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ABSTRACT

We present a novel approach to handling frictional contacts for deformable body simulations. Our contact model allows to sep-
arate the contact area into a set of detached contact regions. For each of them a separate mixed linear complementarity problem
(MLCP) is formulated. Parallel processing of these independent contact regions may considerably improve the performance of
the contact handling routine. Moreover, the proposed contact model results in sparse matrix formulation of the corresponding
MLCP in the individual contact regions. For solving the MLCPs we propose an iterative method which combines the projected
conjugate gradient approach and the projected Gauss-Seidel method.
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1 INTRODUCTION
Contact handling of interacting solid objects is a com-
mon research topic, for instance in computer animation
or surgical simulation. Physically plausible responses
to collisions and contacts potentially enrich the anima-
tion, especially if frictional effects are taken into ac-
count. Contact response methods aim at computing a
set of contact forces that prevent the simulated objects
from interpenetrating, while taking into account fric-
tion.

Several approaches have been proposed in the field of
computer graphics and simulations to handle contacts.
The majority of these can be split into two classes:
penalty-based and constraint methods (note that fur-
ther approaches exist, e.g. impulse methods). Penalty
methods compute virtual spring forces that drive the
interacting objects apart. The values of these forces
are usually considered to be proportional to a geomet-
rical measure of the interpenetration of the interact-
ing bodies [HTK∗04, KMH∗04, HVS∗09]. Therefore,
penalty based methods not only allow interpenetrations
but essentially depend on them. Despite the lack of
physical plausibility caused by this simplified contact
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model, they are still widely used because of the sim-
plicity of their implementation and high computational
efficiency.

In contrast, constraint methods aim at following the
geometrical restrictions of non-penetration of the inter-
acting objects based on their relative position and ori-
entation [Bar89, DAK04, PPG04, Erl07]. The resulting
system of equations can be solved by a large variety
of methods among which the most preferable are fast
iterative procedures. However, for complex systems
which consist of many interacting objects the computa-
tion time of this approach becomes quickly prohibitive.
Therefore, much effort is made to develop efficient al-
gorithms [Bar96, GBF03, KEP05, KSJP08, OTSG09,
HVS∗09].

Contributions. We propose a new approach to re-
solving contacts for deformable objects by splitting the
contact area into separate, independent regions. The
deformation model together with the time-integration
scheme we use allows the separate treatment of de-
tached contact regions. Handling a number of local
contacts instead of a single global contact system gives
a significant gain in performance even without using
parallel computation techniques. The proposed contact
model results in a simple diagonal mass matrix as well
as sparse constraint matrices.

In addition, we propose a novel iterative scheme
for the mixed contact linear complementarity problems
which combines a projected conjugate gradient method
with the widely used projected Gauss-Seidel method.
Although, the performance in our current implementa-
tion is not better than for the normal projected Gauss-
Seidel method, our scheme demonstrated more stable
convergence behavior and therefore was more reliable.
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2 RELATED WORK

Constraint methods are widely used in computer
graphics as well as in computational mechanics due
to their physical correctness. The theoretical basis
of the underlying mechanics and related contact
problems are thoroughly discussed by Stronge [Str90]
and Wriggers[Wri02]. Classical works in con-
straint based dynamics in computer graphics are by
Baraff [Bar89, BW92] and Witkin [Wit97].

Constraint based approaches for contact problems
usually employ Signorini’s law [WP99] of unilateral
contact resulting in the formulation of the contact lin-
ear complementarity problem (LCP) [AP97]. Lagrange
multipliers belong to the most widely used solution ap-
proaches for this kind of problems [WP99]. The LCP
formulation in contact handling is used for obtaining
contact responses between rigid bodies [Cat05, Erl07]
or deformable objects [DAK04, DDKA06, OG07], as
well as in cloth simulations [VMT97, VT00, HB00].

General approaches to the LCP solution can be
split into two classes: direct and iterative meth-
ods [CPS92]. Although direct methods,e.g. Lemke’s
algorithm, Danzig’s method, and other pivoting
techniques [Cot90, CPS92, Mur88] are designed
to give precise solutions, they are computationally
demanding and slow. Therefore, in computer graphics
applications almost exclusively iterative methods are
used. Iterative methods for the LCP follow the scheme
similar to the one used to solve a linear system of
equations [CPS92, Mur88]. Therefore, projected
versions of well-known iterative methods such as
Jacobi, successive overrelaxation, and its special
case – Gauss-Seidel – are used [Cat05, Erl07]. They
work very well for rigid body simulations, however,
applied to deformable body collisions they become
computationally very expensive. Attempts to find a
compromise were presented in [PPG04, DDKA06].

Many researchers are working on optimization and
improvement of the performance of these basic itera-
tive methods in different application areas. Exploit-
ing the sparsity of the matrices involved in computa-
tions is one of the basic optimization approaches which
works for almost any underlying model of simulated
objects [GL89]. Other more sophisticated algorithms
consider the LCP formulation tightly linked with the
dynamical model. Baraff and Witkin employed im-
plicit integration methods for large time step simula-
tions of cloth [BW98]. Otaduy et al. [OTSG09] pro-
posed an iterative solver that includes two nested relax-
ation loops (based on the constraint anticipation intro-
duced in [Bar96]).

Using the conjugate gradient method for general LCP
was proposed by researchers in the area of computa-
tional mechanics, like Renouf and Alart [RA05], and
Li et al. [LNZL08]. We explore the combination of

the projected conjugate gradient approach with the pro-
jected Gauss-Seidel method.

3 DEFORMABLE CONTACT MODEL
AND MLCP FORMULATION

In simulations of scenes with many interacting de-
formable objects, numerous pairs of objects or parts of
the same object may be simultaneously in contact. The
deformable nature of the simulated material provides
non-instantaneous spreading of the contact forces from
the contact area into the physical body. Therefore,
simultaneous but spatially separated contacts may be
considered independently as their effect spreads over
the objects in contact during future simulation time
steps. This is in contrast to rigid body simulations
where all contacts have to be taken into account to
correctly compute the reaction of the object. Following
this reasoning we take advantage of considering spa-
tially separated contacts between deformable objects
independently. This should speed up the contact
response computations in the simulations.

In our simulations deformable objects are repre-
sented as tetrahedralized meshes with mass points
located in the nodes. Each object has a triangulated
surface and contacts are treated between basic sur-
face elements: point-triangle and edge-edge pairs.
Point-edge and point-point contacts are treated as
special cases of point-triangle contacts. For the sake
of simplicity we omit edge-edge contacts and consider
only point-triangle pairs in the further discussion.

Constraints Formulation

In the absence of friction the only constraint for the
point-triangle collision is that contact points cannot
penetrate planes of the corresponding contact triangles.
Mathematically this can be described by the condition
of non-negativity of the functionC(p0,p1,p2,p3) of the
coordinates of the corresponding mass points.

C(p0,p1,p2,p3) =−((p1−p0)× (p2−p0)) · (p3−p0)
(1)

The time derivative of this function gives the Jacobian
matrix of the normal contact constraints.

Ċ(p0,p1,p2,p3) = Jn ·u (2)

whereu =
[
vT

0 vT
1 vT

2 vT
3
]T is a generalized velocity vec-

tor of the corresponding points.
The principle of virtual work requires orthogonality

of the constraint force and the constraint. Therefore, in
the frictionless case for our model the constraint force
is defined as

fn = JT
n ·λn (3)

where the Lagrange multiplierλn is to be found.
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According to Signorini’s contact law [WP99] at a
unilateral contact the following compementarity condi-
tions have to be satisfied.

wn = Jn ·u≥ 0, λn≥ 0, wn ·λn = 0 (4)

The conditions (4) pose a linear complementarity
problem (LCP) for a frictionless unilateral contact.

In general, ifN mass-points are involved in contacts
with K constraints, the Jacobian of the whole system is
easily assembled from the Jacobians of each individual
constraint. Therefore, the global Jacobian consists ofK
lines of blocksJ0

q, J1
q, J2

q andJ3
q, whereq = 1, . . . ,K.

Note, that in each line only the entries corresponding
to the mass-points involved in theq-th contact are non-
zero. This way the Jacobian of the contact system has
the dimensionK×3N.

Separation of the Contact Regions
The time integration scheme of the simulations uses the
net force of the internal, global (e.g.gravitational), and
contact forces to compute position and velocity of each
simulated contact point at the next time step. Thus, a
force applied to a particular mass point in the current
time step will influence its neighbors only in the next
time step through internal deformation.

The nature of the time-integration scheme and the
discretized model of simulated objects allows us to sep-
arate two contact areas if they do not have any common
simulated mass points simultaneously involved in con-
straint equations of both contacts. As will be shown
later, this way the amount of computations becomes
significantly smaller and the convergence rate for each
individual contact problem increases.

The separation of the contact areas is performed by
analysis of the constraint matrixJn which consists of
the rows related to the normal contact constraints only.
The elementjki of the matrix is non-zero if and only
if the i-th mass point is involved in thek-th constraint.
Therefore, the area separating algorithm efficiently ex-
tracts sets of rows such that each pair of the sets does
not have any non-zero elements in the same columns
simultaneously. In terms of the contact graph of the
current configuration which is encoded by the Jacobian,
the region separation algorithm aims at finding a set of
disconnected subgraphs.

Currently, a basic sequential algorithm is used to as-
sign each contact to a contact region. Contacts corre-
sponding to a line of the JacobianJn are assigned to
a particular region, such that any two different con-
tact regions do not have contacts that share a simulated
mass point. Thus, contacts that involve the same mass
point belong to the same contact region. The outline
of the contact region separation is presented in Algo-
rithm 1. Here,Contact[i][ j] contains the index of the
j-th point on thei-th contact,i = 1, . . . ,K, j = 1, . . . ,4
and{Contact[i]} is the set of points that belong to the

i-th contact.Area[i] contains the index of the detached
region to which the pointi belongs. Note that more
advanced,e.g. parallel, algorithms could be applied in
this stage. Moreover, it should be mentioned that we
consider contacts of deformable objects which usually
are maintained over a number of successive simulation
time steps, even in dynamic scenes. Thus, information
about contact regions could be stored and updated on
successive time steps as required.

Algorithm 1 Contact region separation

nextIndex← 1
CheckedPointSet⇐ /0
for i = 1 toK do

if Area[i] not assignedthen
Area[i]← nextIndex++
CheckedPointSet⇐{Contact[i]}
for j = i +1 toK do

if Area[ j] is assignedthen
continue

endif
if {Contact[ j]}∩{Area[i]} 6= /0 then

Area[ j] = Area[i]
endif

endfor
else

for l = 1 to 4do
if Contact[i][l ] /∈CheckedPointSetthen

for j = i +1 toK do
if Area[ j] > 0 then

continue
endif
if {Contact[ j]} ∩ {Area[i]} 6= /0
then

Area[ j] = Area[i]
endif

endfor
CheckedPointSet⇒Contact[ j][l ]

endif
endfor

endif
endfor

Including Frictional Contact
Classically the frictional part of the contact force lying
in the plane of the contact triangle is introduced having
two components along two orthogonal vectorse1 and
e2 [Bar94]. In the frame of our contact model the part
of the Jacobian responsible for friction is[

Je1
Je2

]
=

[
−eT

1 α eT
1 β eT

1 γ eT
1

−eT
2 α eT

2 β eT
2 γ eT

2

]
(5)

where(α,β ,γ) are barycentric coordinates of the con-
tact point at the time of collision.
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Coulomb’s friction model is often approx-
imated by a 4-sided [Bar94] (in general,k-
sided [KEP05, DDKA06]) pyramid with faces
parallel to the orthogonal vectorse1 and e2. This
friction model leads to the following conditions to be
satisfied at the contact.

Jei ·u > 0 ⇒ λei =−µλn

Jei ·u < 0 ⇒ λei = µλn

Jei ·u = 0 ⇒ λei ∈ [−µλn; µλn]
(6)

wherei = 1, 2 andµ is the friction coefficient.
In addition, we also tested a friction cone model

which more precisely follows Coulomb’s law. We
project the solution onto the friction cone domain. If
the tangential component of the contact force is larger
than µλn then we scale the friction components to fit
the friction cone without changing the direction of the
friction force.

||λe1e1 +λe2e2||> µλn⇒

 λe1←
λe1 ·µλn

||λe1e1+λe2e2||

λe2←
λe2 ·µλn

||λe1e1+λe2e2||
(7)

For a single point-triangle frictional contact the com-
plementary conditions (4) together with (6) or (7) have
to be satisfied. The general Jacobian of the system is
built in the same way as in the frictionless case. The
dimension of the matrix is 3K×3N.

Dynamics Formulation
After separating the contact area into detached contact
regions we formulate and solve the dynamic equations
for each of the regions independently. In the following
discussion we consider a part of the simulated system
which corresponds to a particular contact regionC. This
part consists of the mass points involved in the contacts
of that specific region. The simulated system obeys the
following equation of motion.

MC ·uC = JT
C ·λC + fC (8)

where MC is the mass matrix of the system,
λC = (λn, j1 λe1, j1 λe1, j1 . . .λn, jk λe1, jk λe1, jk)

T – the
generalized vector of contact forces for the region,
and fC = (fT

1 fT
2 . . . fT

l )T – the generalized vector of
non-contact forces acting on each mass point.k and l
are the number of constraints and mass points of the
contact regionC, respectively.

We employ the forward Euler integration scheme to
relate the unknown general velocity at timet + ∆t to
the known velocity at the previous time stept. For de-
formable object collisions we employ Newton’s rule for
changes of the normal component of velocity after the
collision [Str90],i.e.

vre f lected
vincident

= κ.

uC(t +∆t) = (1+κ)uC(t)+M−1
C JT

C ·λC∆t +M−1
C · fC

(9)

By pre-multiplying (9) withJC we connect the dy-
namics equation with the complementarity conditions
(4) and (6) discussed above.

wC = JC ·uC(t +∆t) = A ·λC +b (10)

where

A = JCM−1
C JT

C (11)

b = (1+κ)J ·uC(t)+JC ·M−1
C · fC (12)

Note, that we included the factor∆t into λC and there-
fore λC is no longer the force but the impulse vector.

The above equations (11) and (12) together with gen-
eral complementarity condition (6) or (7) constitute the
MLCP that has to be solved for the values of the contact
force componentsλC.

Unlike the usual formulation of the dynamics equa-
tions we explicitly consider only mass-points involved
in each contact. Therefore, the generalized velocity
vector does not include the angular velocity of the con-
tact triangle and the mass matrix does not include 3×3
blocks corresponding to inertia tensors. This formula-
tion provides a strictly diagonal form of the matrixM
allowing optimized matrix multiplications.

Each line of the constraint matrixJC consists of four
3×3 blocks. However, if the matrixJC is stored in a
suitable reduced format [GL89, Cat05], the calculations
of JCM−1

C JT
C can be done very efficiently in linear time.

4 ITERATIVE METHODS FOR LCP
Here, we leave aside the underlying dynamics and con-
sider iterative methods for solution of the LCP(A,b)

A ·λ −b > 0
λ > 0

(A ·λ −b) ·λ = 0
(13)

Projected Gauss-Seidel Iterative Method
A general splitting scheme for iterative LCP solving is
described in [CPS92]. By splitting the matrixA of the
LCP(A,b) in different ways, iterative schemes similar to
those for systems of linear equations are obtained. The
projected Gauss-Seidel method is derived by splitting
A = L +D+U, whereL , D andU are the strictly lower,
diagonal, and strictly upper matrix components ofA.

According to the iterative scheme for solving the
LCP(A,b) [CPS92] each iteration cycle consists of two
steps. In the first a new approximation of the solution is
found

λk+ 1
2

= (L +D)−1 · (b−U ·λk) (14)

In the second step this approximation is projected
onto the set of feasible solutions.

λk+1 = max
{

0, λk+ 1
2

}
(15)
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Although, the projected Gauss-Seidel method
demonstrates only first-order convergence, its compu-
tational efficiency and implementation simplicity have
made it a common choice for many constraint based
collision response methods in computer animation,
e.g.[Cat05, DDKA06, Erl07, OTSG09].

Projected Conjugate Gradient Method
The conjugate gradient method [She94] can also be
adapted for solving the LCP(A,b) [RA05]. The orig-
inal conjugate gradient method has been widely used
for optimization problems as well as for the solution of
systems of linear and non-linear equations. For a linear
system the method converges after at mostn iterations,
wheren is the order of the system. If the method is
applied to a non-linear system it gives successive ap-
proximations and is stopped if a particular condition is
fulfilled, e.g. the residualr i+1 is less than some prede-
fined threshold. The general scheme of the conjugated
gradient method as well as its detailed analysis can be
found in [She94]. Nevertheless, some specific remarks
related to the application to LCP are given below.

The expression for calculating the conjugate direc-
tion

di+1 = r i+1 +βi+1di (16)

usually takes the value of the coefficientβi+1 from
Fletcher-Reeves’ formula.

βi+1 =
rT

i+1r i+1

rT
i r i

(17)

However, another possible approach is to calculateβi+1
using Polak-Ribiere’s formula.

βi+1 =
rT

i+1(r i+1− r i)
rT

i r i
(18)

Analysis of both approaches in our computations
showed that the Fletcher-Reeves method converged if
the initial approximation was sufficiently close to the
solution, whereas the Polak-Ribiere method sometimes
resulted in an infinite loop. However, the latter often
converged faster.

To adapt the conjugate-gradient algorithm to our spe-
cific MLCP(A,b) formulation, we add an additional
projection step (15) to the general scheme. Another im-
portant modification we introduce concerns the resid-
ual. Given the current solutionλi+1 of the MLCP(A,b)
we denote the set of feasiblew = A ·λ −b asW(λi+1).
Since we are interested only in solutions lying in the
feasible domain, we modify the intermediate residualr̃
by projecting its value onto the setW(λi+1).

r i+1 = Proj(r̃ i+1,W(λi+1)) (19)

This way, the direction for searching the solution on the
current iteration step is lying in the feasible domain.

Moreover, if the current solution is close to the real so-
lution then the projected residualr i+1 is close to zero,
which may not be the case forr̃ i+1.

We did not carry out a rigorous theoretical investiga-
tion of the convergence of the obtained projected con-
jugate gradient-like method, but we thoroughly tested
it experimentally. The complete algorithm for the pro-
jected conjugate gradient method is summarized in Al-
gorithm 2.

Algorithm 2 Projected conjugate gradient algorithm

d0← b−A ·λ0
r0← b−A ·λ0
for i = 0 to imax do

αi ←
rT
i r i

diAd i

λ̃i+1← λi +αiλi

r̃ i+1← r i−αi ·A ·di

λi+1← Projcontact(λ̃i+1)
r i+1← Proj(r̃ i+1,W(λi+1))
if error is small1 then

exit
endif
if Polak-Ribierethen

βi+1←
rT
i+1(r i+1−r i)

rT
i r i

else
βi+1←

rT
i+1r i+1
rT
i r i

endif
di+1← r i+1 +βi+1di

endfor

Combined Iterative Method and Termina-
tion Criteria
In order to improve the iterative search for the solu-
tion of the MLCP(A,b) we combine the projected con-
jugate gradient and the projected Gauss-Seidel meth-
ods. One of the advantages of using the projected con-
jugate gradient is its fast convergence rate during the
first iteration steps. The conjugate direction is chosen
for optimal convergence, and therefore this method has
a clear advantage over the projected Gauss-Seidel ap-
proach at this stage. However, the convergence rate
decreases while approaching the solution and the pro-
jected Gauss-Seidel method becomes more preferable.
Following this consideration we perform several steps
of the projected conjugate gradient method and then use
the resulting solution as the initial approximation of the
projected Gauss-Seidel algorithm.

As termination criteria of the iterative loops we check
the values of the successive approximations of the so-
lution ||λi+1−λi || as well as the value of the projected
residual||r i+1||. If either||λi+1−λi || ≤ ε or ||r i+1|| ≤ δ

1 The details of the exit criterion are discussed in the following section.
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is fulfilled then the corresponding iterative loop is ter-
minated. The error thresholdsεcg, δcg andεgs, δgs for
the conjugate gradient and Gauss-Seidel iterative loops
respectively can be set to different values (obviously,
εcg≥ εgs andδcg≥ δgs).

Taking into account the physical meaning of the solu-
tion λ – in our case this is the contact impulse or force
– it is reasonable to require a certain precision for each
component ofλ which is related to the accuracy of the
computer simulation. Therefore, along with above cri-
teria we also use

||λi+1−λi ||∞ ≤ ε∞ (20)

as well as
||r i+1||∞ ≤ δ∞ (21)

In some cases the convergence rate of both iterative
methods is slow. This is presumably a consequence of
the numerical properties of the matrixA and the lim-
ited numerical accuracy. For instance, for the projected
Gauss-Seidel the convergence rate is small if||L + D||
is close to 1 [CPS92, Mur88]. In such cases the suc-
cessive approximations of the solution may oscillate or
even diverge. In order to prevent infinite loops we re-
strict the number of iteration within both phases of the
combined method. The termination of the projected
conjugate gradient loop is enforced after 2n iterations,
wheren is the size of the system in consideration, and
the projected Gauss-Seidel loop is halted after a prede-
fined number ofNmax iterations.

In order to improve the precision in cases of forced
termination we store the best solution approximation
showing the smallest residualr . The value is used as
the outcome of the corresponding phase of the method,
if it is better then the last approximation. Thus, we guar-
antee that the best approximation obtained in the conju-
gate gradient phase is taken for initializing the Gauss-
Seidel phase. The final solution will correspond to the
smallest residual among all of the obtained approxima-
tions. It should also be noted that according to the ex-
perimental results the portion of the cases with poor
convergence,i.e. cases for which the iterative process
did not terminate within the maximum number of iter-
ations, is quite small – ranging from 0 to 0.9%. On the
contrary, using a pure projected Gauss-Seidel method
for the same simulating scenarios gave up to 3% cases
with poor convergence.

5 RESULTS
In order to compare the performance of the proposed
method for separated and non-separated contact treat-
ment, several scenes were simulated.

Separated vs. Non-Separated Contact Re-
gion Handling
A scene of balls breaking a pyramid of bowling skit-
tles with friction was used to test methods in a dynamic

Figure 1: Static scene: Number of contacts K vs. com-
putation time for separate (above) and non-separate (be-
low) contact handling (the latter plot can be omitted)

simulation without any resting states because of the ab-
sence of gravity. A scene of balls stacking in a bucket
under gravity was used to test the methods in mostly
static conditions. The number of contacts varies from 1
to ∼ 45 for the dynamic scene and from 1 to∼ 80 for
the static scene. Note that all objects in the simulations
are (slightly) deformable.

The advantage of the separation of the contact area
into independent regions becomes apparent for MLCPs
with larger numbers of contacts. The benefit is even
present if the processing of the independent regions
is performed sequentially for a method of complexity
O(n2). The average total computation time is∼ 2.5 – 3
times less for the dynamic, and∼ 7 – 8 times less for
the static scene.

Figure 1 shows the dependency of the computation
time on the number of contacts. In case of non-
separated contact handling the time increases much
faster than for separated contact handling. Moreover,
since the independent contact regions in the latter
approach have similar sizes, an almost linear growth
is obtained. Note that a further possible improvement
could be achieved by processing the detached contact
regions in parallel.
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Friction Handling
Simple static scenes of deformable objects placed on an
inclined plane were used to verify the correctness of the
friction handling. Experiments showed that the critical
inclination angle of the plane corresponds to the friction
coefficient between objects and the plane with high ac-
curacy. Moreover, the number of separate contact areas
between objects and the plane had no influence on the
result. It was the same for global and separated contact
area handling.

Figure 2: A table on the inclined plane

When simulating the sliding of a deformable plas-
tic table on a plane (Figure 2), even a typical behav-
ior found in reality could be reproduced. If the friction
coefficient exceeds the critical value for the given in-
clination, a deformable table still can move downwards
with its legs sliding in turns (i.e. the front legs slide
while the back ones remain still, then the front legs
stop and the deformation tension transfers to the back
legs which start to slide until the opposite deformation
tension cause them to stop and the cycle repeats). This
phenomenon is a distinctive feature of certain objects
made of plastic and can be easily observed in reality.
It also has been described in related work dealing with
contact friction [KSJP08].

Finally, both friction models were tested in more
complex scenes – the 4-sided pyramid and the friction
cone. The combined MLCP solving method demon-
strated a considerably better performance when using
the friction cone model – the convergence time de-
creased by∼ 20−40%.

6 DISCUSSION AND CONCLUSION
We have presented an algorithm for the separation of
detached contact regions in a simulated scene consist-
ing of deformable objects. The experimental results
demonstrated considerable gain in performance by us-
ing this approach. Moreover, the separate handling of
the contact regions allows further acceleration by paral-
lelization.

The presented contact model is based on simple con-
straint conditions and directly considers the mass points
of the discretized deformable objects. This approach
provides a simple diagonal mass matrix of the system
which does not contain blocks related to the inertia ten-
sors unlike most of previously proposed models. The

simplicity of the mass matrix combined with the spar-
sity of the constraint matrix potentially allows efficient
implementation of matrix computations by employing
known patterns ofM and J. Therefore, no auxiliary
routines or modifications,e.g. iterative constraint antic-
ipation [OTSG09], are needed.

We also presented an iterative method for the so-
lution of the contact MLCP which combines the pro-
jected conjugate gradient and the widely used projected
Gauss-Seidel methods.
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