

Multi-Level Hashed Grid Construction Methods

Vasco Costa

INESC-ID / IST
Lisboa, Portugal

vasc@vimmi.inesc-id.pt

João Pereira
INESC-ID / IST
Lisboa, Portugal

jap@vimmi.inesc-id.pt

Joaquim Jorge
INESC-ID / IST
Lisboa, Portugal

jaj@vimmi.inesc-id.pt

ABSTRACT
Ray tracing is an inherently parallel visualization algorithm. However to achieve good performance, at
interactive frame rates, an acceleration structure to decrease the number of per ray primitive intersections is
required. Grid acceleration structures have some of the fastest build times, with O(N) complexity, but
traditionally achieved this at a high memory cost. Recent research has reduced the memory footprint by
employing compression for one-level grids. Render time performance can be improved using multi-level grids.
We describe two methods for building such multi-level grids. In the first method we employ a recursive
compressed grid in which grid cells are adaptively subdivided in a variable fashion. The second method uses a
finely divided compressed grid, with a lower resolution macrocell overlay to speed up traversal. We analyze the
performance of these new algorithms, which enable improved render times, versus existing solutions.

Keywords
Ray tracing, spatial subdivision, grid.

1. INTRODUCTION
Realtime ray tracing is an active area of research
[Wal07]. Even traditionally skeptical hardware
vendors have recently demonstrated, or made
available, realtime ray tracing solutions [Sei08]. Ray
tracing is desirable for several reasons, namely per
pixel accurate shadows, reflections and refractions. It
can also be used as a base for other global
illumination algorithms such as path tracing, and
photon mapping, to add more effects such as caustics
and diffuse interreflections.
In the naive ray tracing algorithm, it is necessary to
search the nearest intersected primitive for each ray.
Without an acceleration structure, the complexity for
such an algorithm is O(N), where N is the number of
primitives in the scene. Hence to enable realtime ray
tracing for complex scenes, with many primitives,
acceleration structures are used. These acceleration
structures can theoretically reduce per ray complexity
to O(log N).

Ideally an acceleration structure should be fast to
build and use as little memory space as possible,
while still delivering good render time performance.
This work describes our efforts to combine the
desirable traits of multi-level grid [Jev89,Wal06]
render time performance, with the low build time and
memory consumption characteristics of row
displacement compression [Lag08].
Existing related work in this area is surveyed in
Section 2. Section 3 describes the proposed multi-
level grid construction methods. The performance
results of these methods are analyzed in Section 4.
Finally conclusions are presented in Section 5.

2. RELATED WORK
Grid acceleration structures for ray tracing were first
described by Fujimoto et al. [Fuj89]. These
acceleration structures subdivide 3D space in near
cubical cells. It was found that grids, by eliminating
vertical traversal time costs present in other
acceleration structures popular at the time, had
increased overall render time performance. 3DDA, a
3D extension of the raster line drawing algorithm,
was employed for ray grid traversal.
An improved grid traversal algorithm was later near
simultaneously devised by several researchers
[Woo87,Cle88]. This algorithm is still employed
today. The historical grid ray tracing acceleration
structures around this period are described by Havran
et al. [Hav99]. Grid dimensions (Mx × My × Mz) are
determined based on heuristics related to the number

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.

WSCG 2010 Communication Papers 95

of scene primitives, scene bounding box, and certain
constant factors.
Recently Lagae and Dutré [Lag08] employed grid
row displacement compression (i.e. hashing) to
reduce the memory footprint of this kind of
acceleration structure. It does this by compressing
empty cells. By allocating all memory, before
inserting primitives into the data structure, build time
performance was also improved. The render time
performance of this one-level grid algorithm is
however inferior to non-compressed multi-level
algorithms, such as the rgrid used by the Manta ray
tracer [Big06], as shall be seen in Section 4.
Kim et al. [Kim09] have created compressed versions
of the bounding volume hierarchy (BVH)
acceleration structure, one of the acceleration
structures first used in ray tracing. Kim et al. also
compress the triangle mesh and page data to the disk
providing increased memory savings.
BVH acceleration structures have higher construction
time complexity than grids. BVH construction
complexity is O(N log N) versus a grid construction
complexity of O(N).
More recent, faster to build, grid acceleration
structures have many advantages. However further
work is necessary to improve their render time
performance. This work aims at filling this gap.

3. METHODS
The classification of multi-level grid construction
methods employed here is based on that of Jevans
and Wyvill [Jev89].
Variable construction methods recursively subdivide
the grid, by employing subgrids in each cell. Subgrid
dimensions are chosen using a similar heuristic to
that employed for the first cell division level.
Memory consumption is hard to predict, usually
leading to the use of dynamic memory allocation
along the construction method.
Fixed construction methods use a fixed ratio, finer
subdivision than a regular one-level grid would
employ. Since the total size of a grid acceleration
structure can be known in advance, all memory
allocation can be done before the method is
employed. A fixed construction grid can be build
using macrocells for the lower resolution levels.
Fixed construction methods have good performance
for uniformly distributed scenes, such as laser
scanned models. Variable construction methods
adapt more easily to varying scene primitive
distribution but at increased memory consumption
and build time costs.
The following heuristic, attributed to Woo, is
employed to determine grid dimensions:

Equation 1. Woo’s heuristic. Si is the scene

bounding box size in dimension i, ρ is 4.
Via profiling we noticed some characteristics in the
existing algorithms [Lag08,Big06] described at
Section 2. Grid traversal dominates render time, and
one-level grids spend a lot more time doing
ray/triangle intersections than multi-level grids. In
attempting to improve render-time performance we
posed the following hypothesis: we can reduce the
number of ray/triangle intersections by using smaller
cells, with fewer triangles per cell. To reduce
traversal time we can employ a multi-level structure
to skip empty cells in larger steps.

3.1. Multi-Level Variable Hashed Grid
This subsection describes the multi-level variable
hashed grid implementation. It is a recursive grid,
with the top level grid and subgrids using the hashed
grid [Lag08] algorithm. This grid has a maximum
grid depth size of 2.
First the top level hashed grid is built using the
algorithm described by Lagae et al. [Lag08] but
using the heuristic from Equation 1. We selected a
grid density ρ of 4 since it empirically provided good
render time performance. Each cell of this top level
grid is then subdivided using the same algorithm,
creating a new subgrid, for each cell containing more
than a certain number of primitives.

3.2. Multi-Level Fixed Hashed Grid
In this subsection a multi-level fixed hashed grid is
described. It is a high resolution hashed grid [Lag08]
with multi-level macrocells [Wal06] to speedup
traversal.

Figure 1. Timings for the Buddha scene according

to grid density.
First a finely divided one-level hashed grid is built in
a similar fashion to that of Lagae et al. [Lag08], but
using the grid heuristic described in Equation 1 with
a high grid density parameter to reduce cell size.

WSCG 2010 Communication Papers 96

Bunny Dragon Buddha

Asian Dragon

Thai Statue

Scene statistics
triangles 69.45K 871.41K 1.09 M 7.22 M 10 M
memory 1.2MB 15.0MB 18.7MB 123.9MB 171.7MB

Manta recursive grid [Big06]
Primitive intersections/ray 1.58 1.58 1.56 0.91 1.17
Cell traversals/ray 4.73 5.80 4.95 6.44 7.00
Grid traversals/ray 1.38 1.28 1.17 0.72 0.82

Build Time (s) 0.47 3.46 4.50 20.44 29.59
Render Time (s) 0.30 0.52 0.34 0.36 0.58
Time to Image (s) 0.78 3.98 4.84 20.80 30.17

One-level hashed grid [Lag08]
Primitive intersections/ray 8.35 9.87 9.53 13.15 12.67
Cell traversals/ray 14.53 35.23 26.93 93.14 100.76
Grid traversals/ray 0.00 0.00 0.00 0.00 0.00

Build Time (s) 0.02 0.22 0.26 1.48 2.07
Render Time (s) 0.58 0.89 0.78 1.60 1.80
Time to Image (s) 0.60 1.11 1.04 3.09 3.88

Multi-level variable hashed grid
Primitive intersections/ray 3.99 3.83 3.92 1.93 2.63
Cell traversals/ray 15.12 26.05 17.21 68.31 69.38
Grid traversals/ray 0.54 0.53 0.53 0.27 0.36

Build Time (s) 0.09 0.75 0.81 4.09 6.29
Render Time (s) 0.51 0.64 0.55 1.00 1.11
Time to Image (s) 0.60 1.39 1.36 5.10 7.39

Multi-level fixed hashed grid
Primitive intersections/ray 6.14 8.26 10.06 8.74 9.06
Cell traversals/ray 14.04 17.86 13.10 29.97 27.31
Grid traversals/ray 0.57 0.47 0.45 0.24 0.25

Build Time (s) 0.04 0.39 0.29 3.09 3.45
Render Time (s) 0.57 0.68 0.67 0.79 0.82
Time to Image (s) 0.61 1.07 0.97 3.88 4.27

Table 1. Scene triangle mesh statistics, render time profile results, timings for the studied grid
acceleration structures.

We empirically chose the grid density parameter by
analyzing the behavior for the Buddha scene as can
be seen in Figure 1. We selected a grid density ρ of
32 since it features adequate render time without
having a severe impact on time to image.
Next multi-level macrocells [Wal06], are built to skip
empty cells in larger steps during traversal.
Macrocells overlay a coarser grid over the finely
divided grid. The macrocells for each level consist of
a 3D bit array with information if a region of space is
empty of not. To speed up this construction step
macrocells are downscaled by a factor S of 6 on each
extent. We arrived at this value by empirically
analyzing algorithm behavior for the tested scenes.
Wald et al. [Wal06] reached the same value with a

different heuristic and test scenes. Macrocell
downscaling can be done with a quick 3D bitmap
scaling operation.

4. PERFORMANCE AND RESULTS
This section evaluates the performance of the grid
construction methods.
All tests were performed on a single Intel Core 2
Duo processor at 3 GHz. The machine has 4GB of
RAM running the Linux operating system. The
algorithms were implemented in C++ using STL and
Boost without use of assembly or intrinsics.
Only a single thread was used, with one ray per pixel
and diffuse shading, at 1024×1024 resolution. A

WSCG 2010 Communication Papers 97

Figure 2. From bottom right clockwise: memory consumption; build time; render time; time to image
acceleration structure statistics for the tested scenes.

variety of models from the Stanford 3D Scanning
Repository were used for the evaluation.
The top of Table 1 shows scene statistics such as
number of triangles, memory used by the triangles.
These scenes were chosen because the system is
expected to support visualization of laser scanned
architectural models. Scene memory usage is
computed by using 12 bytes per triangle to store
vertex index information (three machine words for
each vertex index), plus 12 bytes per vertex (three
floating point numbers for each coordinate). This
provides reduced memory usage in an expedient
fashion. Ray/triangle intersection was done using the
Möller-Trumbore [Mol05] intersection algorithm
because of its low memory requirements.
For performance comparison purposes with existing
published algorithms the recursive grid from the
Manta interactive ray tracer [Big06] was tested. An
implementation of the hashed grid algorithm by
Lagae and Dutré [Lag08] was added to the system to
serve as the one-level compressed grid baseline.
The multi-level hashed grid structures feature
improved render time performance compared to the
one-level hashed grid. This is markedly so for the
larger scenes where over twice the render time
performance is achieved. Of the multi-level hashed
grid methods, the fixed hashed grid is better for the
larger scenes, as can be seen at top left in Figure 2.
Fixed grid features improved render times, versus the
variable grid, due to several factors: the fixed grid
has a smaller memory footprint (and increased

memory coherence); the cells of the top hierarchical
level of the fixed grid have a larger volume, skipping
empty regions of space faster, this is reflected in the
cell traversals/ray.
The recursive grid from Manta has even better render
time performance, although the performance
difference varies according to the tested scene.
These performance results required a more in depth
examination by profiling the acceleration structures
in terms of number of primitive intersections,
horizontal cell traversals and vertical grid traversals.
Profiling, seen in Table 1, shows improved Manta
render time performance is due to the lower number
of ray/primitive intersections and horizontal cell
traversals used by the recursive grid to display the
same scene.
Manta employs a deeper variable grid structure with
maximum depth of 3 and has a modified heuristic.
This enables improved render time performance but
comes at a big build time penalty. It takes six times
longer to build the acceleration structure for the Thai
Statue scene for example as can be seen at the bottom
left of Figure 2.
Memory usage paints a similar picture to the build
time statistics. The Thai Statue scene uses around ten
times more memory in the non-compressed Manta
multi-level acceleration structure versus the fastest
compressed multi-level acceleration structure we
implemented.

WSCG 2010 Communication Papers 98

The compressed multi-level grid acceleration
methods of note feature much improved performance
on the figures of merit. Time to first image in
particular is much improved versus the times
achieved by Manta using algorithms of the same
class. The multi-level fixed hashed grid has a
similarly low time to image compared to the one-
level hashed grid. This makes it the best option
among the multi-level grids for the tested scenes.

5. CONCLUSION
Multi-level compressed grid methods achieve best of
class performance by combining the desirable traits
from existing algorithms: low memory requirements,
fast build and render times. The algorithms presented
here could still use some work in the heuristics, as
the multi-level heuristic from Manta has quicker
render times. There is also room for expansion in
improving the number of cell traversals and primitive
intersections per ray. Alternative methods for
speeding up traversal time by skipping empty voxels,
not studied in this work, include proximity clouds
[Coh94], macro-regions [Dev89], and similar
directional techniques [Sem97].
We would also like to implement these algorithms on
GPUs to investigate the performance characteristics
of compressed structures on that hardware class.

6. ACKNOWNLEDGEMENTS
It would not have been possible to make the tests in
this work without the models from the Stanford 3D
Scanning Repository.
This work was supported by the Portuguese
Foundation for Science and Technology project
VIZIR (PTDC/EIA/66655/2006).

7. REFERENCES
[Big06] J. Bigler, A. Stephens and S. G. Parker

Design for Parallel Interactive Ray Tracing
Systems Proceedings of the IEEE Symposium on
Interactive Ray Tracing, 2006.

[Coh94] D. Cohen, and Z. Sheffer. Proximity clouds
- an acceleration technique for 3D grid traversal.
The Visual Computer, 11(1): 27–38, 1994.

[Cle88] J. Cleary and G. Wyvill. Analysis of an
algorithm for fast ray tracing using uniform space
subdivision. The Visual Computer, 4(2):65–83,
1988.

[Dev89] O. Devillers. The macro-regions: an
efficient space subdivision structure for ray
tracing. In Eurographics ’89, pages 27–38, 1989.

[Fuj89] A. Fujimoto, T. Tanaka, and K. Iwata. Arts:
Accelerated ray-tracing system. Computer
Graphics and Applications, IEEE, 6(4):16–26,
1986.

[Jev89] D. Jevans and B. Wyvill. Adaptive voxel
subdivision for ray tracing. In Graphics Interface
’89, pages 164–172, June 1989.

[Hav99] V. Havran, F. Sixta, and S. Databases.
Comparison of hierarchical grids. Ray Tracing
News, 12(1):1–4, 1999.

[Lag08] A. Lagae and P. Dutré. Compact, fast and
robust grids for ray tracing. Computer Graphics
Forum (Proceedings of the 19th Eurographics
Symposium on Rendering), 27(8), 2008.

[Kim09] Tae-Joon Kim, Bochang Moon, Duksu
Kim, Sung-Eui Yoon. RACBVHs: Random-
Accessible Compressed Bounding Volume
Hierarchies. IEEE Transactions on Visualization
and Computer Graphics, 17 Jun. 2009.

[Mol05] T. Möller and B. Trumbore. Fast, minimum
storage ray/triangle intersection. In International
Conference on Computer Graphics and
Interactive Techniques. ACM Press New York,
NY, USA, 2005.

[Sei08] L. Seiler, D. Carmean, E. Sprangle, T.
Forsyth, M. Abrash, P. Dubey, S. Junkins, A.
Lake, J. Sugerman, R. Cavin, R. Espasa, E.
Grochowski, T. Juan, and P. Hanrahan. Larrabee:
a many-core x86 architecture for visual
computing. ACM SIGGRAPH, 2008.

[Sem97] S.K. Semwal, and H. Kvanstrom. Directed
Safe Zones and the Dual Extent Algorithms for
Efficient Grid Traversal during Ray Tracing. In
Graphics Interface ’97, pages 76-87, May 1997.

[Wal06] I. Wald, T. Ize, A. Kensler, A. Knoll, and S.
Parker. Ray tracing animated scenes using
coherent grid traversal. In International
Conference on Computer Graphics and
Interactive Techniques, pages 485–493. ACM
Press New York, NY, USA, 2006.

[Wal07] I. Wald, W. Mark, J. Gunther, S. Boulos, T.
Ize, W. Hunt, S. Parker, P. Shirley. State of the
art in ray tracing animated scenes Eurographics
2007 State of the Art Reports, 2007.

[Woo87] J. Amanatides and A. Woo. A fast voxel
traversal algorithm for ray tracing. In
Eurographics ’87, pages 3-10, 1987.

WSCG 2010 Communication Papers 99

WSCG 2010 Communication Papers 100

	!_Short-papers.pdf
	B79-full.pdf

