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ABSTRACT 
In this paper, we show the positive potential of verifying the offline handwritten signatures through discrete 
Radon transform (DRT), principle component analysis (PCA) and probabilistic neural network (PNN). 
Satisfactory results are obtained with 1.51%, 3.23%, and 13.07% equal error rate (EER) for random, casual, and 
skilled forgeries respectively on our independent database. 
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1. INTRODUCTION 
Offline signature verification has been the subject of 
considerable research for over 34 years. It is an old 
pattern classification problem of genuine and forgery 
2-D scanned signature images. There are three 
popular groups of forgery: casual forgery, random 
forgery and skilled forgery. Skilled forgery is 
produced by the professional forger that has 
unrestricted practice to the writer’s actual signatures. 
A casual forgery is produced by the forger who is 
familiar with the writer’s name, but never expose to a 
sample of the actual signature. Therefore, stylistic 
differences are prevalent in this case. A random 
forgery is any random scribble, a genuine signature or 
a high quality forgery for other writer. Skilled forgery 
detection emerged as the most challenging task even 
for expert document examiners.  
 

 

This paper’s main objective is to distinguish a 
genuine signature from the forged signature. The 
major challenge is to distinguish between the 
variations among genuine signatures and the true 
differences between a signature and a forgery. 
However, the differences between a genuine signature 
and a skillfully forged one always can be subtle.  

2. LITERATURE REVIEW 
Numerous methods and approaches done over two 
decades are summarized in a number of survey 
articles. The state of the art before 1989 was 
discussed by Plamondon and Lorrette [Pla89] and the 
period from 1989 to 1993 was covered by Leclerc 
and Plamondon [Lec94]. At 2000, Plamondon and 
Srihari [Pla00] published a survey which covered the 
state of the art from the period of 1993 to 2000. Guo 
et al. [Guo01] included an extensive overview of 
previous works as well. From the survey, we can see 
that earlier work on offline signature verification 
deals primarily with casual and random forgeries, 
where deceit is generally obvious. As signature 
databases become larger, researchers are moving 
toward to more difficult skilled forgery detection 
task, which is still an open research question. There 
are plenty of pattern recognition techniques being 
used in this field. However, we will primarily focus 
on the neural networks in this work. 
A neural network is a computing paradigm that is 
loosely modeled after cortical structures of the brain. 
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It consists of interconnected processing elements 
(neurons) that work together to produce an output 
function. The output is relies on the cooperation of 
the individual neurons within the network to operate. 
Neural networks often process the information 
parallel rather than in series (or sequentially). Since it 
relies on its member neurons collectively to perform 
its function, a unique property of a neural network is 
that it can still perform its overall function even if 
some of the neurons are not functioning. Thus, they 
are very robust to error or failure. It has been 
extensively used in offline signature verification over 
the last two decades. Few relevant researches are 
summarized below; however, due to the lack of 
standard database available, all results reported are 
based on the researcher groups’ own independent 
database. 
Mighell, Wilkinson, and Goodman [Mig89] proposed 
a backpropagation learning algorithms to detect 
random forgeries. By training 10 genuine signatures 
and 10 forgeries respectively, which latter tested on 
70 genuine signatures and 56 forgeries, they reported 
a false rejection rate (FRR) of 1% with a false 
acceptance rate (FAR) of 4%. 
Abbas [Abb94] investigated the suitability of using 
multilayered feedforward neural networks for the task 
of offline verification. The input to the network is a 
binary bitmap of size 160 X 35 pixels. The 
performance is evaluated against their private 
database of 480 signatures. They concluded that the 
method is the best for the casual forgeries where able 
to achieve 0% FAR but its ability to deal with skilled 
forgeries was still limited with FAR ranging from 0% 
to 60%. 
Qi and Hunt [Qi95] proposed a multi-resolution 
approach to allocate the offline signature verification 
problem. The top-level representation of signatures is 
the global geometric features. A multi-resolution 
representation of signature is obtained using the 
wavelet transformation. By using a database of 450 
signatures from 25 signatories, the classification is 
done through a vector quantization (VQ) classifier 
and an artificial neural network classifier 
respectively. VQ classifier allows the use of a 
consistent procedure in processing feature vectors of 
different length or resolution, and it is easy to 
implement because its training and classification 
procedures are relatively simple. However, it can 
only partition the feature space using hyperspheres, 
and is incapable of drawing complicated, nonlinear 
class boundaries.  While, artificial neural network is 
capable of delineating arbitrarily complicated class 
boundaries, anyway, the performance is heavily 
depends on the network architecture and training 
method. The best VQ classification function is the 
accumulative, multi-resolution system which reported 

on FRR of 6.7%, FAR of 13.3% for skilled forgery 
and FAR of 0% for simple forgery. On the other 
hand, the multi-resolution network yields the lowest 
verification error rate when independent features are 
used, FRR of 4.0%. FAR of 9.3% for skilled forgery 
and FAR of 1.3% for simple forgery are reported. 
Kaewkongka, Chamnongthai, and Thipakorn [Kae99] 
proposed to use the Hough transform (general Radon 
transform) as the feature extractor. It extracts the 
parameterized Hough space from a signature skeleton 
as a unique characteristic feature of a signature. 
Evaluation is done through a backpropagation neural 
network. By using the dataset of 70 signatures, 
recognition rate of 95.24% is reported. 
Quek and Zhou [Que02] proposed a system which is 
constructed on the basis of a novel fuzzy neural 
network called the POPFNN-TVR, which has a five-
layer structure. Due to its characteristics, such as the 
learning ability, generalization ability, and high 
computational ability, it is very powerful to detect the 
skilled forgeries. After preprocessing, feature 
extraction is employed to reduce the image 
observation vector by measuring certain “properties” 
or “features” of the signature image. In this work, 
four kinds of features are extracted from the static 
image of the signature, which including reference 
pattern based features, global baseline, pressure 
features and slant features. All of them will be using 
as elements of the training vector. Two types of 
experiments are then conducted; first experiment is 
using the genuine signatures and forgeries as training 
data, while the second experiment is using only the 
genuine signatures as training data. Based on the 
signatures of 15 different signatories from 3 ethnic 
groups, the average of the individual EER, 22.4% is 
obtained for the first experiment. While for the 
second experiment, they claimed that comparable 
results are obtained. 
Piyush Shanker et al. [Piy07] proposed an offline 
signature verification by using Dynamic Time 
Warping (DTW). They extract the vertical projection 
feature from the signature images, and comparing the 
reference and probe feature templates using elastic 
matching. The method is tested against the original 
DTW and modified DTW. The modified DTW 
achieved EER 2% which outperformed the original 
DTW at 29%. 
Recently, Abdala Ali and Zhirkov [Abd09] proposed 
an offline signature verification comparing against 
Support Vector Machine (SVM) and K-Nearest 
Neighbor (KNN) classifiers. Their system achieves 
approximately 80% when using SVM, while 
approximately 70% for KNN. 
Bansal et al. [Ban09] proposed an offline signature 
verification using critical region matching. This work 
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is mainly focus on the extraction of critical regions 
which are more prone to mistakes and matching 
through a modular graph matching approach. They 
reported 10.81% EER for skilled forgery. 

3. OVERVIEW OF WORK 
Generally, an offline handwritten signature 
verification system includes preprocessing, feature 
extraction and encoding as well as matching as 
depicted in Fig. 1. These processes will be further 
discussed in the following sections. 

4. PREPROCESSING 
Any ordinary scanner with enough resolution can be 
used as an image acquisition device. However, the 
scanning hardware may introduce certain noises to a 
signature image. Another source of noise may be 
speckled paper background on which the signature is 
signed on. These noises on signature image may 
thwart the feature extraction process. We do not 
figure the real noise distribution, but we use the 
median filter, which better preserves edges, lines, and 
corners.  
After the smoothing, the images are converted into 
black-and-white images by using Adobe Photoshop. 
The threshold level is set to 100.  

5. FEATURE EXTRACTION 
Discrete Radon Transform (DRT) 
DRT [Coe04] is chosen to transform the signature 
images into a feature space. It is able to transform 
two dimensional images with lines into a domain of 
possible line parameters, where each line in the image 
will give a peak positioned at the corresponding line 
parameters. DRT has several advantages. Each 
signature is a static image and contains no dynamic 
information, thus by calculating projections at 
different angles, simulated time evolution is created 
from one feature vector to the next, where the angle 
represent the dynamic variable [Coe04]. DRT 

represents a projection (shadow) of the signature at 
different angle. A set of transform values is produced 
after the transformation. The DRT of an image can be 
calculated as follows. Assume that each signature 
image consists of N pixels in total, and that the 
intensity of the ith pixel is denoted by Ii, i = 1,…,N. 
The DRT is calculated using β non-overlapping 
beams per angle and Θ angles in total. The 
cumulative intensity of the pixels that lie within the 
jth beam is denoted by Rj , j = 1,…, βΘ. This is called 
the jth beam sum. In its discrete form, the Radon 
transform can therefore be expressed as 

∑
=

Θ==
N

i
iijj jIwR

1

,,...,2,1, β  where wij indicates the 

contribution of the ith pixel to the jth beam sum 
[Coe04]. The value of wij is determined by two-
dimensional interpolation. Each projection therefore 
contains the beam sums that are calculated at a given 
angle.  
Instead of Hough transform, we preferred DRT 
because it has a nice effect of attenuating the speckle 
noise in the images through summation, while the use 
of Hough transform is very delicate especially on 
noisy images. 

Principle Component Analysis (PCA) 
PCA has been widely used for dimensionality 
reduction in computer vision ([Lu03], [Tur91], and 
[Wan03]). It finds a set of orthogonal basis vectors 
which describe the major variations among the 
training images and with minimum reconstruction 
means square error. The successful implementation of 
PCA in various recognition tasks popularized the idea 
of matching images in the compressed subspaces. 
Since the number of transformed values after DRT is 
too huge, PCA is utilized here for feature data 
compression. In the PCA method, the average of K 
DRT features with M dimension is defined as Ravg.

 
Figure 1. Block diagram of an offline handwritten signature verification.
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Then, eigenvectors, vk and eigenvalues, λk with 
symmetric matrix C are calculated. vk determines the 
linear combination of K difference images with φ to 

form the EigenSignature, 
1

K

l lk k
k

U v
=

= ϕ∑  1l ,...,K= . 

Then, P(<K) EigenSignatures are chosen to 
correspond to the P highest eigenvalues, which imply 
that the P features are selected. An input DRT 
feature, Rk is transformed and projected into the 
EigenSignature space by the operation, ρk = Uk(Rk – 
Ravg), where k = 1,…,P.  

Probabilistic Neural Network 
Rather than ordinary matching approaches that are 
based on similarity matching concept, there is another 
popular method used for classification which the idea 
is to construct the decision boundaries directly by 
optimizing an error criterion. PNN which was first 
introduced by Specht ([Spe88], [Spe90]) is one such 
technique. It offers several advantages over 
backpropagation network. The rationale behind this is 
that, as a kernel-based approach to probability 
density function approximation, PNN posses the 
advantages to handle the complex, non-linear and 
imprecise problems such as signature verification. 
In general, a PNN consists of three layers – a pattern, 
summation and output layers (apart from the input 
layer) as illustrated in Fig. 2. The pattern layer 
contains one neuron for each input vector in the 
training set, while the summation layer contains one 
neuron for each user class to be recognized. The 
output layer merely holds the maximum value of the 
summation neurons to yield the final outcome 
(probability score). 

1x 2x xdinput

pattern

summation

output o1 o2 oc

21 3 n

 
Figure 2. Basic configuration of a probabilistic 

neural network. 
The network can simply be established by setting the 
weights of the network using the training set. The 
modifiable weights of the first layer are set by ωij = ρij 
where ωij denoting the weight between ith neuron of 
the input layer and jth neuron in the pattern layer, and 
ρij is the j element feature of ρi in the training set. The 
second layer weights are set by ωjk = Tjk, where ωjk is 
the weight between neuron j in pattern layer and 
neuron k of the output layer, and 1 is assigned to Tjk if 

pattern j of the training set belongs to user k and 0 
otherwise. After the network is trained, it can be used 
for classification task. The outcome of the pattern 

layer is defined as 
1

exp ( ) /
m

i ijoutω
=

 
= −  

 
∑ ρ σj
i

.Note 

that outj is the output of neuron j in pattern layer and 
σ is the smoothing parameter of the Gaussian kernel 
which is the only independent parameter that can be 
decided by the user. The input of the summation layer 

is calculated as 
1

n

k j jk
j

in out ω
=

= ×∑ where ink is the 

input of neuron k in output layer. The outputs of the 
summation layer are binary neurons that produce the 
classification decision, i.e 1 is assigned to outk if ink is 
larger than the input of others neurons and 0 
otherwise. 
The smoothing parameters (

1σ , 2σ ,…, and jσ ) need 
to be carefully determined in order to obtain an 
optimal network. This factor needs to be selected to 
cause a reasonable amount of overlap; too small 
deviations will cause a very spiky approximation 
which cannot generalize, while too large deviations 
smooth out detail. An appropriate figure is easily 
chosen by experiment, by selecting a number which 
produces a low selection error, and fortunately PNNs 
are not too sensitive to the precise choice of 
smoothing factor. For convenience sake, we use a 
straightforward procedure to select the best value 
forσ . Firstly, an arbitrary value of σ is chosen to 
train the network, and then test it on a test set. This 
procedure is repeated for otherσ ’s values and the 
σ  giving the least errors will be selected. 
The motivation of using a PNN is driven by the 
generalization property and simple training scheme 
(only one epoch of training is required) of PNN. 
However, the speed of training is achieved at the cost 
of increase in complexity and computational/ memory 
requirements. The time complexity for training is 
O(nP), where n denotes the number of training 
samples and P is the length of PCA feature data. In 
our context, the time complexity of PNN that depends 
on the P and n can be decreased notably due to the 
compressed feature data length. As such, the 
association of DRT and PNN is feasible in practical 
usage due to its high speed and accuracy 
performance. 

6. EXPERIMENTS & DISCUSSIONS 
Database and Setup 
Our independent database comprised of 1000 genuine 
signatures, 500 casual forgeries, and 500 skilled 
forgeries which were collected from 100 writers and 
10 forgers. Due to the non-repetitive nature of 
variation of the signatures, the signatures produced 
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will have certain variations among same writers. 
Thus, the data preparation was mainly divided into 
two stages. In the first stage, five sample signatures 
are registered per writer at a single contact session 
producing 500 samples. In the second stage, another 
set of five genuine signatures were supplied by the 
same writer during the contact sessions two weeks 
after the initial session, yielding another 500 samples. 
Thus, by recording the specific date, we can observe 
the variations among the same signature for a single 
session and different sessions. For the forgery part, 
the casual forgeries are obtained first; the forgers 
only allow viewing the writer’s name but did not have 
the access to the signatory’s signatures. The skilled 
forgeries are then obtained from the same group of 
forgers. We provided them with several samples of 
each signatory’s genuine signature and they are 
allowed ample opportunity to practice on it.  
The pen or pencil used by each writer is not 
prescribed but signatures are written within a pre-
drawn 5 x 2 grid on A4 paper. These signatures were 
scanned into the computer using a 24-bit millions of 
colors, 600 dot-per-inch resolutions. The individual 
images are extracted and labeled with both the writer 
names and the signature class number. 
We will evaluated the system based on false 
acceptance rate (FAR), false rejection rate (FRR), 
and equal error rate (EER).  

Performance Evaluations 
This method is evaluated by using random, casual 
and skilled forgeries from the mentioned independent 
database.  
Four samples of each person are sequentially selected 
for Eigen basis construction and the remaining six 
samples are used for testing. To investigate the 
performance of PCA against the DRT-extracted 
signature images as the dimensionality reduction 
agent, we use different number of principle 
components (or feature length), varying from 10 – 
200, as shown in Table 1. 
It is interesting to discover that longer feature length 
leads to better result. The performance peaks when 
100 principle components are used. However, this 
principle only holds to a certain point as the 
experimental results show that the result remains 
unchanged when the feature length is extended 
further. Thus, the PCA length is set to 100 for the 
following experiments. 
Next, we investigate the performance of DRT by 
using three different distance metrics, which are 
cosine angle distance, L1 (Manhattan) and L2 
(Euclidean) distance measure for random random 
(Fig. 3), casual (Fig. 4) and skilled (Fig. 5) forgeries 
respectively. DRT β is taken to be equal to the 

highest dimension of the image (300 X 200 pixels 
after smoothing and converted into black-and-white 
image), which is 300, and works on Θ = 128. 
From the experiment, the cosine angle distance is 
outperforming towards L1 (Manhattan) and L2 
(Euclidean) distances. This is because cosine angle 
distance usually gives a higher rank to vectors with 
larger variance (whereas applied to signature images) 
among its components.  
Number 
of PCA 
Feature 
Length 

Random 
Forgery 
(EER, %) 

Casual 
Forgery 
(EER, %) 

Skilled 
Forgery 
(EER, %) 

10 8.75 12.00 23.00 

30 8.33 11.65 22.45 

50 7.45 11.00 21.00 

80 7.11 10.20 20.22 

100 6.95 9.87 19.56 

120 6.95 9.87 19.56 

150 6.95 9.87 19.56 

180 6.95 9.87 19.56 

200 6.95 9.87 19.56 

Table 1. Equal error rates (EER, %) of using 
different number of principle components 

 
Figure 3. Receiving Operating Characteristic 

(ROC) curve of random forgery for three 
different distance metrics: cosine angle, L1 

(Manhattan) and L2 (Euclidean) respectively. 
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Figure 4. Receiving Operating Characteristic 

(ROC) curve of casual forgery for three different 
distance metrics: cosine angle, L1 (Manhattan) 

and L2 (Euclidean) respectively. 

 
Figure 5. Receiving Operating Characteristic 

(ROC) curve of skilled forgery for three different 
distance metrics: cosine angle, L1 (Manhattan) 

and L2 (Euclidean) respectively. 
However, it can be anticipated that the classification 
accuracy of the methods will improve when a more 
sophisticated classifier, PNN is used. In our system, 
10C4 = 210 runs are performed with different 
partitions between the training and testing sets by 
using a PNN smoothing parameter of σ = 10. 
From the ROC curve showing in Fig. 6, the 
performance is greatly improved especially for casual 
and skilled forgeries. Table 2 summarizes the 
performance of PNN towards random, casual and 
skilled forgeries. 
Besides, the experiment also shows that the 
computation time can be reduced significantly with 
just slight performance drop when only one template 
per user is used (as compared to the case of 4 training 
samples shown in Table 3 for skilled forgery). In this 
case, the time complexity of PNN that depends on the 
number of training samples, n and the length of PCA 
feature data, P can be decreased notably due to the 

compressed feature data length through PCA and 
single training sample per user settings. As such, the 
association of DRT, PCA and PNN is feasible in 
practical usage due to its high speed and accuracy 
performance. 

 
Figure 6. Receiving Operating Characteristic 
(ROC) curve for random, casual and skilled 

forgeries respectively when using: Eigen basis 
construction set = 4, principle component length = 

100 when classified through PNN. 

  FAR(%) FRR(%) EER(%) 
Random 
Forgery 1.50 1.52 1.51 
Casual 
Forgery 3.22 3.24 3.23 
Skilled 
Forgery 12.98 13.16 13.07 

Table 2. FAR, FRR and EER achievement (%) for 
random, casual and skilled forgeries respectively 

Training Samples 
Total time 
(minutes) EER (%) 

4 38.5 13.07 

1 14 14.20 
Table 3. Total time spent to run one course of 
experiment and the accuracy of PNN in skilled 

forgery context 

Comparison with Other Research 
Groups’ Techniques 
It is very difficult to compare the performance of 
different signature verification systems due to the fact 
that different systems are using different signature 
data sets. The lack of a standard international 
signature database is a big problem for performance 
comparison. 
However, few works that published in year 2009 
including Piyush Shanker et al. [Piy07] , Abdala Ali 
and Zhirkov [Abd09]  (we implement only on SVM) 
and Bansal et al. [Ban09]  algorithms have been 
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implemented and tested in our own independent 
database due to the close-similarity of our 
implementation details. 

 Piyush 
et al. 

Ali and 
Zhirkov 

Bansal 
et al. 

Our 
method 

Random 
Forgery 

1.45 1.13 1.23 1.51 

Casual 
Forgery 

3.21 2.43 3.15 3.23 

Skilled 
Forgery 

13.05 11.55 12.58 13.07 

Table 4. Equal error rates (EER, %) of 
implementing different approaches towards our 

independent database 
 Piyush 

et al. 
Ali and 
Zhirkov 

Bansal 
et al. 

Our 
method 

Random 
Forgery 

125.0 120.0 80.0 38.5 

Casual 
Forgery 

125.0 120.0 80.0 38.5 

Skilled 
Forgery 

125.0 120.0 80.0 38.5 

Table 5. Computation times (minutes) of different 
approaches towards our independent database 

Referring to Table 4, it can be concluded that their 
algorithms are slightly outperform our method. 
However, by referring to Table 5, we can say that our 
system is more favorable in real world application 
context due to its shortest computation time. Piyush 
Shanker et al.’s modified DTW is stable, but 
somehow it is still not particularly fast. Abdala Ali 
and Zhirkov’s SVM is powerful, but very time 
consuming to select the appropriate kernel functions 
and determining the belonging parameters during the 
development phase. Bansal et al.’s algorithm 
performs slightly better than ours, but required longer 
processing time.     

7. CONCLUSIONS 
This paper proposed an offline signature verification 
through DRT, PCA and PNN. The high accuracy is 
feasible to filter the forgery from the genuine 
signature, especially for skilled forgery; while the 
speed of the PNN is very favorable in real-world 
application. The results are encouraging and thus 
should motivating the research on skilled forgery 
detection especially for offline handwritten signature. 
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