

Interactive Stipple Rendering for Point Clouds

Naoyuki Awano

Osaka Institute of Technology
1-79-1, Kitayama
Hirakata, Osaka

 Japan(573-0196)

awano@is.oit.ac.jp

Koji Nishio

Osaka Institute of Technology
1-79-1, Kitayama
Hirakata, Osaka

 Japan(573-0196)

nishio@is.oit.ac.jp

Ken-ichi Kobori

Osaka Institute of Technology
1-79-1, Kitayama
Hirakata, Osaka

 Japan(573-0196)

kobori@is.oit.ac.jp

ABSTRACT
Non-photorealistic rendering has been attracting attention in the field of computer graphics. A common approach
to artistic rendering is using a shape model which utilizes mesh data. In recent years, the use of point clouds as
shape models has increased due to the rapid development of 3D-scanners used to create them. Correspondingly,
there has been an increase in the research on point clouds. We propose a stipple rendering method as a type of
artistic rendering for point clouds, based on a hybrid image/object space. First, we eliminate hidden points based
on an image space. Next, we apply a novel shading method to the visible points based on an image space. Lastly,
we apply the above two results to the input point cloud. We implement the proposed method using a graphics
processing unit to accomplish the interactive rendering. The experimental results show that we can achieve
shading and shadowing interactively.

Keywords
Computer graphics, non-photorealistic rendering, stippling, point cloud, and graphics processing unit.

1. INTRODUCTION
Non-photorealistic rendering (NPR) has become a
major focus for research in the field of computer
graphics, because it is an effective conveyor of
geometric features. Considerable artistic rendering
has been proposed using a 3D-shape model utilizing
mesh model [Zan04][Sat04][Lak00][Say06]. A mesh
model is suggested because it has a topological data
structure that can be used to extract features.
However, the mesh model must first be constructed
from point clouds before any suggested methods can
be applied to it.
Over the past few years, point clouds have attracted
attention as a new shape model, because they can be
easily created using 3D-scanners, which have seen
rapid development lately. Correspondingly, there has
been an increase in the research on point clouds
[Pau03][Pfi00] including NPR studies.
For example, Zakaria [Zak04] proposed a hybrid

image/object space method of interactive silhouette
rendering. It can also do stipple rendering or user-
drawn strokes on point set surfaces. Runions [Run07]
proposed a novel rendering method for point clouds.

photorealistic or non-photorealistic representations.
Furthermore, it achieves NPR interactive silhouette
rendering utilizing ribbons only. Rosenthal [Ros08]
proposed an image space rendering method using a
graphics processing unit (GPU). It is mainly used for
photorealistic representations, and optionally for non-
photorealistic representations. In addition, it can
render silhouettes on photorealistic representations,
and accordingly enables conspicuous representation.
In this paper, we propose an NPR method of stippling
using a point cloud without normal vectors. We
selected stippling because it is suitable for point
clouds, which consist of points only. First, we
eliminate the hidden points based on the image space.
Next, we apply a new shading method to the visible
points based on the image space; moreover, we can
control the degree of shading. In addition, we
implement all of the methods using a GPU to
accomplish interactive rendering.

2. STIPPLE RENDERING
Stippling is an artistic rendering method which uses
points only, and achieves shading by changing the
density of the points. To get results for stippling

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.

WSCG 2010 Communication Papers 193

using a point cloud, we limit the background color to
white and color all the points black. The input point
cloud our method uses is evenly distributed without
normal vectors and insufficiency.
Figure 1 shows the results of applying general
shading to the mesh model. Figure 1(b) is the result
of applying diffuse reflection to Figure 1(a). Figure
1(c) is the result of applying specular reflection to
Figure 1(b). Typically, there are two steps to general
shading; diffuse and specular reflection. Therefore,
we apply our method, which also consists of diffuse
and specular reflection, to the input point cloud. To
get an effect similar to diffuse reflection, we thin out
some of the points from Figure 2(a) as shown in
Figure 2(b). In addition, we omit some local points
for specular reflection as shown in Figure 2(c).

(a) (b) (c)

Figure 1. Shading; (a) original; (b) diffuse; (c)
specular.

(a) (b) (c)

Figure 2. Shading using our proposed method.
Our method consists of four steps, which are outlined
in Figure 3, and we implement all the methods using
a GPU to accomplish interactive rendering.
Step 1) Creating a texture to eliminate the hidden
points from the point set surfaces.
Step 2, 3) Creating textures for diffuse and specular
reflections so that we can obtain similar effects.
Step 4) Applying the three textures applied to a point
cloud and obtain the result.

2.1 Hidden points texture
In general, if we use the mesh data as input shapes,
the back faces are eliminated from the front faces
utilizing a Z-buffer. However, point clouds have
points only, so the points on the back faces are not
eliminated even if we apply a Z-buffer. Therefore, we
apply following method so that we can apply the Z-
buffer to eliminate the hidden points.
First, we place a texture plane at a viewpoint on the
GPU at a size greater than the screen resolution. All
points are then projected onto the texture plane. In
Figure 4(a), the depth value of point A is 2, point B

Figure 3. Outline of our method.

is 4, and point C is 3. So, each pixel has the smallest
depth value of all the points which are points
projected onto it. Next, as shown in Figure 4(b), in
order to eliminate the hidden points in the texture
plane, we store each depth value into the neighboring
pixels, which also have the smallest depth value.
After that, we apply the results of the texture plane to
the point cloud; see Section 2.4.
However, there are cases where the hidden points on
the back faces are not eliminated from the texture
plane by the above process. In such cases, we repeat
the above process until the hidden points are
eliminated from the texture plane.
When B (Figure 4(b)) is eliminated from the texture
plane, other points in high density parts of the texture
plane also tend to be eliminated. As a result, too
many points are eliminated from a high-density point
cloud.

Figure 4(a). Projection onto a texture plane.

Figure 4(b). Storing the depth values into 8

neighboring pixels.

Display

GPU

Point Cloud

Determining drawing points

Texture for diffuse reflection

Texture for hidden points

Texture for specular reflection

depth

depth

WSCG 2010 Communication Papers 194

Hence, instead of storing the same depth value into
the surrounding pixels, we store a slightly larger
depth value, as shown Figure 5, so as to avoid cases
where extra points are eliminated. In fact, if we
assume that the maximum norm in all points is 1.0,
we set the larger depth value is 0.05, which value was
defined by our implementation. The final result of the
hidden points texture is shown in Figure 6.

(a) Before changing. (b) After changing.

Figure 5. The centered pixel is projected by a
point with depth value 3. In (a), the other pixels
have the same depth value: 3. In (b), the other
pixels have a slightly larger depth value of 6.

Figure 6. Improvement of storage.

2.2 Diffuse reflection texture
As shown in Figure 2(b), we thin out some points to
represent diffuse reflection, and control the degree by
changing the number of hidden points. In particular,
we control the degree by changing the density of the
points; a high-density part is low degree and a low-
density part is high degree.
First, we place a texture plane at an illuminant on the
GPU as a diffuse reflection texture. Next, all points
are projected onto the texture plane as shown at the
top of Figure 7. The density distribution of all the
projected points on the texture plane is shown at the
bottom of Figure 7. As a result of this, the lowest
density part has the highest degree of diffuse
reflection. Therefore, it is possible to achieve the
effect of diffuse reflection by all points are projected
only onto the texture plane. Additionally, we control
the degree of diffuse reflection by changing the
number of drawing points.
The idea is that each pixel on a texture has a hidden
point, and we control the degree of diffuse reflection
by changing texture size. In particular, after all
visible points are projected onto the texture plane,
each pixel has a minimum depth value, similar to the

hidden points texture. The texture consists of multi-
resolution textures so that we can control the degree
of diffuse reflection, as shown in Figure 8(a). Then
we define a full quadtree, with LEVELS 0-n.

Figure 7. Density of projected points.

If we select a LEVEL, all stored points on the texture
of the selected LEVEL are hidden. Moreover, the full
quadtree is maintained on a texture so that we can
effectively hold the textures on the GPU. In our
method, we create the diffuse reflection texture, sized

nn 22 1 , and store each LEVEL as shown in Figure
8(b). So, a pixel on LEVEL 1 has the minimum depth
value of four pixels on LEVEL 2. Similarly, a pixel
on LEVEL 2 has the minimum depth value of four
pixels on LEVEL 3. Thus, all LEVELS can be
created based on the texture of LEVEL n .
In particular, after the projection of all visible points
onto the texture of LEVEL n , all of the other
resolution textures are created in descending order,

(a) Multi-resolution texture.

(b) On a texture.

Figure 8. Full quadtree.
based on the texture of LEVEL n . So, e.g., a pixel

),(yx on the texture of LEVEL 1l has the
minimum depth value in)','(yx which is calculated
by Formula (1),)',1'(yx ,)1','(yx ,)1',1'(yx .

n

lk
k yxyx)2),2(2()','((1)

2n+1

LEVEL n

LEVEL n-1

LEVEL n-2

2n

Point s depth value

LEVEL 0

LEVEL 1

LEVEL 2

6

6

6

6

3

6

6

6

6

3

3

3

3

3

3

3

3

3

Ray vector

High Low High
Projected plane

depth

WSCG 2010 Communication Papers 195

2.3 Specular reflection texture
We refer to the Phong reflection model that is
typically applied to a shape model. The degree of
specular reflection is determined by the angle
between the ray and normal vector of the surface.
However, the input point cloud does not include
normal vectors; therefore, instead of using normal
vectors, we create parameter similar to the above
angle.
First, we place a texture plane at an illuminant on the
GPU as a specular reflection texture. Next, all points
are projected onto the texture plane. Then, assume
that all points have normal vectors as shown at the
top of Figure 9. The angle between each normal
vector and ray vector has the angle distribution
shown at the bottom of Figure 9.
Note that the density distributions of the projected
points in Figure 9 have a similar distribution to those
in Figure 7. Therefore, we compare their distribution
to achieve shading without a normal vector. In
particular, we regard each of the density distributions
on the projected plane to be the angle between a
normal and ray vector. Similarly, if we replace the
ray vector with the eye vector in Figure 9, we can
regard the density distributions of each projected
point with the angle between the normal and eye
vector. Consequently, the differences of their
distributions indicate the angle between the eye and
ray vector.
In Figure 6, note that the depths based on point A
were stored into 8 pixels; point C has 9 pixels. We
have found that their numbers are almost proportional
to the distributions on the hidden points texture.
Thus, we create a hidden points texture at an
illuminant as a specular reflection texture on the GPU.
Then, we determine the drawing points by referring
to specular reflection texture and the hidden points
texture; see the next section.

Figure 9. Angle between two vectors.

2.4 Determining drawing points
We determine the drawing points by utilizing all three
textures. First, we determine the visible points by
applying the results of the hidden points texture to the
point cloud. Next, we apply the results of the diffuse

reflection texture and specular reflection texture to
the visible points.

2.4.1 Eliminating hidden points
To eliminate the hidden points, all points are
projected again onto the hidden points texture, as
shown in Figure 10, where the depth value of point A
is 2, point B is 4, point C is 3, and point D is 7. It
shows that point A is projected onto a pixel whose
depth value is 2, and each adjacent pixel has a depth
value of 4-5. Then, since there is a larger depth value

However, point D is projected onto a pixel whose
depth value is 6, and each adjacent pixel has a depth
value of 3-6. Then, since there is no larger depth

drawn. Using this process, all points are projected
onto the hidden points texture to determine whether
they should be eliminated or not.

Figure 10. A result of hidden points texture.

2.4.2 Hiding points for diffuse reflection
We hide some of the points to represent diffuse
reflection. This process is illustrated using Figure 11,
where we can select any of the four hidden LEVEL
(0-3).
We start by selecting hidden LEVEL 3. All visible
points are projected onto the diffuse reflection texture
of LEVEL 3, so as to represent the diffuse reflection
with LEVEL 3. For example, if a point with depth
value 4 is projected onto the pixel shaded with
diagonal lines, the point is not drawn because it has
the same depth value as that of the pixel. In contrast,
when a point with depth value 5 is projected onto the
same pixel, the point is drawn.
Next, when we select hidden LEVEL 2, all visible
points are projected onto the diffuse reflection texture
of LEVEL 3. For example, if a point with depth value
4 is projected onto the pixel shaded with diagonal
lines, the pixel is related to a pixel such as the bold
pixel in LEVEL 2 of Figure 11. Since, the bold pixel
in LEVEL 2 has the depth value of 2, the point is
drawn because its depth value is different from that of
the pixel.

depth

Projected plane

Ray vector

Normal vector

Small Large Small

WSCG 2010 Communication Papers 196

In case of selecting hidden LEVEL l , all points are
first projected onto the location of LEVEL n . After
that, when a point is projected onto a pixel yx, , we
refer to the pixel as ',' yx , computed by Formula (2).
If the depth in the referring pixel is equal to the

Figure 11. An example of diffuse reflection
texture. (The numbers represent the depth value
of each pixel.)

ln
ln

yx

yx
yx lnn

lk
kln 2/,22/

,
','

1

 (2)

2.4.3 Hiding points for specular reflection
We hide some points to represent specular reflection
in addition to diffuse reflection. First, all visible
points are projected onto a specular reflection texture
and a hidden points texture. As noted in Section 2.2,
we count the pixels in each texture and calculate the
difference between them. Then, we define a threshold

 to the difference so that we can control the degree
of specular reflection; is the ratio of the difference
to the number of pixels. The first iteration count is 9
and the second iteration count is 25. Next, all visible
points that have a difference greater than are
hidden.

3. RESULTS
We conducted experiments and verified our method.
We tested our method as shown in Table 1. The size
of the diffuse reflection texture is 2048 × 1024; the
hidden points texture and specular reflection texture
are 1024 × 1024 each. Additionally, we adopted Cg
for implementing our method on GPU, and assign
coordinate value XYZ of all points to color value
RGB in all three textures.

CPU Core2 Duo 2.66 GHz
RAM 2.0 GB
GPU GeForce 8800GTX

VRAM 768 MB

Table 1. Experimental environment.

Figure 12 shows the results of eliminating hidden
points with 72,027 (Bunny). This indicates that we
can eliminate the hidden points by repeating the

process, if we cannot eliminate the hidden points the
first time.
Figure 13 shows the results of applying diffuse
reflection to two point clouds: (a) and (b) are 542,199
(Oil pump); (c) and (d) are 152,807 (Chinese dragon).
They indicate that we can achieve diffuse reflection
as shown in Figure 2(b) and adjust the diffuse
reflection by changing the LEVEL. Figure 14 shows
the results of specular reflection on the shapes shown
in Figure 13. It shows that the high-light of specular
reflection, as shown in Figure 2(c), appears locally by
using our shading method. Furthermore, they indicate
that we can adjust the specular reflection by changing

. Therefore, they indicate that we achieve shading
by stippling.
Figure 15 shows another result of shading with
172,974(Armadillo). This indicates that our method
can achieve shadowing as shown in the circle in
Figure 15. Due to containing the eliminated hidden
points in our shading method, our shading method
has not been applied to the part in the shadow.
Figure 16 shows the results of processing speed. We
have compared the implementation on a CPU against
a GPU. It shows that on a GPU, the speed is 11 to 17
times faster than on a CPU. The reason is that our
method can be implemented with an image space, and
the GPU can perform in parallel with an image space.
Thus, our method can achieve interactive rendering.

4. CONCLUSION
In this paper, we proposed a NPR method with
stippling using point cloud without normal vectors.
First, we eliminated hidden points. Next, we applied a
novel shading method consists of specular reflection
and diffuse reflection. In addition, we implemented
our method on GPU to accomplish interactive
rendering.
In the future, we will refine our method so it can be
applied to an unorganized point cloud.

(a) once (b) twice

Figure 12. Eliminating hidden points.

WSCG 2010 Communication Papers 197

5. REFERENCES
[Zan04] J. Zander, T. Isenberg, S. Schlechtweg, and T.
Strothotte, High Quality Hatching, Computer Graphics
Forum, 23(3), 2004, 421-430.
[Sat04] Y. Sato, T. Fujimoto, K. Muraoka, and N. Chiba,
Stroke-Based Suibokuga-Like Rendering for Three
Dimensional Geometric Models, The Journal of the Society
for Art and Science 2004, 3(4), 2004, 224-234.
[Lak00] A. Lake, C. Marshall, M. Harris, and M.
Blackstein, Stylized Rendering Techniques For Scalable
Real-Time 3D Animation, 1st International Symposium on
Non-Photorealistic Animation and Rendering, 2000, 13-20.
[Say06] R. Sayeed, T. Howard, State of the Art Non-
Photorealistic Rendering (NPR) Techniques, EG UK
Theory and Practice of Computer Graphics, 2006, 1-10.
[Pau03] M. Pauly, R. Keiser, L.P. Kobbelt, and M. Gross,
Shape Modeling with Point-Sampled Geometry,
Proceedings of SIGGRAPH 2003, 2003, 641-650.
[Pfi00] H. Pfister, M. Zwicker, J.V. Baar, and M. Gross,
Surfels: Surface Elements as Rendering Primitives,
Proceedings of SIGGRAPH 2000, 2000, 335-342.
[Zak04] N. Zakaria and H.P. Seidel, Interactive Stylized
Silhouette For Point-Sampled Geometry, GRAPHITE 2004,
2004, 242-249.
[Run07] A. Runions, F. Samavati, and P. Prusinkiewicz,
Ribbons: A representation for point clouds, The Visual
Computer: International Journal of Computer Graphics,
23, 2007, 945-954.
[Ros08] P. Rosenthal and L. Linsen, Image-space Point
Cloud Rendering, Proceedings of Computer Graphics
International 2008, 2008, 136-143.

Figure 15. A result of shadowing.

Figure 16. Processing speed.

(a) (b)

(c) (d)

Figure 13. Results of after applying diffuse
reflection.The hidden LEVEL of (a) and (c) are 7;

(b) and (d) are 9.

(a) (b)

(c) (d)

Figure 14. Results of applying specular
reflection. of (a) and (c) is 0.3; (b) and (d) is 0.2.

WSCG 2010 Communication Papers 198

	!_Short-papers.pdf
	E07-full.pdf

