
Octree-based view-dependent triangle meshes

Marta Fairén
Department of Software

Universitat Politècnica de Catalunya
mfairen@lsi.upc.edu

Ramón Trueba
Department of Software

Universitat Politècnica de Catalunya
rtrueba@lsi.upc.edu

ABSTRACT

In this paper we present a new technique for view-dependent LOD rendering, where the scene is represented through an octree
model from which we can obtain a triangle mesh corresponding to a view-dependent LOD. We present the construction of this
octree model and the visualization algorithm that generates on-the-fly a closed and valid triangle mesh for each frame of the
visualization. This visualization algorithm is a depth-first traversal algorithm which also allows to re-use triangles from one
frame to another.

Keywords: View-dependent LOD rendering, octree-based model, valid triangle mesh generation.

1 INTRODUCTION

During the last few decades substantial research efforts
have been devoted to devise new techniques to pro-
vide interactive navigation through complex 3D models
containing thousands of objects and millions of primi-
tives. Most recent approaches fall into three major tech-
niques: level-of-detail (LOD) rendering, image-based
rendering, and occlusion culling.

In the case of level-of-detail rendering and more
concretely in view-dependent LOD rendering the main
problem these techniques have is in those regions
where there is a change of level among neighbours,
where cracks in the generated triangulation should be
avoided.

In our proposal the scene is represented through an
octree model which is able to differentiate among ob-
jects (allowing further operations like selection, for
example, during the navigation) and from which we
can obtain a triangle mesh corresponding to a view-
dependent LOD. We present the construction of this
octree and the algorithm that generates on-the-fly, by
doing a depth-first traversal of the octree, a closed and
valid triangle mesh for each frame of the visualization.

Some differences between our proposal and other
view-dependent LOD techniques are: our data structure
does not keep topology information; we do not impose
any restriction on the difference of levels among neigh-
bour nodes; and we do keep information about objects.

The main contributions of this paper include:

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
Copyright UNION Agency – Science Press, Plzen, Czech
Republic

• A new octree-based data structure which encodes
the geometry of the scene and which enables the on-
line extraction of arbitrary view-dependent LODs.

• An off-line algorithm for building such an octree
from different input data.

• An efficient algorithm for rendering the scene en-
coded by the octree. Triangles extracted from pre-
vious frames are efficiently cached and reused on a
hierarchical basis.

The rest of the paper is organized as follows. Sec-
tion 2 briefly reviews the previous work. In section 3
we introduce some definitions and an outline of the al-
gorithm. Sections 4 and 5 explain respectively the def-
inition and generation of the octree model. Section 6
presents the view-dependent octree traversal algorithm.
Finally in section 7 we show some results and discus-
sion and we conclude in section 8.

2 PREVIOUS WORK

There are several papers that use hierarchical models to
represent very complex scenes and which at the end vi-
sualize triangles. Among many of them we can cite [7],
which computes a topology preserving isosurface from
a volumetric grid using Marching Cubes for geometry
processing applications; and [2], which describes an ef-
ficient technique for out-of-core construction and accu-
rate view-dependent visualization of very large surface
models. It uses a regular conformal hierarchy of tetra-
hedra to spatially partition the model.

Our approach uses a hierarchical model as well. Sim-
ilarly to [3], which uses a new spanned sub-meshes
simplification technique to build view-dependence trees
I/O-efficiently, preserving the correct edge collapsing
order and thus assuring the run-time image quality, our
octree is view-dependent and we visualize the triangles

Full Papers 193 ISBN 978-80-86943-98-5

that correspond to a front which is being adapted to the
point of view at each frame.

Another related paper is [5], which describes a new
method for contouring a signed grid whose edges are
tagged by Hermite data. They develop an octree-based
method for simplifying contours produced by this
method. Their method generates quads from Black-
White edges. As we will see in the following sections
in our case we also consider White-White edges as
well as those joining different levels among nodes
(T-edges).

Our extraction of triangles from edges is similar to
how [6] does to generate triangle strips from the dual
mesh.

Schmitt [8] also generates triangles from an octree
but in his case the front only moves through complete
levels (all nodes in the front should be at the same
level).

To the best of our understanding, our approach is the
first one that includes a complete view-dependent trian-
gle mesh generation from an octree by doing it on-the-
fly and allowing the reuse of geometry already com-
puted.

3 DEFINITIONS AND OUTLINE
OF THE VISUALIZATION ALGO-
RITHM

The first step of our proposal consists on a pre-process
of input data dedicated to generate the structure that will
be used by the view-dependent algorithm. Our input
data can be a BRep model or a voxel model. From the
input data, the pre-process generates an octree where
each grey node contains the coordinates of a point rep-
resenting the surface inside the node, a normal vector
and a colour. Each octree node has binary information
of their vertices (in or out). Out vertices will be labeled
as white whereasin vertices will be labeled as black.
The octree specification and generation process is fur-
ther explained in next section. We will start first by
some definitions:

Definition 1 Relevant edge
An edge of a node is relevant when it has a white

vertex and a black vertex or both vertices are white but
the original surface intersects the edge.

Definition 2 Membrane node
A membrane node is an octree node containing at

least a relevant edge.

Definition 3 Surface edge
A relevant edge e is a surface edge of an octree node

n iff e is one of the 12 edges of n.

Definition 4 Edge belongs to node
A relevant edge e belongs to an octree node niff e is

part of any surface edge of n.

As an example, in figure 1(b) we will say that the
red edge is a surface edge of nodes B and D and also
belongs to nodes A and C.

Definition 5 Edge belongs to subtree
Being S a subtree of the octree and e a relevant edge,

e belongs to Siff

∀k : e belongs to nk : nk belongs to S

(e belongs to S when the two or four nodes having e
as an edge are in the subtree S).

Note: If e belongs to a subtree S, e also belongs to all
subtrees containing S.

Definition 6 Edge internal to node
A relevant edge e is internal to an octree node niff e

belongs to one or more descendants of n but it does not
belong to n.

Definition 7 T-edge
A T-edge is a relevant edge which belongs to two

membrane nodes and also lays over a face of a third
node (see figure 1(a)).

Definition 8 X-edge
An X-edge is a relevant edge which belongs to four

membrane nodes (see figure 1(b)).

Once we have the octree pre-computed, the algorithm
presented in section 6 traverses this structure in a view-
dependent manner, by using anon-the-flygeneration
of triangles. The algorithm traverses the octree and
for each node being processed it computes the required
level in order to decide if the octree level of this node
is enough, depending on the point of view, to represent
the node in this frame as a leaf node.

Definition 9 Front
We call front to the set of membrane nodes being at

their required level.

Thefront is changing at each frame depending on the
point of view. The nodes participating on this front are
a subset of the membrane nodes. The view-dependent
depth-first traversal of the octree stops when a mem-
brane node is in its required level and this node becomes
part of the front for this frame.

A white face of a cube representing a membrane node
is a face shared with a white node. The union of all
white faces of the nodes of the front will be called the
white surface of the front.

Taking all T-edgesandX-edgesof those nodes par-
ticipating on the front and generating the correspond-
ing triangles (one for each T-edge and two for each X-
edge), it can be shown that we obtain a valid triangula-
tion which represents the scene at the suitable level of
detail, where a valid triangulation is a triangulation that
is homeomorphic to the white surface of the front.

Full Papers 194 ISBN 978-80-86943-98-5

(a) T-edge (b) X-edge

Figure 1: Example of a T-edge (a) and an X-edge (b). In both cases the edge is the one drawn in red. A T-edge
(a) generates a triangle of the final mesh whereas an X-edge (b) generates two triangles. The nearest point to
the relevant edge is chosen to divide the quad in the two triangles.

4 OCTREE DEFINITION

The octree model [1] we generate to represent the orig-
inal model stops its subdivision process when a node
does not contain model surface (the node is completely
inside or outside the solid); when the node, at this level,
already has the necessary information to represent the
model surface; or when the subdivision level reaches
the maximum level predefined.

With this kind of construction we have a non-
restricted octree, where each leaf node can have as
neighbours other leaf nodes without any restriction on
their size.

For our algorithm, we only need to store information
in the grey nodes of the octree, not in the black or white
ones. This information includes:

• A representative point of the surface inside the
node, being represented by its coordinates, a normal
vector and a colour.

• The vertex signsof the node, indicating, for each
one of the 8 vertices of the cube representing the
node, whether they arein or out of the solid.

• Relevant edgesof the node. We store boolean infor-
mation indicating which of the 12 edges of the cube
are relevant.

• Object identifier . We store information about the
object whose point is used as a representative point.
It facilitates to work with multi-objects.

5 OCTREE GENERATION

Our input data can be a correct BRep model or a voxel
model. From this input data, we generate the non-
restricted octree containing all the information.

The pre-process consists of two steps. The first step
is used to fill the information in the leaf nodes and the
second to fill the octree inner nodes. The first step is
different depending on the input data.

5.1 Construction from a BRep model
The construction of the octree from a BRep model is
done recursively starting from a cube (root node) which
includes all the scene, and following a classical subdi-
vision process. This subdivision process stops when the
node has the minimum edge length (minimal resolution
node) or when the node information fulfills a certain
condition (terminal octree node).

The octree nodes are terminal (no more subdivision
to do) in two cases:

• when the node doesn’t have surface inside it, in this
case the node becomes white or black depending on
the situation of the node (in or out) with respect to
the solid;

• when the node has solid surface inside it, it becomes
terminal if the surface it contains only belongs to an
object and fulfills one of the following conditions:

– it has only one vertex of the geometry;

– it has only one edge of the geometry;

– it has only one face of the geometry.

In case the subdivision stops because of a minimal
resolution we can have geometry of different objects
inside it, so we choose the most relevant object in the
node (the one with the largest area inside the node).

The information to be kept in any membrane node is
computed as follows:

Representative point coordinates.If the node con-
tains a feature vertex of the solid surface we store

Full Papers 195 ISBN 978-80-86943-98-5

the vertex; otherwise, if the node contains a feature
edge, we compute that point on the edge nearest to
the center of the node; in any other case we compute
the nearest point of the surface to the center of the
node.

Representative point normal vector. The normal
vector stored is the normal of the solid surface at
the point we kept as a representative point.

Representative point colour. We take the colour that
the representative point has in the original solid.

Signs of vertices.For each node vertex we compute
whether it is inside or outside of the solid. The pro-
cess to compute the signs of vertices is done after
the construction of the octree. For each vertex of
the cube representing the octree node we compute
whether it is white (outside the solid) or black (in-
side the solid).

Relevant edges.An edge of the node is considered rel-
evant if it has Black-White vertices or it has White-
White vertices and the solid surface intersects the
edge. This is computed also at the end of the octree
construction. We identify those edges having White-
White vertices that have to be relevant because the
solid surface intersects them. It is also possible to
have Black-Black edges intersected by the solid sur-
face, but these edges are not considered relevant be-
cause this geometry intersecting the edge is consid-
ered internal to the solid and is not visualized.

Object identifier. Identifier of the object whose point
is used as a representative point.

5.2 Construction from a voxel model
The construction of the octree from a voxel model starts
by identifying each voxel as black, white or membrane
node at the minimal resolution of the octree.

The information to be kept in any membrane node at
this minimal resolution is filled as follows:

Representative point coordinates.The represen-
tative point chosen could be computed through
an interpolation from the voxels in the 26-
neighbourhood. However, in the present implemen-
tation we have chosen to use the middle point of the
voxel, because its size is sufficiently small.

Representative point normal vector. We take the
gradient of the voxel calculated from the 26-
neighbour intensity.

Representative point colour. The colour will be the
one kept in the voxel model or computed by us-
ing a transfer function from the value of the voxel
model [4].

Signs of vertices.We classify a vertex as interior when
this vertex does not have any white node around and
we classify it as outer when the vertex touches at
least one white node.

Relevant edges.An edge of the node is considered rel-
evant if it has Black-White vertices.

Object identifier. Identifier of the object whose point
is used as a representative point.

Once we have identified the minimal resolution
nodes, we compact those black/white nodes which can
be grouped into other black/white nodes to get lower
level terminal octree nodes.

5.3 Filling inner nodes

Once all the leaf nodes are processed we have to fill in
the octree inner nodes. We apply a bottom-up simpli-
fication algorithm and fill each inner membrane node
information as follows:

• The sign of each node’s vertex corresponds to the
sign of the child sharing this vertex with the node.

• The relevant node’s edges are those constituted by
two White-Black edges or by two White-White
edges with at least one of them being relevant.

• The vertex information, normal, colour and object
identifier are taken from one of the children elected
as representative following the next criterion: A vote
is made among the children to discover which object
appears in more nodes (the object with a greater sur-
face inside the node) and among the children voting
for that object, the one that has the nearest point to
the node’s center is chosen as the representative.

6 VIEW-DEPENDENT OCTREE
TRAVERSAL

The algorithm we use to traverse the octree and gen-
erate the view-dependent triangle mesh can be summa-
rized as follows:

Full Papers 196 ISBN 978-80-86943-98-5

1 advance = true;
2 node = first_son(root);
3 while node != rootdo
4 if not in_frustum(node)then
5 process_edges_node();
6 else
7 if reusable(node)then
8 Reuse_triangles();
9 else

10 if level_required > current_level and
11 not node.is_terminal()then
12 node = node.first_son(); // go down
13 advance = false;
14 else
15 process_edges_node();
16 endif
17 endif
18 endif
19 if advancethen
20 while node != root and
21 node.is_last_son()do
22 node = parent(node); // going up
23 process_edges_non_terminal_node();
24 endwhile
25 if node == rootthen
26 process_edges_root();
27 else
28 node = next_brother(node);
29 endif
30 endif
31 endwhile

The geometry drawn by the algorithm at each frame
is computed at run time. The algorithm traverses the
octree model and depending on the point of view de-
cides which nodes and at which level will generate the
triangles to be drawn (see figure 2).

In order to take profit from the coherence existing be-
tween one frame and the next one, the algorithm keeps
memory of a list of triangles that stores the triangles
drawn in one frame and sorted in the order in which
those triangles were generated. This order in the list
allows to know each sub-list of triangles belonging to
each intermediate node of the octree. When the algo-
rithm decides that a node keeps the same level-of-detail
from one frame to the next one, it does not re-compute
the triangles for the sub-tree of this node but re-uses
those triangles in the list already computed in some pre-
vious frame (lines 7 and 8 in the algorithm).

We decide a node is reusable (line 7 in the algorithm)
if it fulfills the following conditions:

• it has already generated its corresponding triangles
in a previous frame (so these triangles are kept in the
list of triangles);

• its level-of-detail has not changed from the previous
frame;

• the number of frames passed since the last time the
triangles of the node were generated does not exceed
a certain predefined limit.

The required level for a node being processed on a
frame is computed taking into account the number of
pixels that the representation of this node is going to
cover on its projection from the user point of view. The
level required for the front in a certain subtree depends
on the apparent size of their nodes in the screen, which
should be smaller than a certain given tolerance. A node
being near to the user would require a higher level while
a node being far from the user would require a lower
level (see figure 3).

The depth traversal of the octree has a treatment done
to each node while descending and another done while
ascending. While descending, a node can be classified
and treated as:

• A node thatcan be re-usedfrom the last frame. The
list of triangles corresponding to this node are di-
rectly re-used from the last frame (line 8 in the algo-
rithm).

• A node consideredat the required levelfor the point-
of-view. This node is considered a leaf node (in
this frame) and the only treatment required for this
node is to recognize those edges of the node that are
relevant edges and that should be processed in the
treatment to do while ascending (line 15 in the al-
gorithm). These relevant edges will be passed to the
parent node to be considered by it (see below the
explanation of the process done in the intermediate
nodes while ascending).

• A nodenot being in the frustum. Although no treat-
ment would be needed for this node, their edges
should be considered in order to generate triangles
joining this node with others inside the frustum. It
is treated as a node being at the required level (line
5 in the algorithm).

• A node whose required level classifies it asan in-
termediate node. These nodes require no treatment
while descending, the algorithm just goes down in
the tree (lines 12 and 13 in the algorithm).

While ascending in the depth traversal of the octree,
the treatment is mainly centered in the intermediate
nodes. Each intermediate node has to process those rel-
evant edges that are internal to the subtree represented
by the node (it is the root of the subtree), and which
have not been processed before, i.e. it processes those
relevant edges that are internal to this node and not to
any one of its sons (lines 22 and 23 in the algorithm).
The relevant edges that are not internal to the subtree
represented by the node will be passed to the parent
node. In figure 2(a) the relevant edges 1 and 2 will be

Full Papers 197 ISBN 978-80-86943-98-5

(a) (b)

Figure 2: Triangle mesh generated for an example having 7 relevant edges (a) (relevant edges are drawn in thick
red line). In case the node A8 is considered at the required level of subdivision (b) only 2 relevant edges are
considered and the triangle mesh is simplified.

Figure 3: The level for a node is computed depending
on the distance to the user.

processed by the node A8, while the relevant edges 3, 4,
5, 6 and 7 will be processed by the root node A (because
even though they belong to the A8 subtree, they are not
internal to it). The process for each relevant edge con-
sists only on the generation of the triangle (T-edge) or
triangles (X-edge) joining the points representing the
nodes that are involved in the edge (see figure 1).

7 RESULTS AND DISCUSSION

We have implemented a prototype version of the pro-
posed technique and we have measured its performance
with several test models.

The first model is a voxel model of a jaw (see
figure 4) containing a total of 1.139.816 voxels. From
these, 49.998 are grey voxels (which become mem-
brane nodes at the minimal resolution of the octree).
The complete mesh generated from these terminal
membrane nodes, without simplification, contains a
total of 84.190 triangles.

Figure 5 shows the total number of triangles sent
to OpenGL by our algorithm during a short and sim-
ple navigation. This navigation consists on moving the
camera closer to the jaw and going back. We can ob-
serve that when the camera is close to the model the
total number of triangles drawn is near to the complete
mesh because the level-of-detail should be high enough,
while when the camera is going back the number of tri-
angles drawn decreases again.

In figure 6 we can see the number of triangles re-
used on each frame during the same short navigation.
We can observe that the number of triangles re-used is
near to the number of triangles drawn except in those
frames where the number of triangles to draw changes
(compare this with figure 5 which shows the number
of triangles drawn at each frame and also with figure 7
which shows the percentage of triangles re-used). This
re-using of triangles already generated can be optimized
by using vertex buffer objects of the GPU.

A snapshot of a second model can be seen in figure 7.
This model has a total of 2.004.504 voxels with 64.577
of them being grey voxels. The complete mesh gen-
erated from these terminal membrane nodes, without
simplification, contains a total of 108.534 triangles.

8 CONCLUSION AND FUTURE
WORK

We have presented a new technique for a view-
dependent LOD rendering, which builds an octree-
based data structure enabling the extraction of arbitrary
view-dependent LODs and renders the scene by using

Full Papers 198 ISBN 978-80-86943-98-5

Figure 4: Several views of the model of a jaw during the navigation. The step on the left side of the magnified
view is also present in the original model.

Figure 5: Triangles sent to OpenGL compared with the
triangles of the full resolution model.

a depth-first traversal algorithm which allows to re-use
triangles from one frame to another.

As a future work we can improve the efficiency of our
current prototype by including the use of vertex buffer
objects for the triangles to be re-used among frames and

Figure 6: Total number of reused triangles per frame.

also by generating strips of triangles instead of trian-
gles.

We will also include in the algorithm the possibility
of having out-of-core data, so our octree will be stored
completed in external memory while having the front
nodes kept in internal memory. This will require some

Full Papers 199 ISBN 978-80-86943-98-5

Figure 7: Percentage of reused triangles per frame.

Figure 8: Snapshot of the model of a hand.

pre-fetching techniques to avoid latency on changing
the nodes being kept in internal memory.

Finally, another future work is to allow the selection
of objects during the navigation, which will permit the
user to see an object in more detail than others, for ex-
ample. To do this, it will be necessary to keep a list
of object identifiers at each leaf node of the octree in
order to represent correctly those nodes at the minimal
resolution.

ACKNOWLEDGEMENTS

We want to thank very specially the collaboration of our
colleagues Carlos Andújar, Pere Brunet, Isabel Navazo
and Àlvar Vinacua for their valuous help on this work.

This work has been partially supported by the
TIN2004-08065-C02-01 project of the Spanish
government.

REFERENCES

[1] Pere Brunet and Isabel Navazo. Solid representa-
tion and operation using extended octrees.ACM
Transactions on Graphics, 9(2):170–197, 1990.

[2] Paolo Cignoni, Fabio Ganovelli, Enrico Gobbetti,
Fabio Marton, Federico Ponchio, and Roberto
Scopigno. Adaptive tetrapuzzles: efficient out-of-
core construction and visualization of gigantic mul-

tiresolution polygonal models.ACM Transactions
on Graphics, 23(3):796–803, 2004.

[3] Jihad El-Sana and Yi-Jen Chiang. External memory
view-dependent simplification.Computer Graph-
ics Forum, 19(3), 2000.

[4] Klaus Engel and Thomas Ertl. Interactive high-
quality volume rendering with flexible consumer
graphics hardware. InState of The Art Report. Eu-
rographics’02, 2002.

[5] Tao Ju, Frank Losasso, Scott Schaefer, and Joe
Warren. Dual contouring of hermite data. InSIG-
GRAPH ’02: Proceedings of the 29th annual con-
ference on Computer graphics and interactive tech-
niques, pages 339–346. ACM Press, 2002.

[6] Massimiliano B. Porcu and Riccardo Scateni. An
iterative stripification algorithm based on dual
graph operations. InEuroGraphics 2003 (short
presentations), pages 69–75, September 2003.

[7] Gokul Varadhan, Shankar Krishnan, T. V. N. Sri-
ram, and Dinesh Manocha. Topology preserv-
ing surface extraction using adaptive subdivision.
In SGP’04: Proceedings of the 2004 Eurograph-
ics/ACM SIGGRAPH symposium on Geometry pro-
cessing, pages 241–250. ACM Press, 2004.

[8] Yucel Yemez and Francis Schmitt. Multilevel rep-
resentation and transmission of real objects with
progressive octree particles.IEEE Transactions on
Visualization and Computer Graphics, 09(4):551–
569, 2003.

Full Papers 200 ISBN 978-80-86943-98-5

	!WSCG2007_Full_Proceedings_Final-all_2.pdf
	!WSCG2007_Full_Proceedings_Numbered.pdf
	!Full-A.pdf
	H31-full.pdf
	H31-full.pdf
	1.INTRODUCTION
	2.THE PROBLEM OF VIRTUAL WORLDS EXPLORATION
	3.HEURISTIC SEARCH BASED VIRTUAL CAMERA'S MOVEMENT AROUND A SCENE
	4.PRINCIPLES OF GOAL-BASED CAMERA MOVEMENT
	5.IMPLEMENTATION OF EXPLORATION TECHNIQUES AND RESULTS
	6.CONCLUSION AND FUTURE WORK

	!Full-F.pdf
	E43-full.pdf
	E43-full.pdf
	1. INTRODUCTION
	2. EXPONENTIAL B-SPLINES

	!Full-L.pdf
	A19-full.pdf
	INTRODUCTION
	BACKGROUND
	Related Work
	Information-Theoretic Measures
	Information-Theoretic Viewpoint Selection Measures

	SIMPLIFICATION ERROR METRIC BASED ON VIEWPOINT ENTROPY
	SIMPLIFICATION ALGORITHM
	Edge Collapse Error
	Updating Projected Areas

	RESULTS
	CONCLUSIONS AND FUTURE WORK
	REFERENCES

	!Full-N.pdf
	H07-full.pdf
	KeyWord pencil drawing, line integral convolution, image s
	1. Introduction
	2. Related Works
	3. LIC Pencil Filter
	4. Enhanced Region-based LIC Pencil Filter
	5. Experiment results
	6. Conclusion
	7. Acknowledgements
	8. References

	!Full-M.pdf
	A41-full.pdf
	1. INTRODUCTION
	2. RELATED WORK
	3. RAY-WAVES INTERSECTIONS
	3. LIGHT-WATER INTERACTIONS AND COMPLEX PHENOMENA
	4.1.1 Position
	4.1.2 Radiance

	5. RESULTS
	6. CONCLUSION
	7. REFERENCES

	TEMP.pdf
	!Full-A.pdf
	H31-full.pdf
	H31-full.pdf
	1.INTRODUCTION
	2.THE PROBLEM OF VIRTUAL WORLDS EXPLORATION
	3.HEURISTIC SEARCH BASED VIRTUAL CAMERA'S MOVEMENT AROUND A SCENE
	4.PRINCIPLES OF GOAL-BASED CAMERA MOVEMENT
	5.IMPLEMENTATION OF EXPLORATION TECHNIQUES AND RESULTS
	6.CONCLUSION AND FUTURE WORK

	!Full-F.pdf
	E43-full.pdf
	E43-full.pdf
	1. INTRODUCTION
	2. EXPONENTIAL B-SPLINES

	!Full-L.pdf
	A19-full.pdf
	INTRODUCTION
	BACKGROUND
	Related Work
	Information-Theoretic Measures
	Information-Theoretic Viewpoint Selection Measures

	SIMPLIFICATION ERROR METRIC BASED ON VIEWPOINT ENTROPY
	SIMPLIFICATION ALGORITHM
	Edge Collapse Error
	Updating Projected Areas

	RESULTS
	CONCLUSIONS AND FUTURE WORK
	REFERENCES

	!Full-N.pdf
	H07-full.pdf
	KeyWord pencil drawing, line integral convolution, image s
	1. Introduction
	2. Related Works
	3. LIC Pencil Filter
	4. Enhanced Region-based LIC Pencil Filter
	5. Experiment results
	6. Conclusion
	7. Acknowledgements
	8. References

	!Full-M.pdf
	A41-full.pdf
	1. INTRODUCTION
	2. RELATED WORK
	3. RAY-WAVES INTERSECTIONS
	3. LIGHT-WATER INTERACTIONS AND COMPLEX PHENOMENA
	4.1.1 Position
	4.1.2 Radiance

	5. RESULTS
	6. CONCLUSION
	7. REFERENCES

	G03-full.pdf
	1. INTRODUCTION
	2. RELATED WORK
	3. SIFT OVERVIEW
	4. GPU-IMPLEMENTATION
	5. CONCLUSION
	6. References

	!WSCG2007_Full_Proceedings_Numbered_NEW.pdf
	!Full-A.pdf
	H31-full.pdf
	H31-full.pdf
	1.INTRODUCTION
	2.THE PROBLEM OF VIRTUAL WORLDS EXPLORATION
	3.HEURISTIC SEARCH BASED VIRTUAL CAMERA'S MOVEMENT AROUND A SCENE
	4.PRINCIPLES OF GOAL-BASED CAMERA MOVEMENT
	5.IMPLEMENTATION OF EXPLORATION TECHNIQUES AND RESULTS
	6.CONCLUSION AND FUTURE WORK

	!Full-F.pdf
	E43-full.pdf
	E43-full.pdf
	1. INTRODUCTION
	2. EXPONENTIAL B-SPLINES

	!Full-L.pdf
	A19-full.pdf
	INTRODUCTION
	BACKGROUND
	Related Work
	Information-Theoretic Measures
	Information-Theoretic Viewpoint Selection Measures

	SIMPLIFICATION ERROR METRIC BASED ON VIEWPOINT ENTROPY
	SIMPLIFICATION ALGORITHM
	Edge Collapse Error
	Updating Projected Areas

	RESULTS
	CONCLUSIONS AND FUTURE WORK
	REFERENCES

	!Full-N.pdf
	H07-full.pdf
	KeyWord pencil drawing, line integral convolution, image s
	1. Introduction
	2. Related Works
	3. LIC Pencil Filter
	4. Enhanced Region-based LIC Pencil Filter
	5. Experiment results
	6. Conclusion
	7. Acknowledgements
	8. References

	!Full-M.pdf
	A41-full.pdf
	1. INTRODUCTION
	2. RELATED WORK
	3. RAY-WAVES INTERSECTIONS
	3. LIGHT-WATER INTERACTIONS AND COMPLEX PHENOMENA
	4.1.1 Position
	4.1.2 Radiance

	5. RESULTS
	6. CONCLUSION
	7. REFERENCES

	G03-full.pdf
	1. INTRODUCTION
	2. RELATED WORK
	3. SIFT OVERVIEW
	4. GPU-IMPLEMENTATION
	5. CONCLUSION
	6. References

	!WSCG2007_Full_Proceedings_Final-All-2.pdf
	!WSCG2007_Full_Proceedings_Numbered.pdf
	!Full-A.pdf
	H31-full.pdf
	H31-full.pdf
	1.INTRODUCTION
	2.THE PROBLEM OF VIRTUAL WORLDS EXPLORATION
	3.HEURISTIC SEARCH BASED VIRTUAL CAMERA'S MOVEMENT AROUND A SCENE
	4.PRINCIPLES OF GOAL-BASED CAMERA MOVEMENT
	5.IMPLEMENTATION OF EXPLORATION TECHNIQUES AND RESULTS
	6.CONCLUSION AND FUTURE WORK

	!Full-F.pdf
	E43-full.pdf
	E43-full.pdf
	1. INTRODUCTION
	2. EXPONENTIAL B-SPLINES

	!Full-L.pdf
	A19-full.pdf
	INTRODUCTION
	BACKGROUND
	Related Work
	Information-Theoretic Measures
	Information-Theoretic Viewpoint Selection Measures

	SIMPLIFICATION ERROR METRIC BASED ON VIEWPOINT ENTROPY
	SIMPLIFICATION ALGORITHM
	Edge Collapse Error
	Updating Projected Areas

	RESULTS
	CONCLUSIONS AND FUTURE WORK
	REFERENCES

	!Full-N.pdf
	H07-full.pdf
	KeyWord pencil drawing, line integral convolution, image s
	1. Introduction
	2. Related Works
	3. LIC Pencil Filter
	4. Enhanced Region-based LIC Pencil Filter
	5. Experiment results
	6. Conclusion
	7. Acknowledgements
	8. References

	!Full-M.pdf
	A41-full.pdf
	1. INTRODUCTION
	2. RELATED WORK
	3. RAY-WAVES INTERSECTIONS
	3. LIGHT-WATER INTERACTIONS AND COMPLEX PHENOMENA
	4.1.1 Position
	4.1.2 Radiance

	5. RESULTS
	6. CONCLUSION
	7. REFERENCES

	TEMP.pdf
	!Full-A.pdf
	H31-full.pdf
	H31-full.pdf
	1.INTRODUCTION
	2.THE PROBLEM OF VIRTUAL WORLDS EXPLORATION
	3.HEURISTIC SEARCH BASED VIRTUAL CAMERA'S MOVEMENT AROUND A SCENE
	4.PRINCIPLES OF GOAL-BASED CAMERA MOVEMENT
	5.IMPLEMENTATION OF EXPLORATION TECHNIQUES AND RESULTS
	6.CONCLUSION AND FUTURE WORK

	!Full-F.pdf
	E43-full.pdf
	E43-full.pdf
	1. INTRODUCTION
	2. EXPONENTIAL B-SPLINES

	!Full-L.pdf
	A19-full.pdf
	INTRODUCTION
	BACKGROUND
	Related Work
	Information-Theoretic Measures
	Information-Theoretic Viewpoint Selection Measures

	SIMPLIFICATION ERROR METRIC BASED ON VIEWPOINT ENTROPY
	SIMPLIFICATION ALGORITHM
	Edge Collapse Error
	Updating Projected Areas

	RESULTS
	CONCLUSIONS AND FUTURE WORK
	REFERENCES

	!Full-N.pdf
	H07-full.pdf
	KeyWord pencil drawing, line integral convolution, image s
	1. Introduction
	2. Related Works
	3. LIC Pencil Filter
	4. Enhanced Region-based LIC Pencil Filter
	5. Experiment results
	6. Conclusion
	7. Acknowledgements
	8. References

	!Full-M.pdf
	A41-full.pdf
	1. INTRODUCTION
	2. RELATED WORK
	3. RAY-WAVES INTERSECTIONS
	3. LIGHT-WATER INTERACTIONS AND COMPLEX PHENOMENA
	4.1.1 Position
	4.1.2 Radiance

	5. RESULTS
	6. CONCLUSION
	7. REFERENCES

	G03-full.pdf
	1. INTRODUCTION
	2. RELATED WORK
	3. SIFT OVERVIEW
	4. GPU-IMPLEMENTATION
	5. CONCLUSION
	6. References

	!WSCG2007_Full_Proceedings_Numbered_NEW.pdf
	!Full-A.pdf
	H31-full.pdf
	H31-full.pdf
	1.INTRODUCTION
	2.THE PROBLEM OF VIRTUAL WORLDS EXPLORATION
	3.HEURISTIC SEARCH BASED VIRTUAL CAMERA'S MOVEMENT AROUND A SCENE
	4.PRINCIPLES OF GOAL-BASED CAMERA MOVEMENT
	5.IMPLEMENTATION OF EXPLORATION TECHNIQUES AND RESULTS
	6.CONCLUSION AND FUTURE WORK

	!Full-F.pdf
	E43-full.pdf
	E43-full.pdf
	1. INTRODUCTION
	2. EXPONENTIAL B-SPLINES

	!Full-L.pdf
	A19-full.pdf

	!Full-N.pdf
	H07-full.pdf

	!Full-M.pdf
	A41-full.pdf

	G03-full.pdf

