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ABSTRACT

Principle component analysis (PCA) is commonly used to compute a bounding box of a point set in R
d . The

popularity of this heuristic lies in its speed, easy implementation and in the fact that usually, PCA bounding

boxes quite well approximate the minimum-volume bounding boxes. In this paper we give a lower bound on the

approximation factor of PCA bounding boxes of convex polytopes in arbitrary dimension, and an upper bound on

the approximation factor of PCA bounding boxes of convex polygons in R
2.
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1. INTRODUCTION

Substituting sets of points or complex geometric

shapes with their bounding boxes is motivated by

many applications. For example, in computer graph-

ics, it is used to maintain hierarchical data structures

for fast rendering of a scene or for collision detec-

tion. Additional applications include those in shape

analysis and shape simplification, or in statistics, for

storing and performing range-search queries on a

large database of samples.

Computing a minimum-area bounding box of a set

of n points in R
2 can be done in O(n logn) time, for

example with the rotating caliper algorithm [Tou83].

O’Rourke [O’R85] presented a deterministic algo-

rithm, a rotating caliper variant in R
3, for computing

the exact minimum-volume bounding box of a set of

n points in R
3. His algorithm requires O(n3) time

and O(n) space. Barequet and Har-Peled [BHP99]

have contributed two (1+ε)-approximation algorithms

for computing the minimum-volume bounding box

for point sets in R
3, both with nearly linear com-
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plexity. The running times of their algorithms are

O(n + 1/ε4.5) and O(n logn + n/ε3), respectively.

Numerous heuristics have been proposed for com-

puting a box which encloses a given set of points.

The simplest heuristic is naturally to compute the

axis-aligned bounding box of the point set. Two-

dimensional variants of this heuristic include the

well-known R-tree, the packed R-tree [RL85], the

R∗-tree [BKSS90], the R+-tree [SRF87], etc.

A frequently used heuristic for computing a bounding

box of a set of points is based on principal component

analysis. The principal components of the point set

define the axes of the bounding box. Once the axis di-

rections are given, the dimension of the bounding box

is easily found by the extreme values of the projection

of the points on the corresponding axis. Two distin-

guished applications of this heuristic are the OBB-tree

[GLM96] and the BOXTREE [BCG+96], hierarchical

bounding box structures, which support efficient colli-

sion detection and ray tracing. Computing a bounding

box of a set of points in R
2 and R

3 by PCA is quite

fast, it requires linear time. To avoid the influence of

the distribution of the point set on the directions of

the PCs, a possible approach is to consider the convex

hull, or the boundary of the convex hull CH(P) of the

point set P. Thus, the complexity of the algorithm in-

creases to O(n logn). The popularity of this heuristic,

besides its speed, lies in its easy implementation and
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in the fact that usually PCA bounding boxes are tight-

fitting (see [LKM+00] for some experimental results).

Given a point set P ⊆ R
d we denote by BBpca(P)

the PCA bounding box of P and by BBopt(P)

the bounding box of P with smallest possi-

ble volume. The ratio of the two volumes

λd(P) = Vol(BBpca(P))/Vol(BBopt(P)) defines

the approximation factor for P, and

λd = sup
{

λd(P) | P ⊆ R
d
,Vol(CH(P)) > 0

}

defines the general PCA approximation factor. We are

not aware of any previous published results about this

quality feature of PCA. Here, we give lower bounds

on λd for arbitrary dimension d, and an upper bound

on λ2.

The paper is organized as follows. In Section 2. we

review the basics of principal component analysis. In

particular, we present the continuous version of PCA,

which results in the introduction of a series of approx-

imation factors λd,i, where i ranges from 0 to d and

denotes the dimension of the faces of the convex hull

that contribute to the continuous point set for which

the principal components are computed. In Section 3.

we give lower bounds on λd,i for arbitrary values of d

and 1 ≤ i ≤ d. An upper bound on λ2,1 is presented

in Section 4. We conclude with future work and open

problems in Section 5.

2. PRINCIPAL COMPONENT ANALY-

SIS

The central idea and motivation of PCA [Jol02]

(also known as the Karhunen-Loeve transform, or

the Hotelling transform) is to reduce the dimen-

sionality of a point set by identifying the most

significant directions (principal components). Let

X = {x1,x2, . . . ,xm}, where xi is a d-dimensional

vector, and c = (c1,c2, . . . ,cd) ∈ R
d be the center of

gravity of X . For 1 ≤ k ≤ d, we use xik to denote the

k-th coordinate of the vector xi. Given two vectors u

and v, we use 〈u,v〉 to denote their inner product. For

any unit vector v ∈ R
d , the variance of X in direction

v is

var(X ,v) =
1

m

m

∑
i=1

〈xi − c,v〉2
. (1)

The most significant direction corresponds to the unit

vector v1 such that var(X ,v1) is maximum. In gen-

eral, after identifying the j most significant directions

B j = {v1,v2, . . . ,v j}, the ( j+1)-th most significant di-

rection corresponds to the unit vector v j+1 such that

var(X ,v j+1) is maximum among all unit vectors per-

pendicular to v1,v2, . . . ,v j.

It can be verified that for any unit vector v ∈ R
d ,

var(X ,v) = 〈Cv,v〉, (2)

where C is the covariance matrix of X . C is a sym-

metric d × d matrix where the (i, j)-th component,

ci j,1 ≤ i, j ≤ d, is defined as

ci j =
1

m

m

∑
k=1

(xik − ci)(x jk − c j). (3)

The procedure of finding the most significant direc-

tions, in the sense mentioned above, can be formu-

lated as an eigenvalue problem. If λ1 > λ2 > · · · > λd

are the eigenvalues of C, then the unit eigenvector v j

for λ j is the j-th most significant direction. All λ js

are non-negative and λ j = var(X ,v j). Since the ma-

trix C is symmetric positive definite, its eigenvectors

are orthogonal. If the eigenvalues are not distinct, the

eigenvectors are not unique. In this case, an orthogo-

nal basis of eigenvectors is chosen arbitrary. However,

we can achieve distinct eigenvalues by a slight pertur-

bation of the point set.

The following result summarizes the above back-

ground knowledge on PCA. For any set S of

orthogonal unit vectors in R
d , we use var(X ,S) to

denote ∑v∈S var(X ,v).

Lemma 1 For 1 ≤ j ≤ d, let λ j be the j-th largest

eigenvalue of C and let v j denote the unit eigenvector

for λ j. Let B j = {v1,v2, . . . ,v j}, sp(B j) be the linear

subspace spanned by B j, and sp(B j)
⊥ be the orthogo-

nal complement of sp(B j). Then λ1 = max{var(X ,v) :

v ∈ R
d
,‖v‖ = 1 }, and for any 2 ≤ j ≤ d,

i) λ j = max{var(X ,v) : v ∈ sp(B j−1)
⊥
,‖v‖ = 1}.

ii) λ j = min{var(X ,v) : v ∈ sp(B j),‖v‖ = 1}.

iii) var(X ,B j) ≥ var(X ,S) for any set S of j orthog-

onal unit vectors.

Since bounding boxes of a point set P (with respect

to any orthogonal coordinate system) depend only on

the convex hull of CH(P), the construction of the co-

variance matrix should be based only on CH(P) and

not on the distribution of the points inside. Using the

vertices, i.e., the 0-dimensional faces of CH(P) to de-

fine the covariance matrix C we obtain a bounding box

BBpca(d,0)(P). We denote by λd,0(P) the approxima-

tion factor for the given point set P and by

λd,0 = sup
{

λd,0(P) | P ⊆ R
d
,Vol(CH(P)) > 0

}

the approximation factor in general. The example in

Figure 1 shows that λ2,0(P) can be arbitrarily large if
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Figure 1: Four points and its PCA bounding-box

(left). Dense collection of additional points signifi-

cantly affect the orientation of the PCA bounding-

box (right).

the convex hull is nearly a thin rectangle, but with a

lot of additional vertices in the middle of the two long

sides. Since this construction can be lifted into higher

dimensions we obtain a first general lower bound.

Proposition 2 λd,0 = ∞ for any d ≥ 2.

To overcome this problem, one can apply a continu-

ous version of PCA taking into account (the dense set

of) all points on the boundary of CH(P), or even all

points in CH(P). In this approach X is a continuous

set of d-dimensional vectors and the coefficients of the

covariance matrix are defined by integrals instead of

finite sums.

Note that for for d = 1 the above problem is trivial,

because the PCA bounding box is always optimal, i.e.,

λ1,0 and λ1,1 are 1.

2.1 Continuous PCA

Variants of the continuous PCA, applied on tri-

angulated surfaces of 3D objects, were presented

by Gottschalk et. al. [GLM96], Lahanas et. al.

[LKM+00] and Vranić et. al. [VSR01]. In what

follows, we briefly review the basics of the continuous

PCA in a general setting.

Let X be a continuous set of d-dimensional vectors

with constant density. Then, the center of gravity of X

is

c =

∫

x∈X xdx
∫

x∈X dx
. (4)

Here,
∫

dx denotes either a line integral, an area inte-

gral, or a volume integral in higher dimensions. For

any unit vector v ∈ R
d , the variance of X in direction

v is

var(X ,v) =

∫

x∈X 〈x− c,v〉2dx
∫

x∈X dx
. (5)

The covariance matrix of X has the form

C =

∫

x∈X (x− c)(x− c)T dx
∫

x∈X dx
, (6)

with its (i, j)-th component

ci j =

∫

x∈X (xi − ci)(x j − c j)dx
∫

x∈X dx
, (7)

where xi and x j are the i-th and j-th component of the

vector x, and ci and c j i-th and j-th component of the

center of gravity. It can be verified that relation (2) is

also true when X is a continuous set of vectors. The

procedure of finding the most significant directions,

can be also reformulated as an eigenvalue problem and

consequently Lemma 1 holds.

For point sets P in R
2 we are especially interested in

the cases when X represents the boundary of CH(P),
or all points in CH(P). Since the first case corre-

sponds to the 1-dimensional faces of CH(P) and the

second case to the only 2-dimensional face of CH(P),
the generalization to a dimension d > 2 leads to a se-

ries of d −1 continuous PCA versions. For a point set

P ∈ R
d , C(P, i) denotes the covariance matrix defined

by the points on the i-dimensional faces of CH(P),

and BBpca(d,i)(P), denotes the corresponding bound-

ing box. The approximation factors λd,i(P) and λd,i

are defined as

λd,i(P) =
Vol(BBpca(d,i)(P))

Vol(BBopt(P)) , and

λd,i = sup
{

λd,i(P) | P ⊆ R
d
,Vol(CH(P)) > 0

}

.

3. LOWER BOUNDS

We start with straightforward conclusion from Propo-

sition 2.

Proposition 3 λd,i = ∞ for any d ≥ 4 and any 1≤ i <

d−1.

Proof. We can use a lifting argument to establish

λk,i ≤ λk+1,i+1, and thus λd,i ≥ λd−1,i−1 ≥ . . . ≥

λd−i,0 = ∞. �

This way, there remain only two interesting cases for

a given d: the factor λd,d−1 corresponding to the

boundary of the convex hull, and the factor λd,d corre-

sponding to the full convex hull. The nontrivial lower

bounds we are going to derive are based on the fol-

lowing connection between the symmetry of a point

set and its principal components.

Lemma 4 Let P be a d-dimensional point set symmet-

ric with respect to a hyperplane H and assume that the
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covariance matrix C has d different eigenvalues. Then,

a principal component of P is orthogonal to H.

Proof. Without loss of generality, we can assume that

the hyperplane of symmetry is spanned by the last

d−1 standard base vectors of the d-dimensional space

and the center of gravity of the point set coincides

with the origin of the d-dimensional space, i.e., c =

(0,0, . . . ,0). Then, the components c1 j and c j1, for

2 ≤ j ≤ d, are 0, and the covariance matrix has the

form:

C =











c11 0 . . . 0

0 c22 . . . c2d

...
...

. . .
...

0 cd2 . . . cdd











(8)

Its characteristic polynomial is

det(C−λ I) = (c11 −λ ) f (λ ), (9)

where f (λ ) is a polynomial of degree d −1, with co-

efficients determined by the elements of the (d−1)×

(d − 1) submatrix of C. From this it follows that c11

is a solution of the characteristic equation, i.e., it is an

eigenvalue of C and the vector (1, 0, ...,0) is its cor-

responding eigenvector (principal component), which

is orthogonal to the assumed hyperplane of symmetry.

�

3.1 Lower bounds in R
2

The result obtained in this subsection can be seen

as special case of the result obtained in the subsec-

tion 3.3. To gain a better understanding of the problem

and the obtained results, we consider it separately.

Theorem 5 λ2,1 ≥ 2 and λ2,2 ≥ 2.

Proof. Both lower bounds can be derived from a rhom-

bus. Let the side length of the rhombus be 1. Since

the rhombus is symmetric, its PCs coincide with its

diagonals. On the right side in Figure 2 its optimal-

area bounding boxes, for 2 different angles, α > 90◦

and β = 90◦, are shown, and on the left side its cor-

responding PCA bounding boxes. As the rhombus’

angles in limit approach 90◦, the rhombus approaches

a square with side length 1, i.e., the vertices of the

rhombus in the limit are ( 1
√

2
,0),(− 1

√

2
,0),(0,

1
√

2
) and

(0,−
1
√

2
) (see the left side in Figure 2), and the dimen-

sions of its PCA bounding box are
√

2×
√

2. Accord-

ing to Lemma 4, the PCs of the rhombus are unique

R2

1 1

1 1

x

y

α → 90
◦

11

α

11

α → 90
◦

x

y

α

β β

Figure 2: An example which gives us the lower

bound of the area of the PCA bounding box of an

arbitrary convex polygon in R
2.

as long its angles are not 90◦. This leads to the con-

clusion that the ratio between the area of the bounding

box on the left side in Figure 3, and the area of its

PCA bounding box, on the right side in Figure 3, in

limit goes to 2. �

Alternatively, to show that the given squared rhombus

fits into a unit cube, one can apply the following rota-

tion matrix

R2 =
1
√

2

[

1 1

1 −1

]

. (10)

It can be verified easily that all coordinates of the ver-

tices of the rhombus transformed by R2 are in the in-

terval [−0.5,0.5]. We use similar arguments when we

prove the lower bounds in higher dimensions.

3.2 Lower bounds in R
3

Theorem 6 λ3,2 ≥ 4 and λ3,3 ≥ 4.

Proof. Both lower bounds are obtained from a

dipyramid, having a rhombus with side length
√

2

as its base. The other sides of the dipyramid have

length
√

3
2

. Similarly as in R
2, we consider the case

when its base, the rhombus, in limit approaches the

square, i.e., the vertices of the square dipyramid

are (1,0,0),(−1,0,0),(0,1,0),(0,−1,0),(0,0,

√

2
2

)

and (0,0,−

√

2
2

) (see the left side in Figure 3). The

dimensions of its PCA bounding box are 2× 2×
√

2.

Now, we rotate the coordinate system (or the square
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dimension R R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R
10

lower bound 1 2 4 16 16 32 64 4096 4096 8192

Table 1: Lower bounds for the approximation factor of PCA bounding boxes for the first 10 dimensions.

1

1

√

2

x

y

z
2

2

√

2

2

2

y

z

x

R3

Figure 3: An example which gives the lower bound

of the volume of the PCA bounding box of an arbi-

trary convex polygon in R
3.

dipyramid) with the rotation determined by the

following orthogonal matrix

R3 =











1
√

2
−

1
√

2
0

1
2

1
2

−
1
√

2

1
2

1
2

1
√

2











. (11)

It can be verified easily that the square dipyramid, after

rotation with R3 fits into the box [−0.5,0.5]3 (see the

right side in Figure 3). Thus, the ratio of the volume

of the bounding box, on the left side in Figure 3, and

the volume of its PCA bounding box, on the right side

in Figure 3, in limit goes to 4. �

3.3 Lower bounds in R
d

Theorem 7 If d is a power of two, then λd,d−1 ≥

√

d
d

and λd,d ≥

√

d
d
.

Proof. For any d = 2k, let ai be a d-dimensional vector,

with aii =
√

d
2

and ai j = 0 for i 6= j, and let bi = −ai.

We construct a d-dimensional convex polytope Pd with

vertices V = {ai,bi|1 ≤ i ≤ d}. It is easy to check that

the hyperplane normal to ai is a hyperplane of reflec-

tive symmetry, and as consequence of Lemma 4, ai is

an eigenvector of the covariance matrix of Pd . To en-

sure that all eigenvalues are different (which implies

that the PCA bounding box is unique), we add εi > 0

to the i-th coordinate of ai, and −εi to the i-th coor-

dinate of bi, for 1 ≤ i ≤ d, where ε1 < ε2 < .. . < εd .

When all εi, 1 ≤ i ≤ d, arbitrary approach 0, the PCA

bounding box of the convex polytope Pd converges to

a hypercube with side lengths
√

d, i.e., the volume of

the PCA bounding box of Pd converges to
√

d
d
. Now,

we rotate Pd , such that it fits into the cube [− 1
2
,

1
2
]
d
.

For d = 2k, we can use a rotation matrix derived from

a Hadamard matrix1, recursively defined by

Rd =
1
√

2





R d
2

R d
2

R d
2

−R d
2





, (12)

where we start with the matrix R2 (10) defined above

for d = 2. A straightforward calculation verifies that

Pd rotated with Rd fits into the cube [−0.5,0.5]d . �

Remark: Theorem 7 holds for all dimensions d for

which a d × d Hadamard matrix exists. Hadamard

conjectured that this is the case for all multiples of

four. This conjecture is known to be true for d ≤ 664

[KTR05].

We can combine lower bounds from lower dimensions

to get lower bounds in higher dimensions by taking

Cartesian products. If λd1
is a lower bound for the ra-

tio between the PCA bounding box and the optimal

bounding box of a convex polytope in R
d1 , and λd2

is

a lower bound in R
d2 , then λd1

·λd2
is a lower bound

in R
d1+d2 . This observation together with the results

from this section enables us to obtain lower bounds

in any dimension. For example, for the first 10 dimen-

sions, the lower bounds we obtain are given in Table 1.

4. AN UPPER BOUND FOR λ2,1

Given a point set P ⊆ R
2 and an arbitrary bounding

box BB(P) we will denote the two side lengths by a

and b, where a ≥ b. We are interested in the side

lengths aopt(P) ≥ bopt(P) and apca(P) ≥ bpca(P) of

BBopt(P) and BBpca(2,1)(P), see Figure 4. The para-

meters α = α(P) = apca(P)/aopt(P) and β = β (P) =
bpca(P)/bopt(P) denote the ratios between the corre-

sponding side lengths. Hence, we have λ2,1(P) =

α(P) ·β (P). If the relation to P is clear, we will omit

the reference to P in the notations introduced above.

Since the side lengths of any bounding box are

bounded by the diameter of P, we can observe that in

1 A Hadamard matrix is a ±1 matrix with orthogonal columns.
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apca

bpca

lpca

P

l1

2

bopt

aopt

P

b
′

Figure 4: A convex polygon P , its PCA bounding box and the line lpca, which coincides with the first

principal component of P , are given in the left part of the figure. The optimal bounding box and the line

l 1
2
, going through the middle of its smaller side, parallel with its longer side, are given in the right part of

the figure.

general bpca(P) ≤ apca(P) ≤ diam(P) ≤
√

2aopt(P),
and in the special case when the optimal bounding

box is a square λ2,1(P) ≤ 2. This observation can

be generalized, introducing an additional parameter

η(P) = aopt(P)/bopt(P).

Lemma 8 λ2,1(P) ≤ η + 1
η and λ2,2(P) ≤ η + 1

η
for any point set P with fixed aspect ratio η(P) = η .

Proof. We have for both apca and bpca the upper bound

diam(P) ≤
√

a2
opt + b2

opt = aopt

√

1 + 1
η2 . Replacing

aopt by η ·bopt in the bound for bpca we obtain αβ ≤

η
(
√

1 + 1
η2

)2

= η + 1
η . �

Unfortunately, this parametrized upper bound tends to

infinity for η → ∞. Therefore we are going to de-

rive another upper bound that is better for large val-

ues of η . In this process we will make essential use

of the properties of BBpca(2,1)(P). In order to dis-

tinguish clearly between a convex set and its bound-

ary, we will use calligraphic letters for the bound-

aries, especially P for the boundary of CH(P) and

BBopt for the boundary of the rectangle BBopt(P).
Furthermore, we denote by d2(P, l) the integral of the

squared distances of the points on P to a line l, i.e.,

d2(P, l) =
∫

x∈P d2(x, l)ds. Let lpca be the line going

through the center of gravity and parallel to the longer

side of BBpca(2,1)(P) and l 1
2

be the bisector of BBopt(P)

parallel to the longer side. By Lemma 1, part ii) lpca is

the best fitting line of P and therefore

d2(P, lpca) ≤ d2(P, l 1
2
). (13)

Lemma 9 d2(P, l 1
2
) ≤

bopt
2aopt

2
+

bopt
3

6
.

Proof. If a segment of P intersects the line l 1
2
, we

split this segment into two segments, with the inter-

section point as a split point. Then, to each seg-

ment f of P flush with the side of the PCA bounding

l 1
2

a
opt

b
opt

BB
S

P

Figure 5: The convex polygon P , its optimal

bounding box, and the staircase polygon BBS (de-

picted dashed).

box, we assign a segment identical to f . To each re-

maining segment s of P , with endpoints (x1,y1) and

(x2,y2), with |y1| ≤ |y2|, we assign two segments: a

segment s1, with endpoints (x1,y1) and (x1,y2), and a

segment s2, with endpoints (x1,y2) and (x2,y2). All

these segments form the boundary BBS of a stair-

case polygon (see Figure 5 for illustration). Two

straightforward consequences are that d2(BBS, l 1
2
)≤

d2(BBopt , l 1
2
), and d2(s, l 1

2
)≤ d2(s1, l 1

2
)+d2(s2, l 1

2
),

for each segment s of P . Therefore, d2(P, l 1
2
) is

at most d2(BBS, l 1
2
), which is bounded from above

by d2(BBopt, l 1
2
) = 4

∫

bopt
2

0 x2 dx+2
∫ aopt

0 (
bopt

2
)2 dx =

bopt
2aopt

2
+

bopt
3

6
. �

T
upp

T
low

U1 L1

a
pca

b
pca

l
pca

P

b
′

L2U2

U3

L3

a1 a2

b1 b2

Figure 6: The convex polygon P , its PCA bound-

ing box, and a construction for a lower bound for

d2(P, lpca)
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T
upp

T
low

a
pca

b
pca

l
pca

P
′

upp

P
′

low

P

Figure 7: Two polylines P ′

upp and P ′

low (depicted

dashed) formed from P .

Now we look at P and its PCA bounding box (Fig-

ure 6). The line lpca divides P into an upper and a

lower part, Pupp and Plow. lupp denotes the orthogo-

nal projection of Pupp onto lpca, with U1 and U2 as its

extreme points, and llow denotes the orthogonal projec-

tion of Plow onto lpca, with L1 and L2 as its extreme

points. Tupp = △(U1U2U3) is a triangle inscribed in

Pupp, where point U3 lies on the intersection of Pupp

with the upper side of the PCA bounding box. Anal-

ogously, Tlow = △(L1L2L3) is a triangle inscribed in

Plow.

Lemma 10

d2(P, lpca) ≥ d2(Tupp, lpca)+ d2(Tlow, lpca).

Proof. Let Q denote a chain of segments of P , which

does not touch the longer side of the PCA bounding

box, and whose one endpoint lies on the smaller side

of the PCA bounding box, and the other endpoint on

the line lpca. We reflect Q at the line supporting the

side of the PCA bounding box touched by Q. All

such reflected chains of segments, together with the

rest of P , form two polylines: P ′

upp and P ′

low (see

Figure 7 for illustration). As a consequence, to each of

the sides of the triangles Tlow and Tupp, L1L3, L2L3,

U1U3, U2U3, we have a corresponding chain of seg-

ments R as shown in the two cases in Figure 8. In both

cases d2(t, lpca) ≤ d2(R, lpca). Namely, we can para-

metrize both curves, R and t, starting at the common

endpoint A that is furthest from lpca. By comparing

two points with the same parameter (distance from A

along the curve) we see that the point on t always has

a smaller distance to lpca than the corresponding point

on R. In addition t is shorter, and some parts of R have

no match on t.

Consequently, d2(P ′
, lpca)≥ d2(Tupp

⋃

Tlow, lpca) =
d2(Tupp, lpca) + d2(Tlow, lpca), and since,

d2(P ′
, lpca) = d2(P, lpca) = d2(Pupp

⋃

Plow, lpca),

the proof is completed. �

l
pca l

pca

R Rt t

(1) (2)

A A

Figure 8: Two types of chains of segments (depicted

dashed and denoted by R), and their corresponding

triangles’ edges (depicted solid and denoted by t).

Since P is convex, the following relations hold:

|lupp| ≥
b′

bpca
apca, and |llow| ≥

bpca −b′

bpca
apca. (14)

The value

d2(Tupp, lpca) =
∫

√
a2

1+b′2

0 ( α√
a2

1+b′2
b′)2 dα

+
∫

√
a2

2+b′2

0 ( α
√

a2
2+b′2

b′)2 dα

= b′
2

3
(
√

a2
1 + b′2 +

√

a2
2 + b′2)

is minimal when a1 = a2 =
|lupp|

2
. With (14) we get

d2(Tupp, lpca) ≥
b′

3

3bpca

√

a2
pca + 4b2

pca.

Analogously, we have for the lower part:

d2(Tlow, lpca) ≥
(bpca −b′)3

3bpca

√

a2
pca + 4b2

pca.

The sum d2(Tupp, lpca) + d2(Tlow, lpca) is minimal

when b′ =
bpca

2
. This, together with Lemma 10, gives:

d2(P, lpca) ≥
b2

pca

12

√

a2
pca + 4b2

pca. (15)

Combining (13), (15) and Lemma 9 we have:

1

2
aoptb

2
opt +

1

6
b3

opt ≥
b2

pca

12

√

a2
pca + 4b2

pca ≥
b2

pca

12
apca.

(16)

Replacing aopt with ηbopt on the left side, b2
pca with

β 2b2
opt and apca with αaopt = αηbopt on the right side

of (16), we obtain:

(

η

2
+

1

6

)

b3
opt ≥

β 2 α η

12
b3

opt

which implies

β ≤

√

6η + 2

α η
.
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This gives the second upper bound on λ2,1(P) for point

sets with parameter η :

α β ≤

√

(6η + 2)α

η
≤

√

√

√

√

6η + 2

η

√

1 +
1

η2
(17)

Theorem 11 The PCA bounding box of a point set P

in R
2 computed over the boundary of CH(P) has a

guaranteed approximation factor λ2,1 ≤ 2.737.

Proof. The theorem follows from the combination of

the two parametrised bounds from Lemma 8 and (17)

proved above:

λ2,1 ≤ sup
η≥1











min






η +

1

η
,

√

√

√

√

6η + 2

η

√

1 +
1

η2

















.

It is easy to check that the supremum s ≈ 2.736 is ob-

tained for η ≈ 2.302. �

5. FUTURE WORK AND OPEN PROB-

LEMS

It should be possible to prove an upper bound on λ2,2

along the same line as for λ2,1, but the analogon of

Lemma 9 seems to require some new analytical tools,

since, e.g., the reflection tricks do not apply in that

setting. However, there is some evidence that an upper

bound proof for λ2,2 would give some ideas to attack

the 3-dimensional problem for λ3,3, and, maybe also a

generalization to λd,d in higher dimensions.
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