be constructed easily because
the road conforms to precise boundary conditions con-
cerning width and direction.

It is straightforward to add sidewalks to the method.
One can use a quadrangle shifted upward by the side-
walk’s height and cookie-cut this at the correspond-
ing v values. The size of the quadrangle used can be
adapted. However, sidewalks need curbs. Their sur-
face is not contained in a plane, so that a different
method than the one described here is needed if they
are to be generated procedurally.

We have treated only level roads. If its grade varies
only slowly, a road may be constructed from segments
that form small angles to each other in the vertical di-
rection. In addition to curvature in the vertical direc-
tion one may also try to reproduce such features as
superelevation, which means a rotation about the cen-
terline.

It seems plausible that smoothly bent tubes can be gen-
erated by a pixel-based method that is similar to the
one described. However, such a method would have
to employ billboard-type pseudo-geometry, which al-
ways faces the viewer. Furthermore, it would have to
address shading, too. To this end, normal vectors can
easily be derived from the curved coordinates.

7 ACKNOWLEDGMENTS
The author wishes to thank two of the anonymous
reviewers for providing detailed comments, which
proved very helpful for clarification.

8 REFERENCES
[AAS01] American Association of State Highway and

Transportation Officials. A Policy on Geometric De-
sign of Highways and Streets. AASHTO, 2001.

[ATI04] ATI. Making of Ruby, http://www.ati.com/
developer/SIGGRAPH04/ MakingOfRuby Slides.pdf,
2004.

[Bol03] Bolz, J., Schröder, P. Evaluation of Subdivision Sur-
faces on Programmable Graphics Hardware. Submit-
ted for publication, http://www.multires.caltech.edu/
pubs/GPUSubD.pdf, 2003.

[Elb97] Elber, G., Lee, I.-K., Kim, M.-S. Comparing Off-
set Curve Approximation Methods. IEEE Computer
Graphics and Applications 17(3), pp. 62–71, 1997.

[Hir04] Hirche, J., Ehlert, A., Guthe, S. Hardware Acceler-
ated Per-Pixel Displacement Mapping. Proc. of Graph-
ics Interface 2004, pp. 153–158, 2004.

[Kan04] Kanai, T., Yasui, Y. Per-Pixel Evaluation of Para-
metric Surfaces on GPU. Surface Quality Assessment
of Subdivision Surfaces on Programmable Graphics
Hardware. Proc. Int’l Conf. on Shape Modeling and
Applications 2004, pp.129-136, 2004.

[Lov04] Loviscach, J. Sillhouette Geometry Shaders. In: En-
gel, W., ed., ShaderX3: Advanced Rendering With Di-
rectX and OpenGL, Charles River, pp. 49–56, 2004.

[Mae99] Maekawa, T. An Overview of Offset Curves and
Surfaces, Comp. Aided Design 31, 165–173, 1999.

[Nvi04] Nvidia GPU Programming Guide, Ver-
sion 2.2.0, http://developer.nvidia.com/object/
gpu programming guide.html, 2004.

[Pot02] Pottmann, H., Leopoldseder, St., Hofer, M. Approx-
imation with Active B-Spline Curves and Surfaces.
Proc. Pacific Graphics 02, pp. 8–25, 2002.

[Rig02] Riguer, G., Performance Optimization Tech-
niques for ATI Graphics Hardware with DirectX
9.0, Revision 1.0, http://www.ati.com/developer/
dx9/ATI-DX9 Optimization.pdf, 2002.

[Ros03] Rose, D., Ertl, T., Interactive Visualization of Large
Finite Element Models, Workshop on Vision, Mod-
elling, and Visualization VMV ’03, pp. 585–592, 2003.

[Vla01] Vlachos, A., Peters, J., Boyd, C., Mitchell, J. L.
Curved PN triangles. Proc. 2001 Symp. on Interactive
3D Graphics, pp. 159–166, 2001.

	IPC_2005.pdf
	IPC_2005.pdf

	!WSCG_2005_FULL_stamped.pdf
	Local Disk
	StampIt - A Stamping Utility for PDF Documents

	!WSCG_2005_FULL.pdf
	E53-full.pdf
	E53-full.pdf

	J83-full.pdf

