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Abstract

Most algorithms that reconstruct surface from sample points rely on computationally demanding operations to derive the re-
construction, beside this, most of the classical algorithm use a kind of three-dimensional structure to derive a two-dimensional
one. In this paper we introduce an innovative approach for generating two-dimensional piecewise linear approximations from
sample points in R? that simplify significantly the numerical calculation and the memory usage in the reconstruction process.
The approach proposed here is an advancing front approach that uses rigid movements in the three-dimensional space and a
bidimensional Delaunay triangulation as the main tools for the algorithm. The principal idea is to use a combination of rota-
tions and translations in order to simplify the calculations and avoid the three-dimensional structure used by the most of the
algorithms. Avoiding those structures, this approach can reduce the computational cost and numerical instabilities typically

associated with the classical algorithm reconstructions.

Keywords:
1 INTRODUCTION

Given a set of samples P extracted from a smooth
closed surface S in R3, the reconstruction problem con-
sists in reconstruct F, a piecewise linear approximation
of S, using the points of P. The surface F' must be
equivalent to S topologically and as close as possible
to S.

In the last decades, surface reconstructions have been
focus of extensive investigation not only because the
number of practical applications in engineer and vir-
tual museums but also by the challenges that need to
be faced. In general only the three-dimensional coordi-
nates of the points are known. Despite of lack of infor-
mation about the topology and geometry, several algo-
rithms has been proposed to solve this problem [8, 7, 9].
Some of the existing methods can even ensure a correct
reconstruction as long as an adequate sampling rate is
employed, such as those by Amenta et al. [2, 3]. How-
ever, in spite of considerable theoretical advances many
algorithms fail to accomplish a successful reconstruc-
tion in practical situations.

In general, algorithms in literature use three-
dimensional structures as Delaunay triangulations,
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or a kind of "immersion" three-dimensional space to
derive a two-dimensional reconstruction. This paper
introduces an advancing front approach, called LDT
(Local Delaunay Triangulations) which runs entirely
in two-dimensions. The main idea is to start from a
boundary edge e and use the n nearest neighbors of one
of end points of e to build a two-dimensional Delaunay
triangulation in order to choose the better triangle
to be glued in e. Avoiding those three-dimensional
structures, not only the calculations are simplified,
but also the amount of memory used is considerably
reduced.

Prior to introducing the LDT algorithm, this work
discuss related work in Section 2 and introduce some
mathematical fundamentals required to lay out the pro-
posed approach in Section 3. In Section 4 the recon-
struction algorithm is described. Reconstruction results
with LTD are given in Section 5. Finally, conclusions
and further work are addressed in Section 6.

2 RELATED WORK

Surface reconstruction from sample points has de-
served considerable attention from researchers in both
Computer Graphics and Computational Geometry. The
problem became popular after the paper by Hoppe et
al. [23], who presented an algorithm for reconstructing
the surface as the zero set of a signed distance function.
However, that approach is unable to capture fine surface
details. A related algorithm was developed by Curless
and Levoy [14] that is more effective in capturing
surface details; nevertheless, it relies on additional
information than just the sample points. An alternative



Figure 1: Models reconstructed with LDT algorithm

approaches for reconstructing a surface from the zero
set of a distance function have been proposed. Carr et
al. [13], for example, employ radial basis functions
to approximate the signed distance. Their algorithm,
though computationally expensive, can handle gaps
and capture fine model details. Ohtake et al. [29] and
Alexa et al. [1] use local fitting by employing partition
of unit and moving least-squares approximation to
estimate the approximating surface. The ability of
handling large data sets is a major strength of such
implicit approaches. However, the surfaces produced
do not interpolate the given samples, which may be
undesirable in some applications.

Researchers in Computational Geometry adopted a
different approach towards the problem, some of them
have proposing reconstruction algorithms based on a
Delaunay complex generated from the sample points.
The rationale behind such algorithms is to sculpt the
surface from the Delaunay complex; others have pro-
posed advancing fronts approaches. Boissonnat [11]
proposed the first Delaunay based reconstruction algo-
rithm, which operates by removing tetrahedral and tri-
angles that violate certain geometrical conditions. Un-
fortunately, it is applicable only to surfaces of genus
zero. The a-shape algorithm [17] starts with the De-
launay tessellation of the sample points and removes
all simplices that are not contained in an empty ball of
radius é The o-shape is simple to implement, but it
works properly only on evenly sampled point sets, as
a single « value applies to the whole data set. Teich-
mann and Capps [33] introduced a density scaled a-
shape to handle this problem. Nonetheless, their ap-
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proach requires the normal vectors at the sample points.
The Crust, by Amenta and Bern [2], is the first three-
dimensional algorithm with theoretical guarantees of
reconstruction. For a suitably sampled object it com-
putes a piecewise linear surface approximation that is
homeomorphic and geometrically close to the original
one. The Crust handles non-evenly sampled point sets
and requires little user intervention during reconstruc-
tion. A drawback is that the geometrical calculations
required to compute the Voronoi vertices introduce nu-
merical instabilities. Furthermore, the algorithm has
high computational cost because it builds two Delaunay
tessellations, one to compute the Voronoi vertices and
a second one to generate the Crust. The Cocone algo-
rithm, by Amenta et al. [4], is an elegant and fast sim-
plification of the Crust that holds the same theoretical
guarantees. However, in practical applications it gen-
erates undesirable holes in the reconstructed surface.
This problem has been solved by Dey and Goswami in
the Tight Cocone algorithm [15]. Nonetheless, unlike
its predecessor Tight Cocone does not capture internal
components. Moreover, it requires pole estimates, cell
labeling and, in some cases, triangle size estimates are
also necessary. Power Crust [5] also improves on the
Crust algorithm. It computes a piecewise linear ap-
proximation of a smooth surface employing a weighted
Voronoi diagram called Power Diagram. Power Crust
is also theoretically guaranteed to generate a correct re-
construction under proper conditions, and its computa-
tional performance is superior to that of the Crust. But it
still faces numerical instability problems due to the ge-
ometrical calculations required to construct the Power



Diagram. Kolluri et al. [25] introduced the Eight Crust
algorithm for reconstructing a watertight surface from
noisy point cloud data. Starting from the Delaunay tes-
sellation it uses a variant of spectral graph partitioning
to decide whether each tetrahedron is inside or outside
the original object. The reconstructed surface consists
of the set of triangular faces shared by both internal and
external tetrahedral. The spectral partition makes lo-
cal decisions based on a global view of the model and
therefore the algorithm can ignore outliers, patch holes
and under-sampled regions. The high computational
cost is still a major disadvantage.

The ball pivoting algorithm by Bernardini et al. [9] is
very simple and fast. Three points form a triangle if a
ball of user-specified radius touches them without con-
taining any other point. Starting from a seed triangle,
the ball pivots around an edge — i.e., it revolves around
the edge while keeping in contact with the edge’s end-
points until it touches another point, forming another
triangle. The process proceeds until all reachable edges
have been tried, and then it starts over from another seed
triangle, stopping when all points have been conside-
red. The process can be repeated with a ball of larger
radius to handle uneven sampling densities. A major
advantage of ball pivoting is that it does not compute
the Delaunay tessellation of the sample points. On the
other hand, it is user-dependent and needs the normals
at the samples. Advancing front strategies have been
employed in reconstruction algorithms by several au-
thors, such as Schreiner et al. [30] and [31], but com-
putational implementation of such methods can be quite
intricate.

Edelsbrunner [16] derived an algorithm for fitting a
surface to a set of sample points that relies on classi-
cal Morse theory. Although it relies on a topological
background, topology is employed just to deduce the
geometrical calculations. Another approach that uses
Morse theory, in its discrete version is the work of Bis-
caro et al. [10] which uses a discrete Morse function de-
fined in a three-dimensional Delaunay triangulation to
guide the reconstruction process. Also, the main draw-
back of this work is the three-dimensional structure re-
quired to extract a two-dimensional one.

Finally, Gopi et al.[20] has proposed a similar ap-
proach that uses a local Delaunay triangulation. How-
ever, their approach selects a set of candidate points
which might be possible neighbors of a vertex in the
final triangulation using a kind of sample criteria. They
also compute the local Delaunay triangulation in the
tangent plane without using any kind of simplification
in its computation.

In fact, most of the classical algorithms derive the
reconstruction from a subset of the three-dimensional
Delaunay tessellation. This approach avoid to con-
struct a three-dimensional structure to derive a two-
dimensional piecewise linear approximation of the sur-
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face. Avoiding this immersion space, the algorithm
presented here reduces the amount of ram memory
used in the process as well as number of geometrical
calculations. Another advantage of avoiding a three-
dimensional Delaunay triangulation is absence of sliver
tetrahedrons, which is a classical problem in three-
dimensional triangulations.

3 BASIC CONCEPTS

This Section introduces the basic concepts and the ter-
minology used in the remainder of the text.

A Delaunay triangulation for a set P of points in R”
is a triangulation of DT (P) such that no point in P is
inside the circumsphere of any simplex in DT (P). In
the plane, each vertex has on average six surrounding
triangles; also, this triangulation maximizes the mini-
mum angle. Compared to any other triangulation of the
points, the smallest angle in the Delaunay triangulation
is at least as large as the smallest angle in any other
[21, 18].

Let S be a smooth closed surface in R3, i.e., S is C!-
continuous and divides R? into open solids. A ball B is
said to be empty (with respect to S) if its interior con-
tains no point of S. The set of centers of the maximal
empty balls touching S in at least two points make up
the medial axis of S. The local feature size of a point s
in S, denoted Ifs(s), is the distance from s to the me-
dial axis of S. An important property of /fs(-) is that
Ifs(p) < 1fs(q) + |pq|, where |pq| is the distance be-
tween p and g. A set of points P C S is an r-sample of §
if the distance from any point s € S to the closest point
in P is at most  x [ fs(s). In this case S is said to be r-
sampled; in general, good results in reconstructions are
achieved for r <0.1.

Quaternions (four numbers) are a kind of number sys-
tem that extends the complex numbers. A quaternion
number ¢ = (w,x,y,z), or correspondingly, w—+ix+ jy+
kz, where hold the following identities; 2= j2 =k =
—1,ij=k—ijand w,x,y,z € R [22]. They also provide
a useful mathematical notation for representing and ro-
tations of objects in three dimensions. When compared
to Euler angles, they are simpler to compose and have
an advantage of not present the problem of "gimbal
lock". Also, they are more numerically stable a more
efficient than rotations matrices. To represent a rotation
of an angle 8 around the axe n, a unit vector, is enough
to define the quaternion g = (cos(2),sin(§)n).

This work also need an efficient and effective way
of find the n nearest neighbors of a three-dimensional
point p. To accomplish this, the work of Lin and Yang
[27] was used. Their work offer a high accuracy near-
est neighbor search by their ANN-Tree (Approximate
Nearest Neighbor Tree) which is a tree based structure
that works for arbitrary dimension.

Another important calculation present in this work is
the angles between two vectors. According to Jonathan



Shewchuck [32], given two vectors with the same ori-
gin r and s, the best way of calculate the angle between
r and s is to use the formula tan(0) = %, where A is

the area of the triangle with sides r and s. The compu-
_|rxs|
-2

tation of Ay can be done making A s , where r X s
is the cross product of r and s.

This paper uses the Hausdorff distance to compare
the meshes generated by the LDT algorithm and the
meshes of the classical algorithms. Hausdorff distance
is a generic technique that defines a distance between
two nonempty sets; and has been used as an efficient
tool to evaluate distances between three-dimensional
meshes [6].

In next section, this paper presents details of the al-
gorithm developed in this work.

4 ALGORITHM

The algorithm LDT uses the normal vector at each sam-
ple point. There are several strategies to estimate this
vector, but is important to include, in such estimation,
the impact of the point’s distance. The influence of the
sample points must be inversely proportional to its dis-
tance. This work uses weighted principal component
analysis (WPCA). The weight average of a point p € R
is given as follow:

5wy (pi) pi
Z¥L44
=1 El Wp (pi)

M (p) ey

where n is the number of the nearest neighbors of p,
the function w, (x) specifies the influence of the point x
in point p. According to Levin [26], a good choice is

wp (x) = , where H estimates the local density in

n
p,H=Y @ The 3 x 3 covariance matrix C for a
i=1

point p if given by:
p1—M(p) p1—M(p)
p2—M(p) p2—M(p)
c= : : 2)
Pn-1—M(p) Pn-1—M(p)
Pn—M(p) Pn—M(p)

Let A; < A; < A3 be the three eigenvalues of C, and
ap,0p and o3 the three associated eigenvectors. Jol-
liffe, in his work [24] establish that ot is the direction
of greatest variance in a neighborhood of p, o repre-
sents the direction of second greatest variance and
the direction that minimizes the variance. As the set
of points P is a subset of the surface S, the geometric
interpretation is that op and 3 approximates the main
directions of the tangent plane at p and o approximates
the normal direction.
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Data: A set of samples P C R?
for each p € P do
Approximate the normal vector in p
end
Find a initial triangulation F ;
Store in E the boundary edges of F ;
while E # 0 do
Remove e from E;
if e still is a boundary edge then
f < FindNewFace(e);
F+—FU{f}
Add to E the boundary edges of f;
end

end
return F'

Algorithm 1: Algorithm LDT - Local Delaunay
Triangulation

The main idea in the LDT algorithm is to execute an
advancing front approach to achieve the reconstruction.
This advancing front technique uses a two-dimensional
Delaunay to get the next triangle from a boundary edge.
The pseudo-cod 1 shows the main loop of the algorithm
developed here. In the step 2, the weighted principal
component analysis is used to approximate the normal
vectors in the samples points. The initial triangulation
(step 4 in the algorithm 1) is acquire choosing an ini-
tial point p, projecting its n nearest neighbors in its tan-
gent plane, computing the Delaunay triangulation in the
plane and re-projecting the triangulation in the surface.
The two-dimensional Delaunay triangulation was im-
plemented using the only the first and the second coor-
dinates of the samples. Considering this, the algorithm
must rotate p and its neighbors such that the tangent
plane in p coincide with the XY plane. By doing this
rotation, the projection operation is expressively sim-
plified. The Figure 2 illustrates this initial step, show-
ing a normal vector in an initial point of a paraboloid,
the blue points are the nearest neighbors of the initial
point and the orange plane is the tangent plane where
the neighbors are projected.

The set E store the boundary edges of the triangula-
tion F and can be interpreted as a list of active edges
that guide the reconstruction process. The main loop of
the algorithm is repeated while E is not an empty set.
It is worth to mention that when an edge e is removed
from E, it is possible that e is not a boundary edge any-
more. Also is possible that a new face f returned in the
step 9 of the algorithm 1 has no boundary edges.

The pseudo-code 2 illustrates the procedure to ex-
pand the frontier of F, and is a variation of the proce-
dure to achieve the initial triangulation. The idea is also
to project the neighbors in the tangent plane 7, execute
a two-dimensional Delaunay DT triangulation with the
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Figure 2: a) Set of samples of a 3D object b) Zoon view
of the initial point.

Data: A boundary edge e.

1 Let p be one of the end points of e;

2 Rotate p and its n nearest neighbours to align the
normal in p whith the Z axe and the edge e with
Y axe ;

3 Find p,, the opposite vertex to e;

4 Project in the tangent plane only the vertex p;
such that p, * p; <0;

5 Find DT, a two-dimensional Delaunay
triangulation with the projected vertices ;

6 Find f, the triangle of DT that contain e as a
boundary edge ;

7 return f

Algorithm 2: Algorithm FindNewFace

project points, to choose from DT, the face f that has e
as boundary edge, and re-project f in the surface.

To ensure that the projection of e appear in the local
triangulation, consider f, C F the face of F contain-
ing e, and p, the vertex of f, opposite to e. When the
vertex p, which is one of the end points of e, and its
nearest neighbors are rotate to align the edge e with the
Y axe, the x coordinate of p, is either positive or nega-
tive depending of its relative position. After that, only
the neighbors that has x coordinate with opposite signal
when compared with p, are projected in 7. This proce-
dure is enough to ensure that the projection of e appear
in the boundary of the Delaunay triangulation DT. It
is worth to mention that at this point of the algorithm
(step 4 of the algorithm 2), only the boundary vertex in
the neighborhood of p or vertices that are not contained
in a face are considered to be projected in the tangent
plane 7.

Two steps of a paraboloid reconstruction can be seen
in the Figure 3 a) and b). The distinct face represents
the last face glued in the mesh and the wider edge rep-
resents the first edge in the list E of active edges. In
the Figure 3 c) the complete reconstruction is showed.
The figure 4 exhibit a local Delaunay triangulation’s ex-
ample for a set of sample points, and again, the distin-
guished face is the one captured to be re-projected in
the surface.

Although this algorithm does not need to handle
sliver tetrahedral, which is a very common problem in
sculpturing techniques, it is possible that the algorithm
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a)

' b _
c)

Figure 3:
paraboloid

e

Figure 4: Local Delaunay triangulation to a set of sam-
ple points

a)J s b)"]

Figure 5: Small dihedral angles

Two steps in the reconstruction of a

glue faces with small dihedral angles as is showed in
the Figure 5 The Figure presents two consecutive steps
of the paraboloid reconstruction. However, according
to the work of Mederos et al. [28], the dihedral angle
between two adjacent faces approximates to 7 when
the sample rate increases. To avoid this problem,
a dihedral angle calculation, given by the work of
Jonathan Shewchuck [32], must be done before glue a
new face in the mesh.



4.1 Discussions

There are some crucial points in the LDT algorithm.
The estimation of normal vectors in the samples points
for instance, plays a crucial role in all reconstruction
process (algorithm 1 step 2). Of course that the LDT
algorithm does not have intention of reconstructs arbi-
trary surfaces with arbitrary sampling rate. In order to
achieve a good normal estimation in all samples; is ac-
ceptable that a minimum sampling rate be respected.
However, this is a theoretical study that will be sub-
ject of a future work. Another consideration, is about
the projection effect over the algorithm’s results. Ac-
cording to Amenta’s work [3], for an adequate sample
rate, in general, a r—sampled surface with r < 0.1, the
correct reconstructions lies in a subset of the Delaunay
complex of the samples points. Therefore, respecting
this sampling condition, for an arbitrary sample point
p, its neighbors must lie close to the tangent plane in p;
not causing ample movements in the projection opera-
tion as well.

It is also worth to mention that in the initial triangula-
tion (cod:algorithm step 4) no glue operation is needed.
Therefore, the Delaunay triangulation computed I this
step can be re-projected directly in the output surface.

The next section presents some of results obtain with
the LDT algorithm.

S RESULTS

This section shows some examples of models recon-
structed with LDT algorithm as well as some compari-
sons with classical algorithms in the literature. For the
comparisons was used in-house implementations, based
on CGAL [12], of the Crust and Power Crust developed
as part of a master dissertation project [19]; the TSR im-
plementation was part of a previous work [10] and the
original implementations of Cocone and Tight Cocone
were kindly provided by Tamal Dey. The reconstruc-
tions were performed on a dual Pentium 4 with 3 GHz
and 1GB RAM.

The figure 6 give an idea of the quality of the mesh
generated by the algorithm LDT in a reconstruction of
a bitorus. The Figures 7 and 8 show additional recon-
structions examples, the dragon model is rendered with
a jade texture and the hand model with a stone texture,
and the Figure 10 shows the Lucy model reconstructed
from a large data set (921085 points).

In the table 1 the usage of memory, in Kbytes, of
some classical algorithm is exhibit. The algorithms are
Crust, Power Crust, Cocone Tight Cocone, TSR and
that of LDT, for a set of standard sample sets, identi-
fied in the top Table line (models shown were gener-
ated with LDT). The Crust and the Power Crust Algo-
rithm produces no output to the Isis model, the fourth in
the table. The Figure 9 represents the running times, in
seconds, of three traditional reconstruction algorithms,
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Figure 6: Mesh generated with LDT algorithm

Figure 7: Dragon Model generated with LDT algorithm
and rendered with a jade texture

Figure 8: hand Model generated with LDT algorithm
and rendered with a stone texture

Cocone, Tight Cocone , TSR and LDT. As the table 1
reveal, the LDT algorithm, due its optimizations and its
advancing front approach, lean to use less memory than
the others. One observes that the running times were
improved, particularly when the models are bigger than
50,000 points. One can see in Figure 9 that the LDT al-



gorithm is faster than the classical algorithms compared
with it, especially when reconstruct larges data sets.

v 8w i

9697 pts 35947 pts 54707 pts 187644 pts
Cr 21.90 53.13 72.21 No output
PC 41.94 79.50 110.54 No output
Co 15.10 51.24 78.98 265.32
TC 19.20 66.10 101.68 343.50
TSR | 20.65 71.28 111.72 376.19
LDT | 12.48 38.75 59.17 192.22

Table 1: Usage of memory in k bytes to reconstruct the
models shown Legend: Cr - Crust; PC - Power Crust;
Co - Cocone; TC - Tight Cocone; TSR - Topological
Surface Reconstructor; LDT - Local Delaunay Trian-
gulation

The table 2 exhibits the Hausdorf distances between
the LDT’ meshes and meshes generated by other clas-
sical algorithms (cocone, Tight-cocone and TSR). The
distances are quite small; suggesting that the output
meshes are very similar.

2 g [
w 8w A
9697 pts 35947 pts 54707 pts 187644 pts
Co 0.003235 | 0.001485 | 0.213477 | 0.000561
TC 0.002139 | 0.001181 | 0.446078 | 0.000525
TSR | 0.002480 | 0.001018 | 0.006002 | 0.000074

Table 2: Hausdorff distance between the meshes gen-
erated with LDT algorithm and the follow ones : Co -
Cocone; TC - Tight Cocone; TSR - Topological Surface
Reconstructor

6 CONCLUSION AND FUTURE
WORK

This work introduces an innovative approach, called
LDT - Local Delaunay Triangulation, to reconstructing
piecewise linear approximations of surfaces in R3 that
are defined by set of samples. The approach present
here is an advancing front approach which make use of
atwo-dimensional Delaunay triangulation to choose the
adequate triangle to be glued in the mesh. The main ad-
vantage of this kind of technique is to avoid the use of
three-dimensional structures when the goal is to derive
a two-dimensional one. Principal component analysis
is used to estimate the normal vector in the samples
points, and rigid movements are used to optimize the
projections operations.

By avoiding those three-dimensional structures, the
LDT algorithm improves not only the running times,
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9697 pts 35947 pts 54707 pts 187644 pts
Ay )
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Figure 9: Running time in seconds to reconstruct the
models shown Legend: Co - Cocone; TC - Tight Co-
cone; TSR - Topological Surface Reconstructor; LDT -
Local Delaunay Triangulation

Figure 10: Lucy model reconstructed with LDT

but also the amount of memory used in the reconstruc-
tion process, which enable it to reconstruct models with
considerable quantity of points, as showed in the lucy
model (Figure 10).

Unfortunately, was not possible to compare the LDT
algorithm with the one developed by Gopi et al.[20],
which is another two-dimensional approach that uses
Delaunay triangulation. Basically, the Gopi’ approach
uses a sample criteria to select the candidate points in
computation of the Delaunay triangulation. The com-
parison of the two techniques must be subject of a fu-
ture work.

Another step to be analyzed is the possibility of sub-
stitute the two-dimensional Delaunay triangulation by
another kind of calculation, which cam makes this algo-
rithm even faster. Another possibility for future work is
to produce theoretical guarantees of the reconstruction,
that is, to investigate for which value of r the LDT pro-
duces a correct reconstruction of a r—sampled surface.
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