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ABSTRACT
Efficient global illumination is an important challenge in computer graphics. The main problem of these algorithms
is their associated execution time and storage requirements. This is a handicap for simulating large scenes and
reducing these costs is a constant research objective of thecomputer graphics community.
In this paper we present a performance analysis of the progressive radiosity algorithm based on the blocking
transformation of the scene according to a uniform partition. The data locality exploitation and the associated
decrement in cache misses permit the reduction of the execution time of the algorithm. An extended analysis of the
influence of the scene subdivision on the execution time requirements is presented. Because of our analysis, we
conclude that important performance improvements in termsof execution time are obtained with this technique.

Keywords
Radiosity, data locality, scene partition, blocking transformation.

1. INTRODUCTION
The radiosity method [Coh93a] is a global illumina-
tion algorithm used to simulate light transfer in syn-
thetic images. The main drawbacks of the radiosity
method are its high storage requirements and long ex-
ecution times [Sil94a]. Among the different radiosity
algorithms we have focussed our analysis on the pro-
gressive radiosity algorithm [Coh88a, Coh93a], due to
its simpler structure. Similar analyses can be performed
on other radiosity strategies, e.g. for the hierarchy ra-
diosity algorithm [Han91a].

In general, the performance of a code is influenced by
the data reuse and data locality exploitation. It is con-
sidered data reuse when the next utilization of a data
does not imply an access to the lower level of the mem-
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ory hierarchy. In fact, there can be a wide performance
gap between programs that are designed to optimize
cache performance and those that are not, for example
in the context of computer graphics [Cho06a].

In this work we present a theoretical data reuse analy-
sis of the progressive radiosity algorithm. Based on the
cache miss rate obtained, we have concluded that a data
reuse technique can be employed to optimize the algo-
rithm. Specifically, our optimization proposal is based
on the blocking transformation of the scene through its
uniform partition. This permits the optimization of data
reutilisation and, with this, the acceleration of the algo-
rithm.

Scene partitioning is a technique usually employed
for distributed memory systems. On such platforms,
the effective distribution of data among processors is
very important. In some proposals the scene is repli-
cated on all processors [Gar00a, Pad01a], but this lim-
its the applicability of the solutions to scenes with
low complexity. A valid method for complex scenes
implies the distribution of the scene among the pro-
cessors [Arn96a, Gib00a, Amo04a, Gue03a, San05a].
These proposals employ different methods for scene
partition and distribution among processors.

Based on this idea, we work on one partitioning pro-
cedure [Gue03a, San05a] in our attempt to exploit and
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analyze the data locality of the sequential algorithm.
Scene partitioning implies different challenges. For ex-
ample, the visibility technique employed to determine
the visibility among elements associated with different
partitions. This technique, as will be shown in the pa-
per, also has an associated computational cost that has
to be considered. We do not propose an accurate study
of the cache behaviour, but an extended analysis of the
benefits of the partitioning strategy. This analysis is val-
idated with a set of test scenes.

The rest of this paper is organized as follows: in Sec-
tion 2 we briefly introduce the progressive radiosity al-
gorithm; in Section 3 we analyze the data reuse in the
algorithm; in Section 4 we present the block transfor-
mation strategy based on a partitioning of the scene;
experimental results are shown in Section 5; finally, in
Section 6 we present the main conclusions.

2. THE PROGRESSIVE RADIOSITY
ALGORITHM

The radiosity method is currently one of the most pop-
ular global illumination models in computer graphics.
This method solves a global illumination problem ex-
pressed by the rendering equation [Kaj86a], simplified
by considering only ideal diffuse surfaces. The resul-
tant discrete radiosity equation is:

Bi = Ei + ρi

N

∑
j=1

B jFi j (1)

whereBi is the radiosity of patchPi, Ei is the emit-
tance,ρi the diffuse reflectivity andN is the number
of patches of the scene. The summation represents the
contribution of the other patches of the scene andFi j

is theform factor between patchesPi andPj. Fi j is an
adimensional constant that only depends on the geom-
etry of the scene and represents the proportion of the
radiosity leaving patchPi that is received by patchPj.
There is one radiosity equation per patch and oneform
factor among all pairs of patches. Therefore, interac-
tion of light among the patches in the environment can
be stated as a set of simultaneous equations:
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where the matrix is called theInteraction matrix.
Therefore, the radiosity equation system is liable to be
very large with complexityO(N2).

Some algorithms, such as the progressive radiosity
proposal [Coh88a], have been developed for the mini-
mization of these computational requirements. The ba-
sic idea of the algorithm is to reduce the number of
patches to be considered for each iteration and, with
this, to reduce the number of computations.

1 while (not converged){
2 Pi = 0;
3 /* LOOP1: Select Patch with greatest∆BiAi */
4 for ( P = scene→Patch_initial; P; P = P→next)
5 Pi = MaxPot(Pi, P);
6
7 /* LOOP2: Calculate (the first time that a patch

is shoot ) Patches interaction withPi */
8 for ( P = scene→Patch_initial; P; P = P→next)
9 Interaction(P,Pi);
10
11 /* LOOP3: Shoot Radiosity from patchPi */
12 for ( Pj = Pi →Interaction;Pj;

Pj = Pi → Interaction→ next) {
13 Vi j = Visibility( Pi, Pj);
14 Gi j = Geometry(Pi, Pj);
15 Fi j = Gi j ·Vi j;
16 Radiosity(Pi, Pj);
17 }
18 }

Figure 1: Pseudocode for progressive radiosity algo-
rithm.

The structure of the progressive radiosity algorithm
is outlined in Figure 1. The key idea is toshoot in every
step the energy of the patchPi with the greatest unshot
radiosity (lines 2 to 5). As a result of that shot, the other
patches,Pj, may receive some new radiosity and patch
Pi left without un-shot radiosity (lines 7 to 17).

Each shooting step can be viewed as multiplying the
value of radiosity to be “shot” by a column of theinter-
action matrix. Therefore at that moment theform fac-
tors between the shot patch and the rest of the patches
have to be calculated (lines 13 to 15).Vi j (line 13)
is the visibility factor and takes the value 1 ifPi is
visible from Pj, and 0 otherwise. In our implementa-
tion we have used a method based on directional tech-
niques [Hai94a, Pad03a] to calculate the visibility term.
Gi j (line 14) captures all the geometric terms. In our
algorithm we have used the analytic method calleddif-
ferential area to convex polygon [Coh93a] to compute
it.

As soon as the radiosity of a patch has been shot,
another patch is selected. A patch may be reselected
for the shooting procedure if it has received light from
other patches. Therefore, the amount of radiosity the
patch has received since the last time,∆Bi, can be
shot. The algorithm iterates until a desired tolerance
is reached (line 1). Thus, the complexity would be
O(k×N), k being the number of steps performed, with
k ≪ N.

3. DATA REUSE ANALYSIS IN PRO-
GRESSIVE RADIOSITY ALGO-
RITHM

In this section, we make a quantitative analysis of the
cache behaviour for the progressive radiosity algorithm.
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The objective is to analyse the nature of the cache
misses associated with the algorithm for a later opti-
mization of the algorithm based on the data locality ex-
ploitation. As will be shown later in this section, the
progressive radiosity algorithm requires that, for stan-
dard scene sizes and hierarchical memory structures,
the same patch is retrieved multiple times from lower
levels of the memory hierarchy.

As can observed in the pseudocode of Figure 1, the
progressive algorithm consists of three main loops
where read and write operations are performed on the
sequential list ofN patches of the scene. We will define
the number of memory references (Nr) as the number
of times a patch is referred. Taking into account this
definition and assuming usual scene and memory sizes,
the number of memory references (Nr) required by the
different data structures to perform the calculation of
radiosity for each loop is:

NrLoop1 = N × k
NrLoop2 = N × t
NrLoop3 = M× k

(3)

whereN is the number of patches,k the number of it-
erations,t the number of different patches that are shot,
t ≤ k, and beingM the average number of accessed ob-
jects per iteration. Loop1 selects the patchPi with max-
imum power and Loop2 the patchesPj that interact with
it. Both loops present a sequential access nature. On the
other hand, Loop3 exhibits a behaviour difficult to pre-
dict and exploit. This is due to the irregular structure
of the algorithm employed to compute the visibility. In
our case we have employed a directional technique that
implies the access to potential candidates to include the
interaction between two polygons. Taking into account
this information, the total number of references is:

Nr = (N + M)× k + t×N (4)

As result, each patch has to be accessed multiple
times and this leads to a large memory bandwith and
a overhead of cache misses. AsN is a very large num-
ber for usual scene sizes, the cache cannot contain all
the blocks needed during the execution of the standard
radiosity algorithm (code of Figure 1). Then, the re-
placement misses will occur in all loops (following the
notation of [Gho99a] we call replacement misses ca-
pacity and conflict misses).

To clarify let us consider the example of Figures 2.
This figure illustrates an interaction matrix for a
given scene withN = 16 patches. In this figure,
a symbol × indicates that there is an interaction
between the patches associated with the row and the
column. For example, Patch 0 interacts with patches
{1,2,3,4,7,9,11,12,13,15}. We assume for this sim-
ple example a small cache with capacity of four data.
We employ a fully associative1 cache because of its
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Figure 2: Interaction Matrix for a scene with 16
patches.

Address of Hit/ Contents of cache blocks after reference
reference /miss Block 0 Block 1 Block 2 Block 3

- - 12 13 14 15
1 miss 1 13 14 15
2 miss 1 2 14 15
3 miss 1 2 3 15
4 miss 1 2 3 4
7 miss 7 2 3 4
9 miss 7 9 3 4
11 miss 7 9 11 4
12 miss 7 9 11 12
13 miss 13 9 11 12
15 miss 13 15 11 12

Table 1: Cache contents for the example of Figure 2:
Standard progressive radiosity algorithm.

good performance. This simple example with a small
cache permits the illustration of the low exploitation of
the data locality when the available storage resources
are not sufficient to store the full scene.

Let us suppose patch 0 is the patch with the greatest
unshot radiosity. A snapshot of the data accesses for
the progressive radiosity algorithm is shown in Table 1
. The first row shows the contents of cache after the
execution of Loop2 and the rest of the table illustrates
the series of references for Loop3. As an example, note
that when patch 4 is referenced it replaces patch 15.
This is due to the associative nature of the cache and we
have choosen the replace method of the least recently
used block. Therefore, this set of references generates
10 misses for 10 accesses. This simple example shows
the low exploitation of the data locality for this system.

The performance of a code is highly influenced by
data reuse and the available memory resources. The
number of times a patch is referenced during the full
execution of the algorithm constitutes a tool to evalu-
ate the data transfer in the memory hierarchy for large
scenes. Specifically, the redundancy access for the pro-
gressive algorithm can be measured using the following
equation:

Ra =
Nr
N

=
(N + M)× k + t×N

N
= k +

M
N

× k + t (5)

For the scenes we have employed in our tests and for the
convergence criteria we have employed (line 1 of code
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in Figure 1) we observe thatM ≃ N2
/4 andt ≃ k. The

scenes employed in our tests have very different struc-
tures and sizes and, consequentially, we consider these
approaches as representative of a generic case. There-
fore:

Ra =

(

2+
N
4

)

k (6)

Consequently, each patch is accessed an average of
(

2+ N
4

)

k times. Taking into account this large num-
ber of references, it is important to maximize the ac-
cesses to each patch while it is in the cache. Reducing
the cache misses permits the reduction of the number
of times the same patch have to be loaded in the cache
and, consequently, the reduction of the execution time
of the algorithm.

4. DATA LOCALITY OPTIMIZATION
BASED ON BLOCKING TRANS-
FORMATION

Transforming the procedures of a program might im-
prove the spatial and temporal locality of the data. In
this section we present a method to improve the data
reuse based on the data locality exploitation. To in-
crease the reutilization of the data, a blocking transfor-
mation strategy based on the partitioning of the scene is
performed. Specifically, we propose the blocking trans-
formation of the code to reduce the cache misses via
improving temporal locality exploitation. The goal is
to maximize accesses to the data loaded into the cache
before the data is replaced.

To ensure that the data being accessed can fit in the
cache, the original code is changed to work on sub-
scenes of a lower size. To do this, the whole scene
data is read and the bounding volume, which contains
the entire scene, is computed. This volume is divided
into p uniform disjoint subspaces, wherep is the num-
ber of partitions. The partitioning strategy implies three
main challenges: first, the partitioning procedure to be
employed, second, the visibility technique to determine
the visibility among patches in different sub-scenes and
finally the scheduling procedure to sequentially process
the different partitions.

The partitioning strategy should assure resulting sub-
scenes with a convex structure. This permits the simpli-
fication of the visibility determination between patches
of the same sub-scene and between patches of differ-
ent sub-scenes. Within the wide range of existing par-
titioning techniques, we have focused on static graph
partitioning algorithms, since the progressive radios-
ity method (unlike, for instance, hierarchical radiosity
method) does not use an evolving data structure. This
way, it is not necessary to apply more complex dynamic
graph partitioning methods. Within static techniques
we have chosen geometric techniques, as we are deal-
ing with geometric scenes and these techniques obtain

an extremely fast partition based mainly on geomet-
ric information. A similar strategy was employed in
[Amo04a] in the context of the parallelization of the
progressive algorithm on distributed memory systems.

The version we have employed makes a geometric
uniform partition of the input scene. It splits the scene
domain into a set of disjoint subspaces of the same
shape and size. This kind of partitioning is computed
quickly and straightforwardly and, as will be shown
later, it also provides high data locality. Taking into ac-
count that all subspaces are equal-sized, we cannot di-
vide a scene for an odd number of sub-scenes into two
halves and then, recursively, split one of the sub-scenes
into two new halves, because the resulting subspaces
would not be of equal size. So the implemented algo-
rithm is not recursive and the number of splitting planes
that are needed to split the scene along each coordinate
axis is computed in advance. Finally, each partition has
a disjoint set of polygons of the whole scene.

The visibility computation among patches is a chal-
lenge when the patches are in different sub-scenes. We
have used a visibility mask technique [Arn96a, Gue03a]
to solve this problem. This mask is a structure that
stores all the visibility information encountered dur-
ing the processing of a selected patch in its local sub-
scene. This local visibility information can be em-
ployed for the computation of the other sub-scenes. In
other words, the other sub-scenes do not require access-
ing the patch information associated to this scene, but
to its visibility mask. This permits the reduction of data
accesses with low locality.

The partitioning and visibility mask techniques have
to be employed cautiously because both algorithms
have associated computational costs that could result
in an increment of the execution time of the algorithm.
However, as will be shown in the result section, for a
specific number of partitions these costs are completely
overcome by the benefits associated with the data
locality exploitation.

With respect to the new scheduling procedure, the
general structure of the new algorithm is illustrated in
Figure 3. The partitioning of the scene into sub-scenes,
divides the calculations associated with each iteration.
On one side, there is the gathering of local radiosity of
the sub-scene, on the other side the gathering of remote
radiosity coming from the rest of the scene. In each it-
eration, the sub-scenes are processed sequentially (line
2). For each sub-scene, the patch with the greatest un-
shot energy is chosenPl

i (lines 4 to 7) and the patches
in the same sub-scene that interact with it are identi-
fied (lines 9 to 11). After this, the local gathering of ra-
diosity is computed following a similar procedure to the
standard progressive radiosity algorithm but, as will be
shown in the following, with slight modifications (lines
13 to 23).
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1 while (not converged){
2 for ( sub-scenel = scene→subcene_initial;

sub-scenel ; sub-scenel = sub-scenel →next){
3
4 Pl

i = 0;
5 /* LOOP1: Select Patch with greatest∆BiAi

for subcenel */
6 for ( P = sub-scenel →Patch_initial; P;

P = P→next)
7 Pl

i = MaxPot(Pl
i , P);

8
9 /* LOOP2: Calculate (the first time that a

patch is shoot ) Patches interaction withPl
i */

10 for ( P = sub-scenel →Patch_initial; P;
P = P→next)

11 Interaction(P,Pl
i );

12
13 /* LOOP3: Shoot Radiosity from patchPl

i */
14 for ( Pj = Pl

i →Interaction;Pj;
Pj = Pl

i → Interaction→ next) {
15 if ( Pl

i ∈ sub-scenel )
16 V local

i j = Visibility_local(Pl
i , Pj);

17 else
18 Vi j = Visibility_global(Pl

i , Pj)
19 Gi j = Geometry(Pi, Pj);
20 Fi j = Gi j ·Vi j;
21 Radiosity(Pi, Pj);
22
23 }
24 if ( Mask(Pl

i ) > 0 )
25 Gathering(Pl

i );
26 }
27 }

Figure 3: Pseudocode for progressive radiosity algo-
rithm after blocking transformation.

Once the local radiosity is updated in the sub-scene
its energy is propagated to the whole scene (lines 24
to 25). In this stage, the patch is copied to the sub-
scenes of the adjacent partitions and the visibility infor-
mation is calculated. As previously mentioned, we have
employed the mask technique [Arn96a, Gue03a] that
computes a visibility map per patch. This map stores
the visibility of the patch with respect to the neighbour-
ing scene, taking into account the occlusions associated
with its local sub-scene.

Note that the shot patches of a sub-scene and their
corresponding visibility masks are copied to the neigh-
bour sub-scenes. This means that for the neighbour sub-
scenes we have to process "local" and "copied" patches.
This has to be taken into account for computing the
gathering of radiosity inside each sub-scene (lines 13
to 23). In the case of a "copied" patch being processed,
the gathering of energy is computed similarly but the
non-local visibility information (line 18) is calculated
by casting rays from patch to sub-scene through its vis-
ibility mask. The procedure follows for the adjacent
sub-scenes with the same strategy, shooting patches are

copied and visibility masks are computed/updated tak-
ing into account the occlusion information local to al-
ready processed sub-scene.

Address of Hit/ Contents of cache blocks after reference
reference /miss Block 0 Block 1 Block 2 Block 3

- - 0 1 2 3
1 hit 0 1 2 3
2 hit 0 1 2 3
3 hit 0 1 2 3

Table 2: Cache contents for the example of Figure 2:
Modified progressive radiosity algorithm.

This technique permits the evaluation of the progres-
sive radiosity algorithm following a partitioning strat-
egy. As will be shown in the following, benefits in
terms of the cache misses reduction can be obtained.
As an example, Table 2 shows the cache accesses af-
ter applying the blocking strategy to the example of
Figure 2. In this example we consider that the scene
was subdivided in four partitions, each sub-scene with
4 patches (indicated with dashed lines in the Figure 2).
The first row of table shows the content of the cache
after Loop2 and the remaining rows show the consec-
utive references for Loop3 associated with the local
computations of the first sub-scene (patches 0, 1, 2, 3).
The cache memory, with capacity for four data, stores
the patches associated with the sub-scene and the local
computations can be performed without cache misses.
Note that for this example the set of references gener-
ates 3 hits for 3 accesses.

This simple example emphasizes the potential bene-
fits that can be obtained with the partitioning technique.
This way, if each sub-scene can be fully stored in the
cache, the local computations can be performed with-
out accessing the lower levels of the hierarchical mem-
ory. In more detail, let us compute the total number of
memory references for the modified algorithm:

Nr =
p

∑
l=1



Bl
× k

︸ ︷︷ ︸

t1

+Bl
× t

︸ ︷︷ ︸

t2

+Ml
× k

︸ ︷︷ ︸

t3



+(p−1)×Nm×k

(7)
where p is the number of sub-scenes,Bl the number
of patches in each sub-scene,Ml is the average num-
ber of accessed objects in each sub-scene per iteration
and each mask consists ofNm patches. Note that the
last term of equation is associated to the masks com-
putation. But accordingly to its definitionNr is lower
when theBl patches fit into the cache level. In this case,
once the sub-scene is stored in the cache for Loop1, the
information is re-employed for the Loop2 and Loop3
without requiring more information. This means that
termst2 andt3 can be eliminated from theNr equation.
Therefore, the redundancy access is

Ra =
p

∑
l=1

Bl
× k
N

= k (8)
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(a)

(b)

Figure 4: Illuminated scenes: (a)room-model and
(b) armadillo.

Comparing this result with that obtained for the original
algorithm (see Equation 6) we potentially have

(

2+ N
4

)

times less cache misses than with the original algorithm
using the partitioning strategy. Note that the term asso-
ciated to the masks computation is omitted as in this
analysis we analyze only the redundancy access for the
patches.

5. EXPERIMENTAL RESULTS
In this section, we present performance results and
analysis of the proposed progressive radiosity method.
We have analyzed the performance benefits of the par-
titioning strategy in terms of execution time and the re-
duction of cache misses. We have also verified that the
quality of the final images is not affected by the tech-
niques employed.

To evaluate our proposal we have used an Athlon
64 3.2 GHz with a 64 + 64 KB L1 cache, a 512 KB
L2 cache and a 1 GB RAM. We have tested our pro-
posal with different scenes. Here we include the re-
sult for three representative scenes, two of them de-
picted in Figure 4: room-model with 5306 patches
(see Figure 4.a),armadillo with 3999 patches (see Fig-
ure 4.b) andlargeroom-model with 7070 patches. The
last scene, not included in the figure, is a largerroom-
model scene with more objects.

Number of sub−scenes (p)

E
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tio

n 
tim

e 
(s

ec
.) largeroom−model

armadillo

room−model

 50

 100

 150
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 250

 4  6  8  10  12  14  16 2
 0

Figure 5: Execution time for room-model, armadillo
and largeroom-model.

First, we evaluate performance in terms of execution
time. The results for the test scenes on theAthlon sys-
tem are depicted in Figure 5. No data forp > 16 are
included as execution time increases in all cases. We
observe that the partitioning strategy achieves a reduc-
tion in the required time whenp is incremented for low
p values, but the times increase for largep values. For
example, we observe that for thelargeroom-model, the
execution time for the original algorithm is 238.63 sec-
onds, while for the partitioned version withp = 4 this
time is lowered to 55.54. Therefore, a high speedup of
4.30 is obtained for this example. This large reduction
in the execution times is mainly due to two reasons:
Firstly, the reduction in the cache misses due to data lo-
cality exploitation associated with the partitioning strat-
egy and, secondly, the visibility mask technique, re-
quired to make the partitioning strategy viable, also has
an inherent reduction in the computational time. This
visibility technique implies an approximation to the vis-
ibility determination and, as a consequence, the reduc-
tion of the computational complexity.

To verify the reduction in cache misses we have cho-
sen a hardware measurement [Amm97a] that can accu-
rately obtain a broad range of performance metrics for a
program. Specifically, we have used the PAPI (Perfor-
mance Application Programming Interface) [Moo01a]
library that has the benefit of a cross-platform interface
to the counters, allowing the maintenance of a com-
mon source for a wide variety of architectures. Figure 6
shows the number of cache misses for theAthlon sys-
tem for our test scenes for the first level (see Figure 6.a)
and for the second level (see Figure 6.b). For reasons
of clarity the data miss rates are also depicted: for the
first cache in Figure 7.a and for the second cache in Fig-
ure 7.b.

As can be observed in Figure 6.b and Figure 7.b the
sub-scenes fit into the second cache level for the three
scenes even for smallp values. This can be deduced
from the figures as increments in thep values imply re-
ductions in the number of cache misses and the cache
miss rate. This way, smaller sub-scenes fit into the
memory and the data can be reutilized, reducing the
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Figure 6: Cache misses (a) first level (b) second level.

data traffic between memory levels. Note that, as can
be observed in these figures, largep values do not elim-
inate the cache misses. These are compulsory misses,
i.e. misses associated with the initial sub-scene loading
each time a new sub-scene is processed.

With respect to the first cache level, Figure 7.a in-
dicates that the cache miss rate is practically constant
while Figure 6.a indicates that the number of cache
misses decreases for intermediatep values. This means
that there is a decrease of references for thesep val-
ues. The reduction of loads and stores in the program
is due to two reasons: the blocking helps register allo-
cation and the utilization of visibility masks minimizes
the accesses in Loop2.

The visibility masks technique has an important in-
fluence in the behaviour of the algorithm. This is due
to the fact that, when a visibility mask of a patch has
only zeros (line 23 of Figure 3), the patch is not further
gathered to the other partitions. This contrasts with the
original algorithm, in which interactions of this patch
with all the patches of the scene would be tested, with
the consequent increment in the cache misses. On the
other hand, the utilization of visibility masks reduces
the number of accesses to determine the visibility be-
tween two polygons. We have used a method based on
directional techniques which calculates a list of poten-
tial candidates to occlude the interaction between two
polygons. The idea is to remove from the list those
patches which cannot be pierced by any ray cast be-
tween both polygons. Then, to determine the visibil-
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Figure 7: Data miss ratio (a) first level (b) second
level.

ity between patches it is not necessary to access the
list of patches that belongs to other sub-scenes and this
permits a notable reduction of the accesses. At the
same time, the computational requirements associated
with the visibility mask technique are dependent on the
p value. For lowp values, the overhead associated
with the visibility masks technique is clear, mainly for
scenes with small number of triangles (see execution
time values for two partitions of thearmadillo in Fig-
ure 5). For largep values the computational require-
ments associated with the large number of patches that
has to be "copied" to the other scenes can be prohibitive.
Note that each time a patch is "copied" its visibility
mask has to be computed/updated. As a result, an in-
crement in number of sub-scenes implies an increment
in the number of patches that have to be gathered to
other sub-scenes.

In summary, the execution time of the modified al-
gorithm is minimum for a given intermediatep value.
The influence of thep value can be also deduced from
Equation 7. For largerp values the last term of equation
is larger while thet3 is smaller (Ml is smaller). In con-
sequence, the optimump value depends on the scene,
however, we have found in our tests that ap ∈ [4,6] is a
good partitioning value for the tests we have performed.
Larger scenes would result in higherp values. With this
optimump value, the data locality is exploited because
the sub-scenes fit into the second cache level. However,
largerp values imply an increment in the computational

Full Papers 119 ISBN 978-80-86943-98-5 



complexity associated with the massive visibility masks
computation and, as a consequence, an increment in the
processing time.

Finally and with respect to the quality of the final im-
ages, we have not found any noticeable difference be-
tween the images generated with the standard algorithm
and those generated with the modified algorithm. To
further test the quality of the resulting images, we have
used the mean residual error of the radiosity as the error
metric. The numerical results indicate that the quality
of the images is close to being the same for the original
and the modified algorithms. For example, the result
for the largeroom-model for the original algorithm is
0.000209 while for the partitioned version withp = 4
this error is 0.000240. In both cases the residual errors
are very small. The visibility mask technique permits
the elimination of computations and avoids testing the
interaction between many pairs of patches. As an ex-
ample, as was previously mentioned, a visibility mask
with all zeros discards the interaction of the associated
patch with any other patch in the following sub-scenes.
However, although the number of visibility tests are re-
duced, no modifications are actually performed in the
nature of the algorithm. Consequently, no changes in
quality are expected.

6. CONCLUSIONS
In this paper we have proposed a technique for acceler-
ating the progressive radiosity algorithm based on data
locality exploitation. Specifically, we have employed a
scene partitioning technique that permits the reduction
of cache misses and, with this, the reduction of the exe-
cution time of the algorithm.

The simplicity of the partitioning strategy employed,
permits an efficient partition of the scene with a very
low computational complexity. On the other hand the
visibility mask technique we have used allows the com-
putation of the visibility information between patches
in different sub-scenes. We have shown that this tech-
nique not only solves the problem of computing the vis-
ibility in a partitioned scene, but also reduces the visi-
bility computation requirements without noticeable loss
of quality in the final images.

Therefore, our modified progressive radiosity algo-
rithm permits the obtaining of important reductions in
the execution time with respect to the original algo-
rithm, while keeping its quality properties. The benefits
of our proposal have been experimentally evaluated for
a set of representative scenes.

As future work, we plan to extend our analysis to a
non-uniform partitioning strategy such as that proposed
in [San05a]. We also plan to extend the analysis to other
radiosity strategies, for example to the hierarchy radios-
ity algorithm [Han91a].
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